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1. Selected Features  
 
Herein, we present the features [1, 2] used by NESTORE in this study and the equations that describe them.  
 

• The feature S is the normalized event source area, and it is given by 
 𝑆(𝑖) = ෍ 10(௠೔ିெ೘)௜  (S1)

 
where mi denotes the event's magnitude at that particular time interval. This is the area that the aftershocks 
occupy when compared to the region that was occupied by the mainshock in this function. 

 

• The Z feature corresponds to the linear concentration of aftershocks where the ratio of the average diameter of 
the aftershock source is divided by the average distance between aftershocks. 

 𝑍(𝑖) = ௠௘௔௡(ଵ଴బ.లవ೘೔షయ.మమ)௠௘௔௡(௥೔ೕ)   (S2)

 
where rij is the distance between the ith and jth aftershock in general. 

 

• The sum energy of the aftershocks, normalized to the energy of the mainshock, is referred to as the Q feature 
[3]. 𝑄(𝑖) = ∑ ா೔೔ா೘   (S3)

 
where Ei denotes the energy of the ith aftershock and Em denotes the energy of the mainshock. The equation of 
Gutenberg and Richter (1956) yields the energy E (in Joules) of an event with magnitude M as follows [4]: 

 𝐿𝑜𝑔ଵ଴(𝐸) = ଷଶ 𝑀 + 4.8   (S4) 

 



 

• The cumulative divergence of S from the long-term trend is the SLCum feature. Given the intervals [𝑠ଵ, 𝑠ଵ + 𝑑𝑡], [𝑠ଵ, 𝑠ଵ + 2𝑑𝑡], … [𝑠ଵ, 𝑠ଵ + 𝑛𝑑𝑡] where 𝑠ଵ + 𝑛𝑑𝑡 ≤ 𝑠ଶ and 𝑠ଵ + (𝑛 + 1)𝑑𝑡 > 𝑠ଶ, SLCum is defined as 
follows: 𝑆𝐿𝐶𝑢𝑚(𝑖) = ∑ 𝑎𝑏𝑠 ቂ𝑆(𝑡௜) − 𝑆(𝑡௜ିଵ) ௜∙ௗ௧(௜ିଵ)∙ௗ௧ቃ௜   (S5)

 
where 𝑆(𝑡௜) is S determined at time 𝑡௜ = 𝑠ଵ + 𝑖 ∙ 𝑑𝑡 and 𝑆(𝑡௜) using the time interval [𝑠ଵ, 𝑡௜]. This feature responds 
to sudden changes in S. 

 

• The cumulative divergence of Q from the long-term trend is the QLCum feature. Like SLCum, it is defined on 
increasing windows after s1. QLCum is defined as follows: 
 𝑄𝐿𝐶𝑢𝑚(𝑖) = ∑ 𝑎𝑏𝑠 ቂ𝑄(𝑡௜) − 𝑄(𝑡௜ିଵ) ௜∙ௗ௧(௜ିଵ)∙ௗ௧ቃ௜   (S6)

 
where 𝑡௜ = 𝑠ଵ + 𝑖 ∙ 𝑑𝑡 and 𝑄(𝑡௜) is Q calculated on the time interval [𝑠ଵ, 𝑡௜].  

 

• The cumulative deviation of S from a sliding window from the long-term trend is represented by the feature 
SLCum2. The interval [𝑠ଵ, 𝑠ଶ] is divided into smaller intervals [𝑠ଵ, 𝑠ଵ + 𝑑𝑡], [𝑠ଵ, 𝑠ଵ + 2𝑑𝑡], … [𝑠ଵ, 𝑠ଵ + 𝑛𝑑𝑡] and [𝑠ଵ, 𝑠ଵ + 𝑑𝑡], [𝑠ଵ, +𝑑𝑡, 𝑠ଵ + 𝑑𝑡 + 𝑑𝜏], … [𝑠ଵ, +(𝑛 − 1)𝑑𝑡, 𝑠ଵ + (𝑛 − 1)𝑑𝑡 + 𝑑𝜏] where 𝑠ଵ + 𝑛𝑑𝑡 ≤ 𝑠ଶ and 𝑠ଵ + (𝑛 +1)𝑑𝑡 > 𝑠ଶ. SLCum2 is given by: 

 𝑆𝐿𝐶𝑢𝑚2(𝑖) = ∑ 𝑎𝑏𝑠 ቂ𝑆([𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡, 𝑠ଵ + 𝑖 ∙ 𝑑𝑡]) − 𝑆([𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡, 𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡 +௜𝑑𝜏]) ௗ௧ௗఛቃ  (S7)

 
where 𝑆[𝑎, 𝑏] is S estimated throughout the [𝑎, 𝑏] time range in general. This feature responds to sudden changes 
in S as the feature SLCum, but differently from SLCum, the window does not start at a fixed time close to the 
mainshock origin time. 

 

•  The cumulative deviation of Q from a sliding window from the long-term trend is represented by the feature 
QLCum2 and it is calculated in a manner similar to SLcum2 for the Q function. The interval [𝑠ଵ, 𝑠ଶ] is separated 
into a set of smaller intervals [𝑠ଵ, 𝑠ଵ + 𝑑𝑡], [𝑠ଵ, 𝑠ଵ + 2𝑑𝑡], … [𝑠ଵ, 𝑠ଵ + 𝑛𝑑𝑡] and another set [𝑠ଵ, 𝑠ଵ + 𝑑𝑡], [𝑠ଵ, +𝑑𝑡, 𝑠ଵ +𝑑𝑡 + 𝑑𝜏], … [𝑠ଵ, +(𝑛 − 1)𝑑𝑡, 𝑠ଵ + (𝑛 − 1)𝑑𝑡 + 𝑑𝜏] where 𝑠ଵ + 𝑛𝑑𝑡 ≤ 𝑠ଶ and 𝑠ଵ + (𝑛 + 1)𝑑𝑡 > 𝑠ଶ. QLCum2 is given 
by: 

 𝑄𝐿𝐶𝑢𝑚2(𝑖) = ∑ 𝑎𝑏𝑠 ቂ𝑄([𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡, 𝑠ଵ + 𝑖 ∙ 𝑑𝑡]) − 𝑄([𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡, 𝑠ଵ + (𝑖 − 1) ∙ 𝑑𝑡 +௜𝑑𝜏]) ௗ௧ௗఛቃ  (S8)

 
where 𝑄[𝑎, 𝑏] is Q estimated throughout the [𝑎, 𝑏] time range in general. Similar to SLCum2, the feature reacts 
to sudden changes in Q not beginning at a set time near the mainshock starting moment. 

 

• The Vm feature, which is determined by the cumulative variation of magnitude between each occurrence, is 
 𝑉௠(𝑖) = ∑ |𝑚௜ − 𝑚௜ିଵ|௜   (S9)

 
where mi is the magnitude of the ith event in the selected time interval. 



 

 
• Feature N2 is the number of events with 𝑀 ൒ 𝑀𝑚 − 2. 

 
2. Performance Estimation 
 
Binary classifiers distinguish between two classes, one positive (in our case class A) and one negative (in our case class 
B). In pattern recognition applications, the confusion matrix, a two-by-two matrix formed by the number of classification 
results, is used to obtain information about the performance of a binary classifier (i.e., TP, FN, TN, and FP are the 
number of True Positives, False Negatives, True Negatives and False Positives, respectively). The numbers of the main 
diagonal reflect the false choices in the different classes, while the numbers along the main diagonal represent the correct 
choices. Recall, Precision, and Accuracy evaluations are a standard method for assessing a classifier's performance [5]. 

 

 
Figure S1. Confusion Matrix. 

 
The Recall is defined as 
 𝑅𝑒𝑐𝑎𝑙𝑙 = ௉௢௦௜௧௜௩௘௦ ௖௢௥௥௘௖௧௟௬ ௖௟௔௦௦௜௙௜௘ௗ௉௢௦௜௧௜௩௜௘௦ = ்௉௉ = ்௉்௉ାிே  (S10)

 
where positives and negatives mean class A and class B, respectively. 
 
The Precision is defined as 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ௉௢௦௜௧௜௩௘௦ ௖௢௥௥௘௖௧௟௬ ௖௟௔௦௦௜௙௜௘ௗ஼௟௔௦௦௜௙௜௘ௗ ௔௦ ௣௢௦௜௧௜௩௘ = ்௉௒ = ்௉்௉ାி௉  (S11)

 
The Accuracy is defined as 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ஼௢௥௥௘௖௟௧௬ ௖௟௔௦௦௜௙௜௘ௗ஺௟௟ = ்௉ା்ே௉ାே = ்௉ା்ே்௉ାி௉ାிேା்ே  (S12)
 
The negatives uncorreectly classified as positives is the False Positive Rate and is defined as  
 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = ே௘௚௔௧௜௩௘௦ ௜௡௖௢௥௥௘௖௧௟௬ ௖௟௔௦௦௜௙௜௘ௗ்௢௧௔௟ ௡௘௚௔௧௜௩௘௦ = ி௉ே = ி௉ி௉ା்ே  (S13)

The Informedness is defined as 
 



 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑅𝑒𝑐𝑎𝑙𝑙 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  (S14)
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