
Citation: Lysov, M.; Pukhkiy, K.;

Vasiliev, E.; Getmanskaya, A.;

Turlapov, V. Ensuring Explainability

and Dimensionality Reduction in a

Multidimensional HSI World for

Early XAI-Diagnostics of Plant Stress.

Entropy 2023, 25, 801. https://

doi.org/10.3390/e25050801

Academic Editors: Alexander

Gorban, Sotiris Kotsiantis and

Ivan Tyukin

Received: 10 January 2023

Revised: 8 May 2023

Accepted: 8 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Ensuring Explainability and Dimensionality Reduction in a
Multidimensional HSI World for Early XAI-Diagnostics of
Plant Stress
Maxim Lysov, Konstantin Pukhkiy, Evgeny Vasiliev, Alexandra Getmanskaya and Vadim Turlapov *

Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University,
603950 Nizhny Novgorod, Russia
* Correspondence: vadim.turlapov@itmm.unn.ru

Abstract: This work is mostly devoted to the search for effective solutions to the problem of early
diagnosis of plant stress (given an example of wheat and its drought stress), which would be based
on explainable artificial intelligence (XAI). The main idea is to combine the benefits of two of the most
popular agricultural data sources, hyperspectral images (HSI) and thermal infrared images (TIR), in a
single XAI model. Our own dataset of a 25-day experiment was used, which was created via both
(1) an HSI camera Specim IQ (400–1000 nm, 204, 512 × 512) and (2) a TIR camera Testo 885-2
(320 × 240, res. 0.1 ◦C). The HSI were a source of the k-dimensional high-level features of plants
(k ≤ K, where K is the number of HSI channels) for the learning process. Such combination was
implemented as a single-layer perceptron (SLP) regressor, which is the main feature of the XAI model
and receives as input an HSI pixel-signature belonging to the plant mask, which then automatically
through the mask receives a mark from the TIR. The correlation of HSI channels with the TIR image
on the plant’s mask on the days of the experiment was studied. It was established that HSI channel
143 (820 nm) was the most correlated with TIR. The problem of training the HSI signatures of plants
with their corresponding temperature value via the XAI model was solved. The RMSE of plant
temperature prediction is 0.2–0.3 ◦C, which is acceptable for early diagnostics. Each HSI pixel was
represented in training by a number (k) of channels (k ≤ K = 204 in our case). The number of channels
used for training was minimized by a factor of 25–30, from 204 to eight or seven, while maintaining
the RMSE value. The model is computationally efficient in training; the average training time was
much less than one minute (Intel Core i3-8130U, 2.2 GHz, 4 cores, 4 GB). This XAI model can be
considered a research-aimed model (R-XAI), which allows the transfer of knowledge about plants
from the TIR domain to the HSI domain, with their contrasting onto only a few from hundreds of
HSI channels.

Keywords: explainable artificial intelligence; hyperspectral image; thermal IR training; zero-shot
learning; plant stress; early diagnosis

1. Introduction

Here, we continue the topic of significance in explainable artificial intelligence (XAI)
of information theory and, in particular, entropy, which started in our previous article by
Lysov, et al. [1] (2022). This article investigates the introduction of entropy and max-min
into the vector of statistical features for the problem of classifying plant states experiencing
developing drought stress. They were introduced as traditional measures of the diver-
sity of the states of the objects under study. This made it possible to reduce the number
of features required for confident (with accuracy = 1) early drought detection to only
two features, which must include entropy or max-min. Plant state was detected us-
ing Thermal IR (TIR) images and hyperspectral images (HSI) data separately. HSI data
were represented by six popular vegetation indices and by three separate channels: R630,
G550, and B480. All HSI-based indices and TIR were shown to be able to achieve such
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early detection of drought, but the TIR-based features proved to be the most sensitive
and reliable.

Here, we searched for effective solutions to the same problem of early diagnosis of
plant stress on an example of wheat and its drought stress. However, the main idea was
to combine the benefits of two of the most popular agricultural data sources, HSI and TIR
images, in a single XAI model. This will give the HSI additional functionality as a TIR
sensor and increase the reliability of plant drought detection without actually using the TIR
sensor on the UAV, as well as increase the temperature-based explainability of AI decisions.

Artificial intelligence (AI) has become the most popular approach to diagnosing plant
stress in smart farming. Boldú, in a 2018 review [2], noted the widespread use of Deep
Learning (DL) in agriculture. Kakogeorgiou, et al. in 2021 [3] and Wei, et al., 2022 [4],
showed that DL, gradually adding certain properties of explainability to its arsenal, is
becoming more and more used for plant stress and disease diagnostics. At the same time,
hyperspectral images (HSI) of plants are widely used as initial data for AI diagnostics. This
means that extending the functionality of HSI with thermal range would be very beneficial
for both agriculture and AI.

1.1. HSI as Multidimensional World

A typical HSI occupies hundreds of megabytes of memory, has a complex multi-file
structure, and requires special processing software. Each HSI pixel is an n-dimensional
channel, or spectral, vector with an almost unique combination of hundreds of channel
values. The presence of hundreds of channels in the spectral characteristic of each pixel for
an HSI gives the object depicted in it hundreds of features and comes with the fundamental
possibility of classifying the object by one n-dimensional pixel (signature) even without
using context. Dozens of vegetation indices, such as the Normalized Difference Vegetation
Index (NDVI), developed in Earth remote sensing (ERS) are also used in the diagnosis of the
state of plants and fields. These indices are built on rational combinations of HSI channel
values, and their number continues to grow [5,6]. When solving problems of diagnosing
the state of plants, indices are usually used instead of HSI, but can also be used together
with HSI channels and spectral characteristics of its pixels, sometimes even preferring the
latter [7].

Since the use of HSI in the practice of remote sensing, the “Spectral angle” measure
and the classification procedure based on it, called the Spectral Angle Mapper (SAM)
Classification, have been used. In essence, this coincides with the Fisher criterion for
determining separability in a multidimensional space (Grechuka, 2021) [8]. As a result,
from the point of view of AI, hyperspectral images form their own multidimensional HSI
world, in which both the curse of dimensionality and the blessing of dimensionality are
necessarily present [9] (Gorban, 2018).

1.2. HSI and AI in Agriculture

The above properties of HSI have made the research and application of HSI constantly
expanding [7,10–13], and applied problems using HSI have become a real testing ground
for the development of AI methods and models. For example, Zhang et al., in a 2020
review [13], explored the application of AI for diagnosing plant stresses on HSI data over
the past 3 decades. It has been shown that HSI signature data are able to provide recognition
of plant diseases with acceptable accuracy, in terms of leaf, stem, ear, and crown. Examples
of solutions for images both on the scale of traditional remote sensing and at distances of
the order of a meter(s) accessible to UAVs and ground units are given. Publications [7,11,12]
reflect the trend towards using “close-range” HSI and high resolution HSI as source data.
Sometimes HSI is supplemented with thermal (Thermal IR, TIR) imaging [12], which is
absent in the set of HSI sensors, but is specialized for early stress diagnostics by increasing
plant temperature [12,14]. Early diagnosis is understood as one that avoids crop losses. The
problem of early diagnostics of plant drought stress was also studied in [7]. It was shown
that when using several popular classical ML methods, including Multi-Layer Perceptron
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(MLP), the accuracy of plant drought state detection based on the full spectral characteristic
of plant HSI, as well as its derivative, turned out to be higher than the accuracy obtained
on a combination of nine vegetation indices. Review [15] is devoted to the development
of algorithms for detecting the quality of wheat grain protein and its relationship with
nitrogen status, based on ML and HSI data, over the past almost 25 years.

In Schmitter et al. (2017) [10] proposed an original “unsupervised domain adaptation”
approach for early detection of plant-drought stress, which also uses HSI data. The ap-
proach provides the transfer of a neuromodel trained for early detection of plant-1 stress to
the detection of plant-2 stress, using wheat and corn as an example. The transfer is carried
out on the first principles of plant biology and does not require supervision. The other
original method, which uses HSI possibilities, was proposed by Pan et al. (2021) [16]. It
is the “zero-shot learning” approach based on using a high-level feature vector. Such a
vector ensures the minimization of a dataset required for training, as well as the transfer of
training results from one dataset to another, in which some of the categories are missing (or
not visible). The high-dimensional spectral characteristics of HSI are considered the source
of high-level features.

1.3. Notions of XAI and Explainability in AI

The number of publications devoted to explainability and explainable artificial intelli-
gence (XAI) has increased significantly in recent years, but there is a noticeable difference
in the interpretation of the content of XAI. For example, Zhang et al., which presented
in their review (in [17], Figure 1) the point of view of XAI applicating in diagnostics and
surgery, proposed the following scheme for covering the areas of AI, ML, DL, and XAI: ML
entirely belongs to AI, and DL belongs to ML; XAI is the part of AI that overlaps with ML
but does not overlap with DL. This vision is consistent with previous publications [18–20].
In Lundberg et al. (2018) [19] build explainable prediction and prevention models for
hypoxaemia during surgery on objective patient monitoring data, substantiating their
importance with the data of Shapley value analysis. In Lamy, et al. (2019) [18] explain the
prediction for breast cancer using a case-based reasoning approach, which is typical for
the medicine. In Antoniadi et al. (2021) [20] draw attention to the lack of explainability in
ML-based Clinical Decision Support Systems (CDSS) for the clinicians operating them and
insist on its increase. It is understood that for other applications of XAI, “linician” means a
person who directly uses XAI predictions.

Some works explore XAI as a universal tool [21–24]. The authors of Wang et al. (2019) [21]
proposed an original “Theory-Driven User-Centric” approach for XAI designing. According
to them, “explainability” should be oriented towards the user, making it “User-Centric”
using the methods of cognitive psychology and the laws of human thinking. The main
idea of the approach is expressed by the formula “Understanding Humans Should Inform
Explaining AI”.

Vilone and Longo (2020) lead a systematic 81-page review of XAI based on
361 sources [22]. The review contains a detailed study of XAI, including a detailed analysis
of concepts related to the concept of explainability, a discussion of explainability attributes,
a classification of existing methods, and approaches to designing XAI elements and systems.
They generalized a state-of-the-art hierarchical framework for XAI design, which includes
the following components (from bottom to top): data; modeling; XAI methods; explanators;
and evaluation. The authors also proposed an alternative ideal vision of XAI as a system
of nested components. The central and main focus component is the Explanators (textual,
pictoral, rules, dialogue, mix-formats), which is what end-users will ultimately interact
with. Then follows Attributes (comprehensibility, interestingness, persuasiveness . . . ),
Modeling (AI connectionist learning, AI symbolic reasoning), and Evaluation of explainabil-
ity (which is realized via interface interaction and human-in-the-loop technic, for designer
and end-user). This Explanators-driven XAI concept appeared very interesting on the
condition of considering Explanators paired with Data.
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Averkin (2021), in the review [23], explores, against the background of modern publi-
cations, the possibilities and prospects for the development of XAI in the project “DARPA’s
explainable artificial intelligence (XAI) program”, presented in the report [25]. This project
attracted the attention of the author with its focus on deriving an explainable model from
any black box model. For this goal, it was planned to create modified DL methods that
study explainable features, and methods that explore more structured, interpretable causal
patterns, as well as model induction methods. Maybe it means a reasonable shift of the DL
model properties to the side of XAI model properties. The list of modern publications by
the author also includes publications of two standards [24,26] on XAI.

The draft NISTIR 8312 (2020) for XAI definition [24] from the National Institute of
Standards and Technology (NIST) is more interesting because it offers “Four Principles of
Explainable Artificial Intelligence” underlying XAI with an emphasis on human-computer
interaction. These principles are: (1) Explanation; (2) Meaningful; (3) Accuracy of expla-
nation; (4) Limits of knowledge (the system must note any cases for which it was not
designed). The principles are independent from the AI area, DL and classical ML, but
subject both areas to the same criteria, including the 4th, which is very hard to execute for
DL. Their short explanation:

Explanation: Systems deliver accompanying evidence or reason(s) for all outputs.
Meaningful: Systems provide explanations that are understandable to individual users.
Explanation Accuracy: The explanation correctly reflects the system’s process for generating
the output.
Knowledge Limits: The system only operates under conditions for which it was designed
or when the system reaches sufficient confidence in its output.

In the examples of providing explainability in the practice of diagnosing plant stress
based on DL [3,4], we can speak so far only of partial implementation of three principles,
(1) Explanation, (2) Meaningful, and (3) Accuracy of explanation, in order to overcome
some of the limitations of the black-box nature of DL models. In examples of providing
explainability based on ML methods [1,7,14], one can see the implementation of the same
3 XAI principles, but with a high degree of content, as well as a part of the content of the
4th principle, which has not yet begun to be given due attention in practice.

According to Linardatos et al. (2021) [27], the popularity of the search term “Explain-
able AI” (XAI) over the years, according to Google Trends, peaked in 2020. The XAI is
considered here as a source of “white-box” models, which are the alternative to “black-box”
ones. At the same time, XAI is increasingly expected to include the transfer of knowledge
from one area to another as one of its main functions, also expected of such white-box
models, which will be able to perform well not only in a single task.

This subsection directs us to search for an XAI solution in the form of a “white-box”
model that provides the transfer of knowledge from one known area, which is changing
the plant leaf temperature during the drought, registered by TIR sensor, to another area,
which is the multidimensional HSI world. Additionally, our version of the white-box model
was planned to be constructed according to the ideal explanators-driven XAI vision of
authors [22], as a system of nested components, and under the constructive vision of the
four principles of [24,26].

1.4. Theory and Practice of Feature-Space Dimensionality Reduction in AI-HSI Applications

The second goal of this work is to reduce the dimension of the high-level feature
vector needed to train HSI signatures on the TIR temperatures, as much as possible. The
practical possibility of lowering the HSI dimension in the early diagnosis of plant stress
was shown by Agilandeeswari et al. (2022) [28]. They managed to reduce the number of
HSI channels used for the task by about five times, from 224 to 42–45, using the selection of
channels according to efficiency criteria. The criteria used for this goal were justified by
the authors as dictated by the frequency of their application in the respective wavelength
ranges. So, the criteria for the three ranges are: the visible (VIS) range—the value of the
entropy (informativity) of the current channel; the near infrared (NIR)—the value of the
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Normalized Difference Vegetation Index (NDVI); the shortwave IR (SWIR)—the value of
the Modified Normalized Difference Water Index (MNDWI). They selected 14–15 channels
from each range. In our case the SWIR range is absent.

There are also theoretical and practical reasons for even more significant dimensional-
ity reduction. For example, Allegra et al. (2020) in [29] confirmed that a small number of
variables is often sufficient to locally describe high-dimensional data. This minimal number
of variables is called the intrinsic dimension of the data (IDD). Additionally, such IDD can
be viewed as a simple topological feature that is sufficient to implement unsupervised
segmentation of multidimensional data.

Even more interesting possibilities are opened by Albergante et al. (2020) [30], con-
firming the possibility of modeling the internal structure and geometry of a complex
multidimensional dataset in the form of an area graph with a low local internal dimension.
The ElPiGraph software has now become part of the Python Package for Intrinsic Dimen-
sion Estimation, called the “Scikit-Dimension” [31]. Authors, Gorban et al. (2021) [32],
solve the problem of constructing simple correctors that can update the properties of the
AI system. However, it is essential for our study that the authors accept as a working
hypothesis that the data can have a rich fine-grained structure with many clusters and
corresponding peaks in the probability density. Additionally, this hypothesis, workable
for the authors, confirms for us the possibility of a sharp decrease in the dimension of the
space inside the grain and the efficiency of using local metrics. As an effective tool for
coordinating a local subject area, it is proposed to use methods of principal component
analysis (PCA).

The considered material gives us fundamental confidence that the local problem of
temperature coordination on the pixels of the plant mask is solvable in the space of channels
on a relatively small number of channels. However, we are forced to abandon the use
of PCA, as our goal is to achieve greater generality in our solution, and PCA is context-
sensitive. We find an important confirmation of our choice in a recent publication, Wei
K. et al. (2022) [4], which studied a number of different datasets of fruit leaf images and
demonstrated that the convolutional block attention module (CBAM) can significantly
improve the feature extraction ability in applying a deep convolutional neural network
model. However, the main result for us is that the attention objects and feature extraction
results of the model in different agricultural classification tasks turned out to be different.

2. Materials and Methods
2.1. Materials

An experiment on the early detection of drought stress in plants was carried out in
the biolab of our university. Drought studies were carried out on wheat plants (Triticum
aestivum L.), cultivar Zlata. After soaking, the seeds were planted in plastic pots 10× 10× 8
(sm) filled with universal soil “Morris Green”, 16 plants per pot. The temperature was kept
at 24 ◦C and the air humidity was about 50%. Plants were illuminated with luminescent
lamps with intensity about 200 µmol/s/m2 with a 16-h photoperiod. Plants were grown up
to the age of 14 days, after which they were divided into control and experimental groups.
In the experimental group, watering was stopped. In the control group, it was continued
according to the standard schedule (1 time in two days). For ease of observation, plant pots
were placed in 3 boxes of 30 pots each. The control group has 15 pots in the left half and
the experimental group has 15 pots in the right half of the box.

During 25 days the state of the plants was regularly recorded, every 2–3 days from
a height of about 1 m and at a right angle, with the following cameras: (1) Specim IQ
hyperspectral (HSI) camera (range: 400–1000 nm; spectral resolution: 3 nm; channels: 204;
512 × 512 pix); (2) Testo 885-2 thermal infrared (TIR) camera (320 × 240 pix, temperature
resolution is 0.1 ◦C). The spatial resolution of the HSI camera was 1.5 mm per pixel, and
for the TIR camera was 2.4 mm per pixel. TIR sensors were chosen to directly record
the leaf temperature, an increase in which is the earliest feature of a stress condition, see
Jackson et al. (1981) [33]. Images with HSI and TIR sensors were taken in the morning 2–3 h
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after the illumination was turned on. An example of an RGB interface for selecting a plant
or soil pixel on the HSI and visualizing its recorded spectrum can be seen in Figure 1. The
images were recorded for the following 11 days of the experiment: 1st, 3rd, 6th, 8th, 10th,
12th, 14th, 16th, 19th, 22th, and 25th. The total image volume was about 72 GB, mainly
comprising HSIs.
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Figure 1. An example of hyperspectrum (top right) viewing for a plant pixel taken with an HSI
Specim IQ camera. The pixel is marked with a light dot in the (upper left) quarter of the image. The
plant belongs to the control group.

In parallel with image recording, objective measurements of differences between the
plants in the control and experimental groups in leaf temperature (according to TIR images,
◦C) and water loss (%) were performed (Figure 2).
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Figure 2. The differences (∆) between the plants in the control and experimental groups: in average
leaf temperature, according to TIR images (left); in average relative water content (RWC) in wheat
leaves (right). Day 0 is the last day of watering for the experimental group of plants.
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The water loss measurements were carried out under standard conditions of tem-
perature and humidity. The relative water content (RWC) in wheat leaves was estimated
from the ratio of fresh weight (FW) and dry weight (DW) of the leaves. The plant leaves
were dried for 48 h at 70 ◦C to obtain a dry weight value. The RWC was calculated by the
expression: RWC = (FW − DW)/FW. Plants for measuring water loss were selected from
the experimental and control groups, grown according to the same scheme, but without
recording optical data.

The following key events and changes in the state of experimental plants were detected
(Figure 2): (1) an increase in the average temperature of plants by 0.2 degrees on the
5th day without watering; (2) the beginning of water loss by the plant after 11 days (on
average about 8% of the volume of water). The first event is the earliest feature of the onset
of drought stress and occurs for the plant without the losses of water and green mass. Such
detection of a plant stress event is a criterion of “early” detection success. Outside the range
of Figure 2, on the TIR images of the segment 17–25 days, we also have another key day.
It is on the 19th day that we have a fracture in the line of a monotonous increase in plant
temperature, which may be due to the depletion of the compensatory function of wheat
plants. The days {1,3,6,8,12,19,25}, in which notable changes in plant temperature or water
loss can occur or are occurring were selected as 7 key days.

To execute the study, we organized 2 datasets for training and testing purposes by
dividing the experimental part of box #3 of the dataset into 2 parts named “Train” and
“Test” (Table 1). This ensured comparability of parts of this study. Plant pots were selected
for the best focus TIR-image criterion.

Table 1. Key days numbers and plant pots numbers included in the ‘Train’ and ‘Test’ dataset parts.

Key days number 1 3 6 8 12 19 25

‘Train’ pots numbers 5 11 9 5 10 5 10

‘Test’ pots numbers 8 8 8 8 8 4 8

2.2. Construction of XAI Early Diagnostics Network on the Input Explanators Having Only
High-Dimentional I Data as the Source

Our main goal and problem here is to combine the benefits of two of the most pop-
ular agricultural data sources: hyperspectral images (HSIs) and thermal infrared im-
ages (TIR) to provide the agriculture plants health analysis. According to the above
publications [9,16,22,27,34], the best guiding idea for building an XAI neural network for
this goal is an explainable user-centered “white-box” model, which has explainable input,
explainable output, and provides “the transfer of knowledge from one area to another”. In
our case, the first area is TIR images, and the second one is the HSIs. Both areas have the
same users: agronomists and biologists, and both are explainable for them.

The HSI is initially unaware of the plants’ temperature, but its spectral characteristics
can be used as a source of high-level features. According to [16] the presence of high-level
features is a necessary condition for training to “unseen categories”, but this presence
should be confirmed during our study, starting from the full dimension of the spectral
characteristic. So, our XAI neural network should ensure the transfer of knowledge about
the plant’s temperature to HSI signatures, if it is possible. After this it is important to
localize the most important channels, which are the real high-level features, and minimize
their number.

Then as the main study result, we could consider our trained XAI neural network as
a Research XAI (R-XAI) block, which ensures the transfer of the temperature knowledge
onto to HSI signatures (which was impossible before) due to knowledge of the most
important channels for this. Such an RXAI unit could be widely used, including for early
stress diagnostics not only in wheat plants, considering the HSI sensor to be sufficient for
all tasks.
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The confidence in solving the problem is based on a number of fartors. The first one is
our initial experience of training hyperspectral images (HSIs) to the TIR temperatures [34]
based on a “Zero-Shot Learning” approach [16]. Unfortunately, (1) the achieved RMSE
value (0.52 ◦C, 5 times the TIR resolution) is obviously not enough for practice, and
(2) the reconstructed temperature range [18.8–22.1 ◦C] had a significant gap of 1 ◦C in the
middle due to the same gap in the used original data (1st box at 25th day, having the widest
temperature range, see Figure 3).
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Figure 3. The original image from TIR sensor in color scale (left), the result of the temperature
prediction (right) (courtesy of the authors of [34]).

Another group of factors are long-term studies aimed at finding objective biophysical
relationships between the state of plants with both the shape of their reflected hyperspec-
trum in general and individual channels in particular. This is a series of works since
1970 [35] (Knipling, 1970), where the effect of chlorophyll and water in a wide range of the
hyperspectrum from 400 to 2800 nm has been explained. The most frequent result of these
works was the proposal or clarification of HSI-based vegetation indices, as in [36] (Gitelson,
1996), where a new vegetation index R750/R700 for the “red edge” zone of hyperspectrum
was proposed, and the linear relationship between the chlorophyll concentration and the
index value was established. Similar studies continue to the present [37]. These studies
show that there are both HSI ranges and individual channels that are most sensitive to the
state of plants.

2.3. Building a Plant Mask for Automation of HSI Markup and Tools for Correlation and
Regression Research Based on It

To solve the problem of training HSI signatures from TIR temperatures, it is necessary
to mark up the HSI pixels with the TIR sensor temperatures for all 7 key days. Moreover, this
must be completed for such a number of pots with plants, which will provide the number
of pixels of plants sufficient for training. To automate the markup process, 512 × 512 HSIs
were aligned with 320× 240 TIR images using the homography transformation. Combining
images of significantly different resolutions created additional difficulties: (1) to improve
accuracy, alignment was performed at the level of each pot with plants instead of boxes;
(2) along the border of the plant leaf, large pixels of the TIR image appeared, which
overlapped both the leaf and the soil, having different temperatures.

To study the correlation of the TIR pixel temperatures with the pixels of each HSI
channel, as well as to perform training on pixels that belong to plants strictly completely
or only partially, it is necessary to provide a tool for separating pixels that have different
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levels of plant and soil mixing. It should be a tool to create and manage a plants’ mask (Mj,
where j is an ordinal number of key day from 1 to 7).

To solve this problem, the following steps were taken:

(1) A plants’ mask managed by a threshold (thr), which separates plant from soil, was
constructed. For this goal the vegetation index NDblue (1) [1] was used. The condition
of belonging to the plants’ mask is NDblue ≥ thr.

(2) A special tool with interface (Figure 4) for the plants’ masks setting has been im-
plemented. This tool removes from the mask those points of the point cloud (PC)
that have deviated from the linear regression by more than a up or b down. This
can provide both homoscedasticity of the regression and control over the size of the
standard error of the regression. Parameters a and b can vary independently, but the
study used only the symmetrical variant a = b.

NDblue =
V

(max(V)−min(V))
, V = R550 − R450, NDblue ≥ thr (1)
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Figure 4. Interface for building and studying plants’ mask (for HSI and TIR), cloud and regression,
equipped with control of Band, Thr, a, b parameters, and correlation and regression plots.

Figure 4 shows plants in one of the pots (left) stained with three HSI channels: R680,
G550, and B480. Under this image the current scale of TIR values is shown. The threshold
(thr) is connected with the amount of soil allowed in a pixel classified as a plant. thr values
from 0.1 to 0.5 (lower left slider) change the allowed proportion of soil from exceeding the
plant presence to zero (correspondence was established visually). Near thr value for the
slider, the value of mask Mj area (Pixels) is shown.

On the right, we can see a pseudo-color TIR image for the pixels under the current
plant’s mask Mj. Below this image:

Right plot: Correlation plot between TIR and all HSI channels for the day of the
experiment (Day field in the bottom panel); the channel with the best correlation is shown
in text form above the plot. To assess the correlation, the Pearson Linear Correlation
Coefficient (PLCC) is used according to Formula (2). Using the Band slider below the graph,
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you can set any channel (usually the best in correlation) for which you want to generate a
point cloud. The selected channel is highlighted on the chart with a red mark.

Left plot: Point cloud plot (X-axis—channel HSI values; Y-axis—TIR values) for
building a linear regression of the temperature prediction. Below it are sliders for setting
parameters a and b. The initial values a = b = 1 do not limit the cloud and mask. Reducing
a,b to 0.5 has a minimal effect (reducing the cloud/mask by 2% or less), to 0.1—reduces the
mask by 2–2.5 times, providing regression homoscedasticity and reducing its RMSE.

r(x, y) = cov(x, y)/(σx·σy) =E[(x − Ex)(y − Ey)]/
√

Dx·
√

Dy. (2)

The actual values of the parameters for the images and graphs presented in Figure 4
are as follows: Day = 8th; HSI channel or Band = 143/820 nm; thr = 0.3; a = b = 1. Channel
numbering is used starting from 0.

With the help of such a tool, we can explore building both a plants’ mask and the linear
regression on the following parameters: day; HSI channel (or band); thr; a, and b to detect
the presence of a high correlation of any from HSI channel(s) with TIR image andbuild a
predictor y(x) for TIR-HSI cloud in the form (3).

yi = Ey +
σy

σx
(xi − Ex), (3)

where xi—i-th mask-pixel value for current HSI channel, yi—i-th mask-pixel value for TIR.

2.4. Dimensionality Reduction and Building of the XAI System Based on HSI-Input-Data as the
Source of High-Level Features

Following the main ideas of [32], we also plan to use the experience of biologists and
agronomists in the search for channels that are sensitive to plant health.

We plan to solve the problem of mixing the benefits of HSI and TIR based on the HSI
input data in two ways: (1) to investigate whether among the HSI channels there is one or
the other that has a high correlation with TIR, close to a functional relationship; (2) training
HSI pixels with TIR values using the XAI model and searching for high-level features [16]
(H-LF). The second goal is to try to minimize the number of HSI channels required for
the solution. Probably the most important thing is to find a solution for the 2nd problem,
which will depend not on the key day, but only on the stress state level of the plants, and
to achieve this on the reduced number of HSI channels, which will be H-LFs. This means
that the XAI structure must provide for the possibility of changing the number of HSI
channels (k).

Let us analyze the absolute PLCC values averaged over key days for various threshold
values (Figure 5) to help us in reducing the number of HSI channels. The PLCC values
were calculated both as the average over key days (as in Figure 5), as well as separately for
each key day. This was completed for both the ‘Train’ and the ‘Test’ parts to compare the
correlation patterns of these parts.

It can be seen that the correlation curves for different thresholds have very close
shapes, which can be characterized by several extreme points near the following (channel
number/wavelength): 59/570, 97/680, 117/740, 126/770, and 143/820 (4 max + 1 min),
the first 3 of which are included in the expressions of popular vegetation indices. Some
widely used vegetation indices (VI), such as NDVI (Normalized Difference Vegetation
Index), GI (Greenness Index), PRI (Photochemical Reflectance Index), and others [10],
can also be included as additional features. Together, it will be only k = CHextr + VIs
channels/indices (hereinafter referred to as channels) instead of all 204. The real number of
local maxima is much more than 5, and they change from one key day to another. How
many highs/extremes will be enough for each day and for all days together, and what their
types will be, should be a subject of study.
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Figure 5. PLCC absolute values averaged over key days for various threshold values driving the
mask, without any restrictions by a,b parameters (a = b = 1). The x-axis is the wavelength for HSI
channels (nm).

So, to build the XAI temperature regressor, we use 3 data sources at its input for each
of the 7 key days: the values of HSI(j), TIR(j) and M(j), where j is the ordinal number of the
key day (Figure 6). We will use SLP (Single Layer Peceptron) as the base ML structure for
XAI. As an input HSI feature vector for predicting the TIR value, we will use pre-selected k
HSI channels, which should ensure the prediction of the temperature value with acceptable
accuracy. The problem of choosing k and its minimization will be solved in the course of
the study.
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We will use the Mask component as a sampler of HSI and TIR pixels to build a cloud
and parameterize our study in terms of {thr, a, b} (see Figure 4). It is important to note that
the masks for each key day are different.

As a loss function, we use RMSE as an estimate of the deviation of the temperature
predicted for an HSI pixel from its value in TIR for each of the key days. In this case, the
loss function should take the following form (4):

RMSE =

√
∑7

j=1 ∑m∈Mj

(
pyjm − yjm

)2/n, (4)

where pyjm—temperature predicted from the k channels of the m-th HSI pixel of the j-th
day mask Mj, yjm—m-th pixel value of TIR mask Mj, n—total number of pixels in 7 masks.

Three blocks at the input of the XAI neural network (Figure 6) implement automatic
markup with temperatures and the formation of a (k + 2)-dimensional cloud at the input of
the SLP regressor, where k is the number of HSI-channels used.

The remaining 2 measurements are the temperature and the day of the experiment. In
the case of k = 1 and one day, we get a two-dimensional cloud, as shown in Figure 4. The
HSI block provides a selection of a given number of given or arbitrary channels.

Key day sampling management provides both the training on the cloud for all days,
and for each day separately. The previously shown mask and cloud control parameters
also work: thr and a,b.

3. Results and Their Discussion
3.1. HSI-Input-Data Dimensionality Reduction via Searching Channels That Can Be Consided as
High-Level Features

According to the order planned in the Section 2.4, at first we solved the task (1) to
investigate whether among the HSI channels there is one or the other that has a high
correlation with TIR, which is close to a functional relationship.

We have PLCC absolute values, which were calculated for both the ‘Train’ and the
‘Test’ parts to compare the correlation patterns of these parts. It turned out that plots
averaged over key days for the ‘Train’ part and the ‘Test’ part have noticeable differences.
This is expressed in a noticeable rise of ‘Test’ plots for the zone of minimum (channels
96–97, 680 nm), and, with it, for the entire left part of the plot (see Figure A1, Appendix A).
On this basis, it can be assumed that the part of the spectrum to the right of 740 nm is more
promising for the search for high-level features. The highest was the average PLCC for the
143 channel (820 nm).

The nature of the behavior of the plant mask (Mask), correlation coefficient (PLCC),
channel (Best Ch.), the best in PLCC, and the RMSE value when changing the Threshold
and a,b parameters is illustrated in Table 2.

Based on Table 2 together with the study interface (Figure 4), the following conclusions
can be drawn. As a and b decrease, the correlation curve changes and the maximum
correlation channel shifts towards the 143/820 nm channel. The RMSE value for channel
143 is always significantly lower than for other channels. A study of the correlation of TIR
values with vegetation indices showed twice and lower PLCC values than for the channels.

Studies of the possibilities of temperature prediction by Formula (3) based on the
143rd HSI channel (820 nm) with an analysis of the behavior of the Mask, PLCC, and RMSE
values in the parameters {key Day, thr, a,b} are presented in 3 tables: Tables 3, A1 and A2.

Table A1 analyzes, on the example of the Train dataset, the behavior of the Mask, PLCC,
and RMSE in the full range of thr = 0.1–0.5 with constant initial values a = b = 1, and also
demonstrates statistics of both the plant’s temperature in TIR values and 143 channel values.

Table A2 analyzes the situation when we decrease the initial values a,b ten times or more,
and compared with PLCC and RMSE values inside a Mask ‘in’ truncated by reduced values
of a and b, and RMSE for a mask ‘out’ of the Mask ‘in’, but in the full Mask (Table A1). The
best values are highlighted with a light gray background. The table shows that ‘Out’ RMSE
values are 1.5 to 4 times larger than ‘in’ and on 0.2–0.7 ◦C larger than RMSE for the full Mask.
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Table 2. Examples of channel values and RMSE that were achieved for two thresholds and different
values of a,b. The best values for each day are highlighted in the background.

Day Threshold a,b Mask, Pix PLCC Best Ch.,
No/nm RMSE, ◦C

1 0.4 1 1274 0.616 58/566 0.159
1 0.5 1 867 0.57 144/823 0.151
1 0.5 0.1 483 0.827 143/820 0.056
3 0.4 1 1134 0.325 55/557 0.207
3 0.5 1 700 0.277 52/549 0.194
3 0.5 0.1 349 0.48 143/820 0.067
6 0.4 1 1232 0.464 53/551 0.212
6 0.5 1 824 0.41 118/745 0.214
6 0.5 0.1 337 0.685 143/820 0.058
8 0.4 1 1376 0.596 117/742 0.212
8 0.5 1 952 0.496 117/742 0.205
8 0.5 0.15 590 0.774 143/820 0.085

12 0.4 1 1954 0.576 142/817 0.198
12 0.5 1 1495 0.537 141/814 0.181
12 0.5 0.1 662 0.836 143/820 0.06
19 0.4 1 1124 −0.465 145/826 0.306
19 0.5 1 768 −0.414 145/826 0.264
19 0.4 0.1 482 −0.795 143/820 0.18
25 0.4 1 974 −0.434 128/775 0.364
25 0.4 0.1 398 −0.815 129/778 0.184
25 0.4 0.05 166 −0.957 143/820 0.189
25 0.5 1 588 −0.384 143/820 0.371
25 0.5 0.1 171 −0.828 58/566 0.189

Table 3. The best accuracies that were achieved using Formula (3) for the 143rd channel at thresholds
of 0.4, 0.5, and small values of a,b compared to the area of the threshold mask (at a,b = 1) and 2 other
masks: ‘in’ and ‘out’ of small a,b mask. For a full table for the entire threshold range, see Table A2.

Day Threshold PLCC
a,b = 1

RMSE
a,b = 1, ◦C a,b Mask

in, Pix
PLCC

in
RMSE
in, ◦C

RMSE
out, ◦C

1 0.4 0.60 0.18 0.08 556 0.91 0.06 0.23
1 0.5 0.56 0.17 0.06 316 0.92 0.05 0.2
3 0.4 0.18 0.29 0.05 1134 0.18 0.29 0.32
3 0.5 0.17 0.26 0.04 700 0.17 0.26 0.29
6 0.4 0.35 0.31 0.05 255 0.95 0.17 0.34
6 0.5 0.26 0.32 0.04 166 0.9 0.17 0.34
8 0.4 0.57 0.26 0.1 1376 0.57 0.26 0.32
8 0.5 0.49 0.26 0.1 952 0.49 0.26 0.33

12 0.4 0.52 0.24 0.1 1954 0.52 0.24 0.3
12 0.5 0.47 0.21 0.1 1495 0.47 0.21 0.27
19 0.4 −0.43 0.27 0.05 237 −0.95 0.15 0.29
19 0.5 −0.37 0.25 0.05 175 −0.91 0.14 0.27
25 0.4 −0.42 0.32 0.02 49 −1 0.11 0.33
25 0.5 −0.38 0.33 0.01 17 −1 0.11 0.33

Table 3 is an extraction from Table A2 for thr = 0.4 and 0.5 only without columns of
‘TIR in’ statistics for a compact presentation of the results.
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It was found that:

(1) The leaders in correlation with TIR in terms of the average PLCC when thr changes are
the channels of the NIR range (112–144 channels), followed by visible green channels.
Channel 143 was identified as the leader.

(2) During variations of the thr value from 0.1 to 0.5, the area of the plant mask decreases
approximately linearly, by a factor of two–four depending on the key day. The area
of the plants’ mask reaches a maximum of 2823 pix (near 7/8 of the image) and a
minimum of the variation (less than two times) on day 12.

(3) Each step increasing the threshold (thr) actually removes pixels with reduced soil
content from the original mask. The value thr = 0.45 eliminates almost all mixed pixels,
and thr = 0.5 guarantees that the pixel belongs to the inner part of the sheet.

(4) The PLCC value on each day is maximum at thr = 0.1 and decreases monotonically by
1.5–3 times with an increase in thr, and by day the PLCC maximum is on the first day
of the experiment (0.75 for channel 143).

(5) According to Tables 3 and A2, the usefulness of reducing the parameters a,b at high
threshold values (thr = 0.4 or 0.5) is sharply reduced, as it leads to mask depletion.
As a result, the accuracy of the forecast increases, and outside the truncated mask
it even deteriorates slightly. For these thresholds, values of a,b closer to 0.5 should
be recommended.

3.2. The Problem of Training HSI by Plant’s Temperatures from TIR-Values Using the Built XAI
Neural Network and Reducing the Dimension of the Feature Space

The solution of the problem via built XAI network is possible in two ways: (1) as a set of
individual solutions for each of the key days; (2) as a single solution that depends not on the day,
but on the objective state or stress level of plant leaves, recorded by the HSI and TIR cameras.

Solution 1 is equivalent to assigning an additional feature, such as a number of the
key day. In this case, we must use the test dataset with the same feature.

Solution 2 is more interesting, as it should practically expand the range of the HSI
sensor with the capabilities of the TIR sensor in a part of the plant study. We explored both
solutions to compare and better use their capabilities.

Solution 1. Channel 143, as the most correlated with TIR, was tested first as a high-level
feature. To combine training for separate key days into one process, the number of the key day
was added as the feature. The result of studying the influence of the parameters {Threshold;
a,b} on both the temperature prediction accuracy in RMSE values and the Mask area for Train
and Test datasets is shown in Table 4. The best results are highlighted by the background.

Table 4. The influence of the parameters {Threshold; a,b} on both the temperature prediction accuracy
in RMSE values and the Mask area for Train and Test datasets.

Threshold a = b TrainMask
pix

TestMask
pix

Train
RMSE, ◦C

Test
RMSE, ◦C Epoch Time,

Sec
0.1 1 16,541 17,660 0.23 0.22 112 44
0.1 0.5 16,121 17,333 0.21 0.20 97 37
0.1 0.1 6870 7227 0.15 0.11 188 31
0.2 1 13,636 14,861 0.26 0.21 236 77
0.2 0.5 13,333 14,633 0.20 0.20 209 68
0.2 0.1 5769 6207 0.15 0.11 200 29
0.3 1 11,146 12,067 0.22 0.20 146 39
0.3 0.5 10,938 11,920 0.21 0.19 79 20
0.3 0.1 4740 5137 0.12 0.11 113 13
0.4 1 8581 9068 0.20 0.20 221 45
0.4 0.5 8465 8985 0.19 0.19 254 52
0.4 0.1 3777 3938 0.09 0.10 225 12
0.5 1 6126 6194 0.19 0.19 106 16
0.5 0.5 6074 6164 0.20 0.18 252 153
0.5 0.1 2762 2828 0.10 0.11 266 41
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From Table 4 we can see the following:

(1) All best results are near the TIR resolution of 0.1 ◦C and took place at a = b = 0.1
regardless of thr value. The worst RMSE values are near 0.2 ◦C at a,b equals 1 and 0.5.

(2) The RMSE value is highly dependent on a, b and hence the area of the mask. Reducing
the mask by about half improves the RMSE value by about two times.

However, when the mask is reduced by reducing a,b, the RMSE calculation is per-
formed on a part of the original cloud that is closer to its linear regression. In summary,
RMSE = 0.2 ◦C appears to be more reliable. Additionally, we can conclude that the temper-
ature prediction in the local coordinate system 2D {channel-143 value; key day} provides
an RMSE value of around 0.2 ◦C.

We have used “day” here as a simple second feature to validate the feasibility of
building a 2D local feature system implemented in our Research XAI-neural network. The
choice of a practically useful and reliable second coordinate requires additional research.

Solution 2. This solution is aimed at finding the minimum set of HSI channels capable
of forming a high-level feature vector for training plant HSI pixels on the temperature
values of the TIR sensor.

To do this, a number of solutions to the learning problem were constructed on a
successively narrowing set of channels: 204 channels (full spectrum); 146 channels, from
15 to 160 (the least noisy part of the spectrum in the experiment); 32 channels (selection
of correlation extrema with TIR); 8 channels (combination of channels used in indices and
PLCC extrema); and 7 channels (removal of 95 channel from 8).

The temperature prediction accuracies achieved for the indicated series of channel
samples are presented in Table 5.

Table 5 shows the results of training on five sets of his channels, including, respectively:
204, 146, 32, 8, and 7 channels. For 204 channels, the whole nature of the dependence on
the parameters thr and a,b is shown. It can be seen that for a,b = 0.1, the value of Train
RMSE increases for Test RMSE by about two times (in the lower row of 204 series, by three
times). The ratio of Train and Test is more stable for a,b = 0.5. Therefore, in predicting the
real accuracy, one should rely more on the data for a,b = 0.5.

Table 5. Study of the masks area and the RMSE of temperature prediction for a number of channel
groups in the parameters {number of channels (k); threshold; a,b}.

Number of
Channels Threshold a = b Train

Mask, pix
Test

Mask, pix
Train

RMSE, ◦C
Test

RMSE, ◦C Epoch Time,
Sec

204 0.1 0.5 16,121 17,333 0.21 0.34 48 35.35
204 0.1 0.1 6870 7227 0.14 0.27 99 34.1
204 0.3 0.5 10,938 11,920 0.21 0.28 61 37.64
204 0.3 0.1 4740 5137 0.11 0.21 238 61.41
204 0.4 0.5 8465 8985 0.17 0.27 120 66.75
204 0.4 0.1 3777 3938 0.10 0.21 316 57.65
204 0.5 0.5 6074 6164 0.15 0.25 105 48.57
204 0.5 0.1 2762 2828 0.08 0.24 266 46.39

146 (15–160) 0.5 0.5 6074 6164 0.16 0.20 294 98.05
146 (15–160) 0.5 0.1 2762 2828 0.11 0.14 278 33.17

32 * 0.5 0.5 6074 6164 0.21 0.24 132 19.19
32 * 0.5 0.1 2762 2828 0.16 0.19 207 13.84
8 ** 0.5 0.5 6074 6164 0.24 0.27 279 53.31
8 ** 0.5 0.1 2762 2828 0.21 0.22 151 13.88
7 ** 0.5 0.5 6074 6164 0.26 0.27 214 58.12
7 ** 0.5 0.1 2762 2828 0.22 0.22 181 15.22

32 *—32 channels {9, 12, 14, 22, 25, 28, 36, 47, 56, 59, 71, 75, 82, 85, 88, 90, 95, 108, 111, 116, 120, 122, 126, 131, 133,
136, 139, 143, 150, 153, 157, 160} selected as PLCC curve extrema. 8 **—8 channels {95, 116, 126, 136, 143, 153, 157,
160} selected as mixture of PLCC extrema and channels popular in agriculture (highlighted by bold font further).
Their wavelengths (nm) {675, 740, 768, 800, 820, 850, 862, 870}. 7 **—7 channels {116, 126, 136, 143, 153, 157, 160}
selected as for 8 ** without 95th channel.



Entropy 2023, 25, 801 16 of 22

For the remaining four variants, the nature and magnitude of the dependence on thr
remain very close to the first one. Therefore, only the last two lines of similar dependencies
are shown. The values for the Test RMSE column with parameters {thr = 0.5; a,b = 0.5}
are, respectively: 0.20; 0.24; 0.27; 0.27 (◦C). This suggests that the found combinations of
32, 8, and 7 channels are almost equivalent to the full set of 204 channels, and the found
7 channels are a necessary high-level features or very close to them. A further decrease in
the number of channels is impractical without automating the procedure for finding their
best combination.

A visual series that deepens the understanding of the obtained results is shown in
Figure 7.

Here we can see the following:

Row 1—(a) the linear interpolated TIR image; approximation by Formula (3) for cases
Table 3: (b) thr = 0.4; a,b = 1; RMSE = 0.1; (c) thr = 0.4; a,b = 0.1; and ‘RMSE out’ = 0.3;
(d) thr = 0.5; a,b = 1; and RMSE = 0.21; and RMSE = 0.1 ◦C; (4) approximation by Formula
(3) with a,b = 0.1 and also RMSE = 0.1 ◦C, but for ‘Mask in’, which is truncated to 794 pix
from the full Mask = 1954 pix (see Tables 3, A1 and A2). The real value of ‘RMSE out’ in
this case equals 0.3 ◦C).
Row 2 (for Table 5, 8 **, 7 ** which have very close RMSE)—(a)) the result of training our
R-XAI block on k channels using the plants’ masks with parameters k = 8, thr = 0.4, a,b = 0.5;
(b) the same for thr = 0.5; (c,d) are the same as previes two but for parameter k = 7. It can be
seen that results for 7 ** and 8 ** are more noisy than in Row 1. This may be due to the use
of data from different key days in the one common training process.
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Figure 7. From left to right, in the same color scale, the images for one pot on key day 12.
Row 1—(a) TIR image; the approximation by Formula (3) for cases Table 3: (b) thr = 0.4;
a,b = 1; RMSE = 0.1; (c) thr = 0.4; a,b = 0.1; and RMSE = 0.3; (d) thr = 0.5; a,b = 1; and
RMSE = 0.21. Row 2 (for Table 5, 8 **, 7 **)—(a) 8 **; thr = 0.4; a,b = 0.5; and RMSE = 0.29;
(b) 8 **; thr = 0.5; a,b = 0.5; and RMSE = 0.27; (c) 7 **; thr = 0.4; a,b = 0.5; and RMSE = 0.29;
(d) 7 **; thr = 0.5; a,b = 0.5; and RMSE = 0.27.
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4. Conclusions

An attempt was made to develop the XAI apparatus on the example of an actual
applied problem of early XAI diagnostics of plant stress using only hyperspectral image
(HSI) data. The choice of HSIs as a data source is due to the fact that their pixels are
represented by hundreds of high-resolution channels (units of the nm), and this is widely
used today in general diagnostics of plant health. The aim of the study was to provide a
level of explainability in the early diagnosis of plant stress for HSI data equal to the level
for data from the TIR sensor (320 × 240, 0.1 ◦C), which is able to sense an increase in plant
temperature (about 0.2 ◦C, see Figure 2) caused by a change in transpiration (evaporation
of water by the plant) at the earliest stage of the stress.

This goal was achieved by training the HSI pixels of plants by the temperature value
from the TIR pixels via the XAI model and the zero-shot learning approach for Unseen
Categories [16]. This model training is possible on an arbitrary sample of HSI channels
selected according to some criterion. The training problem was solved as a problem of
transferring knowledge about plants from a TIR sensor to any number (k) channels of
hyperspectral images (HSIs) of plants, which would be able to predict the temperature
with a given RMSE value.

Choosing the minimum of k is a research (R) problem based on the XAI model, which
can be considered as a special block of R-XAI. Such an experimental block R-XAI, focused
on the early diagnosis of plant stress, was implemented and used in the course of this study.

The structure of our XAI model is built on the inclusion of an SLP regressor with an
HSI automatic marking up block at the input. It provides an HSI temperature prediction
with an RMSE error of 0.2–0.3 ◦C, which is acceptable for early diagnostics. Using the
R-XAI block, the dimension of the model, equal to the number of HSI channels carrying
knowledge about TIR, is reduced from 204 to several (seven–eight) channels (which is
five–six times better than in [28]). The transferring knowledge of temperatures to HSI
channels also includes determining the list of knowledge-bearing channels.

As a result, our special XAI block can be considered a research-aimed one (R-XAI),
which allows the transfer of knowledge about plants from the TIR domain to the HSI
domain, with their contrasting onto only a few from hundreds of HSI channels.

Particular solutions have been obtained that provide RMSE within 0.2 ◦C. The model
is computationally efficient in training; the average training time is much less than 1 min
(Intel Core i3-8130U, 2.2 GHz, 4 cores, 4 GB).

During the study for correlation of each of the HSI channels with the TIR image, the
existence of a channel in the NIR range, demonstrating a high correlation with TIR, has
been established. This is the 820 nm channel, on the basis of data on which the linear
temperature approximators can be built. The channel is not yet used in the construction of
popular vegetation indices.

A step-by-step decrease in the number of channels showed that only channels in the IR
range, to the right of the “red-edge” point, remained in the seven channels of the training
basis, i.e., with a wavelength greater than 700 nm.

The study revealed a number of limitations that we hope to overcome in the future.
First and foremost is the insufficiently high resolution of plant leaf images relative to
the spatial resolution of HSI (1.5 mm/pix) and, especially, TIR (2.4 mm/pix) images,
which did not achievethe desired detail of the leaf (in our case, wheat) and could not
confidently separate both leaf and soil, nor one leaf from another. Secondly, the procedure
for minimizing the number of channels was not fully automated, and a global minimum
for the number of HSI channels and the RMSE error was not found. Thirdly, due to the
limitation of the illumination spectrum from above with a value of about 880 nm, a part of
the range of the hyperspectrometer 880–1000 nm has not been studied (see Figure 1).

The limitations are not fundamental, and in continuation of the study, we plan to:
(1) conduct an experiment with a significantly higher HSI and TIR resolution for a plant
leaf; (2) to automate the search for the global minimum of the number of channels carrying
HSI knowledge about TIR for a given RMSE error, both based on plant biophysics and
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existing progressive methods, including [30,31]; and (3) expand both the research range in
NIR up to 1000 nm and the functions of the R-XAI research model as a whole.
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Figure A1. Comparison of the mean over key days PLCC plots for TIR with all HSI channels for
2 datasets of the experiment: (a) “Train” and (b) “Test”.
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Table A1. Investigation of possibilities for temperature prediction via Formula (3) based on the
143rd HSI channel (820 nm) on the example of Train dataset in the values of the Mask, PLCC, as well
as RMSE and the parameters: key day; threshold value (thr = 0.1–0.5); a = b = 1. The maximum area
for plants’ mask together with soil is 3136 pixels.

Day Threshold Mask,
pix PLCC RMSE,

◦C
TIR
Max

TIR
Min

TIR
Mean

TIR
Std

Chan.
Max

Chan.
Min

Chan.
Mean

Chan.
Std

1 0.1 2534 0.75 0.21 21.5 20.2 20.8 0.23 1.37 0.05 0.53 0.29
1 0.2 2159 0.70 0.19 21.5 20.3 20.9 0.21 1.37 0.05 0.59 0.27
1 0.3 1702 0.63 0.19 21.5 20.4 20.9 0.19 1.37 0.16 0.67 0.24
1 0.4 1274 0.60 0.18 21.5 20.5 21.0 0.18 1.37 0.21 0.74 0.21
1 0.5 867 0.56 0.17 21.5 20.5 21.0 0.16 1.37 0.32 0.82 0.19
3 0.1 2744 0.52 0.28 21.5 20.1 20.9 0.23 1.42 0.05 0.49 0.30
3 0.2 2156 0.41 0.28 21.5 20.1 20.9 0.21 1.42 0.05 0.58 0.27
3 0.3 1643 0.29 0.29 21.5 20.1 21.0 0.19 1.42 0.16 0.67 0.24
3 0.4 1134 0.18 0.29 21.5 20.3 21.0 0.18 1.42 0.26 0.77 0.21
3 0.5 700 0.17 0.26 21.5 20.5 21.0 0.16 1.42 0.42 0.86 0.19
6 0.1 2411 0.52 0.32 21.6 20.1 20.9 0.24 1.30 0.04 0.57 0.28
6 0.2 2024 0.45 0.33 21.6 20.1 20.9 0.23 1.30 0.07 0.64 0.25
6 0.3 1633 0.40 0.32 21.6 20.1 20.9 0.21 1.30 0.11 0.71 0.22
6 0.4 1232 0.35 0.31 21.6 20.3 21.0 0.21 1.30 0.22 0.77 0.20
6 0.5 824 0.26 0.32 21.6 20.3 21.0 0.20 1.30 0.33 0.85 0.17
8 0.1 2492 0.68 0.30 20.9 19.1 20.1 0.30 1.37 0.04 0.62 0.28
8 0.2 2114 0.63 0.29 20.9 19.3 20.1 0.27 1.37 0.12 0.69 0.24
8 0.3 1761 0.59 0.28 20.9 19.4 20.2 0.25 1.37 0.19 0.75 0.21
8 0.4 1376 0.57 0.26 20.9 19.5 20.2 0.24 1.37 0.31 0.81 0.19
8 0.5 952 0.49 0.26 20.9 19.7 20.3 0.20 1.37 0.38 0.88 0.16

12 0.1 2823 0.65 0.30 21.4 19.6 20.6 0.30 1.42 0.08 0.70 0.28
12 0.2 2626 0.61 0.28 21.4 19.8 20.7 0.27 1.42 0.12 0.73 0.25
12 0.3 2359 0.57 0.26 21.4 19.9 20.7 0.25 1.42 0.20 0.77 0.22
12 0.4 1954 0.52 0.24 21.4 20.1 20.8 0.21 1.42 0.20 0.83 0.19
12 0.5 1495 0.47 0.21 21.3 20.2 20.8 0.19 1.42 0.40 0.89 0.17
19 0.1 2367 −0.54 0.33 22.2 21.2 21.7 0.22 1.59 0.09 0.65 0.30
19 0.2 1940 −0.49 0.31 22.2 21.2 21.6 0.21 1.59 0.23 0.73 0.27
19 0.3 1546 −0.49 0.30 22.2 21.2 21.6 0.20 1.59 0.32 0.81 0.25
19 0.4 1124 −0.43 0.27 22.2 21.2 21.6 0.18 1.59 0.41 0.91 0.22
19 0.5 768 −0.37 0.25 22.0 21.2 21.5 0.16 1.59 0.59 1.00 0.19
25 0.1 2289 −0.54 0.35 22.6 21.2 22.0 0.22 1.94 0.17 0.89 0.34
25 0.2 1842 −0.50 0.34 22.5 21.2 22.0 0.22 1.94 0.28 0.99 0.30
25 0.3 1423 −0.48 0.33 22.5 21.2 21.9 0.22 1.94 0.39 1.08 0.26
25 0.4 974 −0.42 0.32 22.4 21.2 21.9 0.21 1.94 0.50 1.19 0.23
25 0.5 588 −0.38 0.33 22.4 21.2 21.8 0.22 1.94 0.72 1.30 0.20
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Table A2. Investigation of possibilities for temperature prediction via Formula (3) based on the
143rd HSI channel (820 nm) at all thresholds in values RMSE, and PLCC with a = b = 1 compared
with PLCC and RMSE values inside a Mask ‘in’ truncated by reduced values of a and b, and RMSE
for a mask ‘out’ of the Mask ‘in’, but in the full Mask (Table A1). The values are shown for each key
day. The best values are highlighted with a light gray background. ‘Out’ values are 1.5 to 4 times
larger than ‘in’.

Day Threshold PLCC
a,b = 1

RMSE
a,b = 1,
◦C

a = b Mask
in, pix

PLCC
in

RMSE
in, ◦C

RMSE
out,
◦C

TIR in
Max

TIR in
Min

TIR in
Mean

TIR in
Std

1 0.1 0.75 0.21 0.1 1243 0.95 0.14 0.26 21.38 20.45 20.82 0.17
1 0.2 0.70 0.19 0.1 1110 0.93 0.09 0.26 21.25 20.49 20.85 0.15
1 0.3 0.63 0.19 0.1 888 0.9 0.08 0.26 21.25 20.58 20.90 0.13
1 0.4 0.60 0.18 0.08 556 0.91 0.06 0.23 21.25 20.65 20.95 0.11
1 0.5 0.56 0.17 0.06 316 0.92 0.05 0.2 21.23 20.77 20.99 0.09
3 0.1 0.52 0.28 0.1 1207 0.92 0.19 0.35 21.50 20.07 20.87 0.23
3 0.2 0.41 0.28 0.08 735 0.9 0.2 0.32 21.50 20.10 20.92 0.21
3 0.3 0.29 0.29 0.06 447 0.82 0.2 0.32 21.50 20.10 20.96 0.19
3 0.4 0.18 0.29 0.05 284 0.64 0.2 0.32 21.50 20.31 21.00 0.18
3 0.5 0.17 0.26 0.04 141 0.63 0.17 0.29 21.49 20.52 21.04 0.16
6 0.1 0.52 0.32 0.08 730 0.94 0.16 0.36 21.23 20.58 20.88 0.13
6 0.2 0.45 0.33 0.07 578 0.93 0.17 0.37 21.18 20.62 20.91 0.11
6 0.3 0.40 0.32 0.05 353 0.95 0.17 0.35 21.18 20.73 20.94 0.09
6 0.4 0.35 0.31 0.05 255 0.95 0.17 0.34 21.18 20.77 20.99 0.08
6 0.5 0.26 0.32 0.04 166 0.9 0.17 0.34 21.18 20.89 21.03 0.05
8 0.1 0.68 0.30 0.1 887 0.96 0.15 0.36 20.88 19.14 20.05 0.30
8 0.2 0.63 0.29 0.1 782 0.95 0.13 0.36 20.88 19.29 20.11 0.27
8 0.3 0.59 0.28 0.1 675 0.94 0.13 0.34 20.88 19.39 20.16 0.25
8 0.4 0.57 0.26 0.1 559 0.92 0.13 0.32 20.88 19.54 20.22 0.24
8 0.5 0.49 0.26 0.1 430 0.88 0.15 0.33 20.88 19.69 20.29 0.20

12 0.1 0.65 0.30 0.1 1063 0.96 0.14 0.37 21.35 19.62 20.64 0.30
12 0.2 0.61 0.28 0.1 1003 0.95 0.12 0.35 21.35 19.76 20.68 0.27
12 0.3 0.57 0.26 0.1 921 0.93 0.11 0.33 21.35 19.85 20.71 0.25
12 0.4 0.52 0.24 0.1 794 0.89 0.09 0.3 21.35 20.09 20.76 0.21
12 0.5 0.47 0.21 0.1 662 0.84 0.08 0.27 21.33 20.19 20.81 0.19
19 0.1 −0.54 0.33 0.04 359 −0.99 0.21 0.35 21.86 21.33 21.63 0.13
19 0.2 −0.49 0.31 0.04 302 −0.98 0.18 0.33 21.81 21.33 21.60 0.11
19 0.3 −0.49 0.30 0.04 244 −0.98 0.17 0.32 21.76 21.33 21.57 0.11
19 0.4 −0.43 0.27 0.05 237 −0.95 0.15 0.29 21.73 21.33 21.53 0.09
19 0.5 −0.37 0.25 0.05 175 −0.91 0.14 0.27 21.65 21.33 21.49 0.07
25 0.1 −0.54 0.35 0.04 415 −0.98 0.17 0.37 22.23 21.61 22.01 0.10
25 0.2 −0.50 0.34 0.03 234 −0.98 0.14 0.35 22.17 21.61 21.97 0.09
25 0.3 −0.48 0.33 0.03 166 −0.99 0.13 0.34 22.13 21.61 21.95 0.09
25 0.4 −0.42 0.32 0.02 49 −1 0.11 0.33 22.13 21.73 21.90 0.09
25 0.5 −0.38 0.33 0.01 17 −1 0.11 0.33 21.96 21.67 21.83 0.09
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