Entropy of Financial Time Series Due to the Shock of War
Abstract
:1. Introduction
2. Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Summary Statistics
Name | Symbol | Mean | Minimum | Maximum | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Cumulative Index | WIG20 | 0.00027 (0.00017) | −0.0455 (−0.0452) | 0.0299 (0.0844) | −0.2908 (0.5006) | 1.1820 (1.3099) |
Asseco | ACP | 0.00074 (0.00056) | −0.0595 (−0.0488) | 0.0608 (0.0765) | −0.0201 (0.4742) | 1.7600 (1.3305) |
Allegro | ALE | −0.0026 (0.0010) | −0.1123 (−0.1027) | 0.1067 (0.1578) | 0.1747 (0.5547) | 1.1735 (1.9310) |
CCC | CCC | −0.00196 (−0.00050) | −0.0851 (−0.068) | 0.1327 (0.1490) | 0.4102 (0.7795) | 3.4547 (1.5699) |
CD Projekt | CDR | −0.00118 (−0.00022) | −0.1257 (−0.1024) | 0.1307 (0.1347) | 0.1356 (0.0001) | 2.3658 (1.6826) |
Cyfrowy Polsat | CPS | 0.00029 (−0.00150) | −0.0395 (−0.0847) | 0.0729 (0.0782) | 0.5066 (0.0800) | 2.2896 (0.8452) |
Dino | DNP | 0.00076 (0.00157) | −0.0670 (−0.0673) | 0.0659 (0.0909) | 0.1096 (0.2339) | 0.9815 (1.3584) |
JSW | JSW | 0.00144 (0.00251) | −0.1117 (−0.1345) | 0.1170 (0.3130) | −0.0557 (1.5369) | 0.5071 (9.5325) |
KGHM | KGH | −0.00088 (0.00011) | −0.0673 (−0.1178) | 0.0853 (0.1168) | 0.0967 (0.2907) | 0.6175 (1.2485) |
LPP | LPP | 0.00241 (0.00052) | −0.1393 (−0.1090) | 0.1468 (0.1581) | 0.3934 (0.3732) | 4.5029 (2.1642) |
Orange | OPL | 0.00128 (−0.00021) | −0.0653 (−0.0870) | 0.0578 (0.0572) | 0.2096 (−0.3807) | 1.3278 (0.6936) |
Bank Pekao | PEO | 0.00256 (−0.00016) | −0.0711 (−0.1221) | 0.0625 (0.1714) | −0.3068 (0.7317) | 1.5768 (5.6249) |
PGE | PGE | 0.00076 (0.00062) | −0.0721 (−0.0691) | 0.1358 (0.1567) | 0.6716 (0.9674) | 2.6880 (3.5208) |
Orlen | PKN | 0.00070 (0.00042) | −0.0640 (−0.0620) | 0.0457 (0.1096) | −0.0736 (0.2118) | 0.2344 (0.6775) |
Bank PKO | PKO | 0.00167 (−0.00029) | −0.0718 (−0.0717) | 0.0017 (0.1327) | −0.2323 (0.8032) | 1.0216 (2.7165) |
PZU | PZU | 0.00053 (0.00084) | −0.0644 (−0.0660) | 0.0523 (0.0784) | −0.3524 (0.2138) | 1.7112 (1.4921) |
Santander Bank | SPL | 0.00190 (0.00035) | −0.0536 (−0.0867) | 0.0823 (0.1143) | 0.4418 (0.3425) | 1.3168 (1.7196) |
Pepco (18 March 2022) | PCO | −0.00050 (0.00074) | −0.0470 (−0.0523) | 0.0558 (0.1143) | 0.1075 (0.6496) | 0.4942 (3.1461) |
mBank (18 March 2022) | MBK | 0.00275 (0) | −0.1002 (−0.0851) | 0.0943 (0.1264) | −0.0907 (0.4069) | 0.9970 (0.7190) |
Kȩty (16 September 2022) | KTY | 0.00084 (−0.00001) | −0.0684 (−0.1017) | 0.0744 (0.0757) | 0.3034 (−0.1884) | 1.8525 (1.2969) |
Kruk (16 December 2022) | KRU | 0.00219 (0.00136) | −0.0622 (−0.0584) | 0.1313 (0.1220) | 0.9346 (0.9295) | 2.7356 (2.2608) |
Tauron (18 March 2022) | TPE | −0.00014 (0.00053) | −0.0617 (−0.0796) | 0.0853 (0.1301) | 0.4780 (0.5036) | 0.6674 (2.1356) |
Mercator (18 March 2022) | MRC | −0.00614 (0.00050) | −0.2348 (−0.0980) | 0.2080 (0.2571) | 0.0931 (1.9378) | 5.0186 (7.6932) |
LOTOS (16 September 2022) | LTS | 0.00113 (0.00481) | −0.0826 (−0.0611) | 0.0614 (0.0740) | −0.5117 (0.3371) | 1.8753 (0.0411) |
PGNiG (16 December 2022) | PGN | −0.00016 (0.00044) | −0.0603 (−0.0644) | 0.0568 (0.1793) | −0.1985 (1.4098) | 1.3151 (5.8434) |
Name | Symbol | Standard Deviation Before | Standard Deviation After | Percentage Difference | Entropy Before | Entropy After | Percentage Difference |
---|---|---|---|---|---|---|---|
Cumulative Index | WIG20 | 0.012 | 0.018 | 40% | 1.956 | 2.336 | 17.71% |
Asseco | ACP | 0.016 | 0.019 | 17.63% | 2.224 | 2.426 | 8.68% |
Allegro | ALE | 0.029 | 0.036 | 21.54% | 2.131 | 2.336 | 9.18% |
CCC | CCC | 0.027 | 0.034 | 22.95% | 2.151 | 2.405 | 11.15% |
CD Projekt | CDR | 0.032 | 0.031 | 3.180% | 2.223 | 2.226 | 0.14% |
Cyfrowy Polsat | CPS | 0.015 | 0.023 | 42.11% | 2.387 | 1.967 | 19.29% |
Dino | DNP | 0.019 | 0.023 | 19.05% | 2.256 | 2.456 | 8.49% |
JSW | JSW | 0.038 | 0.045 | 16.87% | 1.936 | 1.998 | 3.15% |
KGHM | KGH | 0.025 | 0.032 | 24.56% | 2.143 | 2.378 | 10.39% |
LPP | LPP | 0.030 | 0.034 | 12.50% | 2.008 | 2.170 | 7.76% |
Orange | OPL | 0.017 | 0.021 | 21.05% | 2.201 | 2.449 | 10.66% |
Bank Pekao | PEO | 0.019 | 0.030 | 44.90% | 1.671 | 2.016 | 18.71% |
PGE | PGE | 0.026 | 0.032 | 20.69% | 2.173 | 2.353 | 7.95% |
Orlen | PKN | 0.019 | 0.026 | 31.11% | 2.180 | 2.460 | 12.07% |
Bank PKO | PKO | 0.019 | 0.027 | 34.78% | 2.010 | 2.302 | 13.54% |
PZU | PZU | 0.016 | 0.021 | 27.03% | 2.130 | 2.393 | 11.63% |
Santander Bank | SPL | 0.020 | 0.025 | 22.22% | 2.085 | 2.274 | 8.67% |
Pepco (18 March 2022) | PCO | 0.017 | 0.022 | 25.64% | 2.121 | 2.267 | 6.66% |
mBank (18 March 2022) | MBK | 0.028 | 0.033 | 16.39% | 2.262 | 2.473 | 8.912% |
Kȩty (16 September 2022) | KTY | 0.018 | 0.025 | 32.56% | 2.080 | 2.390 | 13.87% |
Kruk (16 December 2022) | KRU | 0.026 | 0.028 | 3.640% | 2.353 | 2.371 | 0.76% |
Tauron (18 March 2022) | TPE | 0.024 | 0.029 | 18.87% | 2.216 | 2.352 | 5.95% |
Mercator (18 March 2022) | MRC | 0.047 | 0.043 | 8.89% | 1.894 | 1.785 | 5.93% |
LOTOS (16 September 2022) | LTS | 0.020 | 0.028 | 33.33% | 2.310 | 2.558 | 10.19% |
PGNiG (16 December 2022) | PGN | 0.017 | 0.033 | 64% | 1.747 | 2.269 | 26% |
References
- He, C.; Wen, Z.; Huang, K.; Ji, X. Sudden shock and stock market network structure characteristics: A comparison of past crisis events. Technol. Forecast. Soc. Chang. 2022, 180, 121732. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Andrews, B.H.; Freudenburg, J. Equilibrium and sudden events in chemical evolution. Astrophys. J. 2017, 837, 183. [Google Scholar] [CrossRef]
- Aminikhanghahi, S.; Cook, D. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Suriani, N.S.; Hussain, A.; Zulkifley, M.A. Sudden event recognition: A survey. Sensors 2013, 13, 9966–9998. [Google Scholar] [CrossRef] [PubMed]
- Ramage, C. Sudden events. Futures 1980, 12, 268–274. [Google Scholar] [CrossRef]
- Evangelos, V. Efficient markets hypothesis in the time of COVID-19. Rev. Econ. Anal. 2021, 13, 45–62. [Google Scholar]
- Musmeci, N.; Aste, T.; Matteo, T.D. Interplay between past market correlation structure changes and future volatility outbursts. Sci. Rep. 2016, 6, 36320. [Google Scholar] [CrossRef]
- Montgomery, D.; Jennings, C.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L.A.; Stanley, H.E. Econophysics: Financial time series from a statistical physics point of view. Phys. A Stat. Mech. Its Appl. 2000, 279, 443–456. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, N.; Miramontes, O. Shannon Entropy: An econophysical approach to cryptocurrency portfolios. Entropy 2022, 24, 1583. [Google Scholar] [CrossRef]
- Sheraz, M.; Nasir, I. Information-theoretic measures and modeling stock market Volatility: A Comparative Approach. Risks 2021, 9, 89. [Google Scholar] [CrossRef]
- Velichko, A.; Heidari, H. A method for estimating the entropy of time series using artificial neural networks. Entropy 2021, 23, 1432. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Shang, P. Weighted permutation entropy based on different symbolic approaches for financial time series. Phys. A Stat. Mech. Its Appl. 2016, 443, 137–148. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Kolmogorov, A. On tables of random numbers. Theor. Comput. Sci. 1998, 207, 2. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371–378. [Google Scholar] [CrossRef]
- Shi, W.; Shang, P. Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear Dyn. 2013, 71, 539–554. [Google Scholar] [CrossRef]
- Dionisio, A.; Menezes, R.; Mendes, D. An econophysics approach to analyse uncertainty in financial markets: An application to the Portuguese stock market. Eur. Phys. J. Condens. Matter Complex Syst. 2006, 50, 161–164. [Google Scholar] [CrossRef]
- Bentes, S.R.; Menezes, R.; Mendes, D.A. Long memory and volatility clustering: Is the empirical evidence consistent across stock markets? Phys. A Stat. Mech. Its Appl. 2008, 387, 3826–3830. [Google Scholar] [CrossRef]
- Bentes, S.R.; Menezes, R. Entropy: A new measure of stock market volatility? J. Phys. Conf. Ser. 2012, 394, 012033. [Google Scholar] [CrossRef]
- Delgado-Bonal, A. Quantifying the randomness of the stock markets. Sci. Rep. 2019, 9, 12761. [Google Scholar] [CrossRef]
- Sheraz, M.; Dedu, S.; Preda, V. Entropy measures for assessing volatile markets. Procedia Econ. Financ. 2015, 22, 655–662. [Google Scholar] [CrossRef]
- Darbellay, G.A.; Wuertz, D. The entropy as a tool for analysing statistical dependences in financial time series. Phys. A Stat. Mech. Its Appl. 2000, 287, 429–439. [Google Scholar] [CrossRef]
- Almog, A.; Shmueli, E. Structural entropy: Monitoring correlation-based networks over Time with Application to Financial Markets. Sci. Rep. 2019, 9, 10832. [Google Scholar] [CrossRef] [PubMed]
- Lahmiri, S.; Bekiros, S. Randomness, informational Entropy, and volatility interdependencies among the major world markets: The role of the COVID-19 pandemic. Entropy 2020, 22, 833. [Google Scholar] [CrossRef]
- Jakimowicz, A. The role of entropy in the development of economics. Entropy 2020, 22, 452. [Google Scholar] [CrossRef]
- Bose, R.; Hamacher, K. Alternate entropy measure for assessing volatility in financial markets. Phys. Rev. E 2012, 86, 056112. [Google Scholar] [CrossRef]
- Fiszeder, P.; Małecka, M. Forecasting volatility during the outbreak of Russian invasion of Ukraine: Application to commodities, stock indices, currencies, and cryptocurrencies. Equilib. Q. J. Econ. Econ. Policy 2022, 17, 939–967. [Google Scholar] [CrossRef]
- Doğan, N.; Doğan, I. Determination of the number of bins/classes used in histograms and frequency tables: A short bibliography. J. Stat. Res. 2010, 7, 77–86. [Google Scholar]
- Rényi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20–30 July 1960; pp. 547–561. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Brzeszczyński, J.; Gajdka, J.; Kutan, A.M. Evolution of the impact of the interest rates changes announced by Narodowy Bank Polski (NBP) on the financial markets in the high, medium and low level of interest rates environments in Poland. NBP Work. Pap. 2019, 303, 1–101. [Google Scholar]
- Battiston, S.; Farmer, J.D.; Flache, A.; Garlaschelli, D.; Haldane, A.G.; Heesterbeek, H.; Hommes, C.; Jaeger, C.; May, R.; Scheffer, M. Complexity theory and financial regulation. Science 2016, 351, 818–819. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzazga-Szczȩśniak, E.A.; Szczepanik, P.; Kaczmarek, A.Z.; Szczȩśniak, D. Entropy of Financial Time Series Due to the Shock of War. Entropy 2023, 25, 823. https://doi.org/10.3390/e25050823
Drzazga-Szczȩśniak EA, Szczepanik P, Kaczmarek AZ, Szczȩśniak D. Entropy of Financial Time Series Due to the Shock of War. Entropy. 2023; 25(5):823. https://doi.org/10.3390/e25050823
Chicago/Turabian StyleDrzazga-Szczȩśniak, Ewa A., Piotr Szczepanik, Adam Z. Kaczmarek, and Dominik Szczȩśniak. 2023. "Entropy of Financial Time Series Due to the Shock of War" Entropy 25, no. 5: 823. https://doi.org/10.3390/e25050823
APA StyleDrzazga-Szczȩśniak, E. A., Szczepanik, P., Kaczmarek, A. Z., & Szczȩśniak, D. (2023). Entropy of Financial Time Series Due to the Shock of War. Entropy, 25(5), 823. https://doi.org/10.3390/e25050823