Orthogonal Polynomials with Singularly Perturbed Freud Weights
Abstract
:1. Introduction
2. The m = 1 Case
3. The m = 2 Case
4. The m = 3 Case
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Assche, W. Orthogonal Polynomials and Painlevé Equations; Australian Mathematical Society Lecture Series 27; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Chen, Y.; Its, A. Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I. J. Approx. Theory 2010, 162, 270–297. [Google Scholar] [CrossRef]
- Filipuk, G.; Assche, W.V.; Zhang, L. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation. J. Phys. A Math. Theor. 2012, 45, 205201. [Google Scholar] [CrossRef]
- Basor, E.; Chen, Y.; Ehrhardt, T. Painlevé V and time-dependent Jacobi polynomials. J. Phys. A Math. Theor. 2010, 43, 015204. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, D. Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials. J. Approx. Theory 2010, 162, 2149–2167. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Jordaan, K. The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation. Constr. Approx. 2014, 39, 223–254. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Jordaan, K.; Kelil, A. A generalized Freud weight. Stud. Appl. Math. 2016, 136, 288–320. [Google Scholar] [CrossRef]
- Dai, D.; Zhang, L. Painlevé VI and Hankel determinants for the generalized Jacobi weight. J. Phys. A Math. Theor. 2010, 43, 055207. [Google Scholar] [CrossRef]
- Magnus, A.P. Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 1995, 57, 215–237. [Google Scholar] [CrossRef]
- Min, C.; Chen, Y. Semi-classical Jacobi polynomials, Hankel determinants and asymptotics. Anal. Math. Phys. 2022, 12, 8. [Google Scholar] [CrossRef]
- Min, C.; Chen, Y. Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Clarkson, P.A.; Jordaan, K. A generalized sextic Freud weight. Integral Transform. Spec. Funct. 2021, 32, 458–482. [Google Scholar] [CrossRef]
- Fokas, A.S.; Its, A.R.; Kitaev, A.V. Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 1991, 142, 313–344. [Google Scholar] [CrossRef]
- Min, C.; Lyu, S.; Chen, Y. Painlevé III′ and the Hankel determinant generated by a singularly perturbed Gaussian weight. Nucl. Phys. B 2018, 936, 169–188. [Google Scholar] [CrossRef]
- Berry, M.V.; Shukla, P. Tuck’s incompressibility function: Statistics for zeta zeros and eigenvalues. J. Phys. A Math. Theor. 2008, 41, 385202. [Google Scholar] [CrossRef]
- Lukyanov, S. Finite temperature expectation values of local fields in the sinh-Gordon model. Nucl. Phys. B 2001, 612, 391–412. [Google Scholar] [CrossRef]
- Brouwer, P.W.; Frahm, K.M.; Beenakker, C.W.J. Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 1997, 78, 4737–4740. [Google Scholar] [CrossRef]
- Mezzadri, F.; Simm, N.J. Tau-function theory of chaotic quantum transport with β = 1, 2, 4. Commun. Math. Phys. 2013, 324, 465–513. [Google Scholar] [CrossRef]
- Texier, C.; Majumdar, S.N. Wigner time-delay distribution in chaotic cavities and freezing transition. Phys. Rev. Lett. 2013, 110, 250602. [Google Scholar] [CrossRef]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Dover: New York, NY, USA, 1978. [Google Scholar]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Encyclopedia of Mathematics and Its Applications 98; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, 4th ed.; Amer. Math. Soc.: Providence, RI, USA, 1975. [Google Scholar]
- Chen, Y.; Ismail, M.E.H. Ladder operators and differential equations for orthogonal polynomials. J. Phys. A Math. Gen. 1997, 30, 7817–7829. [Google Scholar] [CrossRef]
- Chen, Y.; Ismail, M.E.H. Jacobi polynomials from compatibility conditions. Proc. Amer. Math. Soc. 2005, 133, 465–472. [Google Scholar] [CrossRef]
- Deift, P. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach; Courant Lecture Notes 3; New York University: New York, NY, USA, 1999. [Google Scholar]
- Forrester, P.J. Log-Gases and Random Matrices; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Mehta, M.L. Random Matrices, 3rd ed.; Elsevier: New York, NY, USA, 2004. [Google Scholar]
- Claeys, T.; Krasovsky, I.; Minakov, O. Weak and strong confinement in the Freud random matrix ensemble and gap probabilities. arXiv 2022, arXiv:2209.07253v2. [Google Scholar]
- Rajkovic´, P.M.; Marinkovic´, S.D.; Petkovic´, M.D. A class of orthogonal polynomials related to the generalized Laguerre weight with two parameters. Comput. Appl. Math. 2019, 38, 10. [Google Scholar] [CrossRef]
- Brightmore, L.; Mezzadri, F.; Mo, M.Y. A matrix model with a singular weight and Painlevé III. Commun. Math. Phys. 2015, 333, 1317–1364. [Google Scholar] [CrossRef]
- Ohyama, Y.; Kawamuko, H.; Sakai, H.; Okamoto, K. Studies on the Painlevé equations, V, third Painlevé equations of special type PIII(D7) and PIII(D8). J. Math. Sci. Univ. Tokyo 2006, 13, 145–204. [Google Scholar]
- Min, C.; Cheng, Y.; Chen, Y. Differential and difference equations for recurrence coefficients of orthogonal polynomials with a singularly perturbed Laguerre-type weight. Proc. Am. Math. Soc. 2023, 151, 2989–2996. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, C.; Wang, L. Orthogonal Polynomials with Singularly Perturbed Freud Weights. Entropy 2023, 25, 829. https://doi.org/10.3390/e25050829
Min C, Wang L. Orthogonal Polynomials with Singularly Perturbed Freud Weights. Entropy. 2023; 25(5):829. https://doi.org/10.3390/e25050829
Chicago/Turabian StyleMin, Chao, and Liwei Wang. 2023. "Orthogonal Polynomials with Singularly Perturbed Freud Weights" Entropy 25, no. 5: 829. https://doi.org/10.3390/e25050829
APA StyleMin, C., & Wang, L. (2023). Orthogonal Polynomials with Singularly Perturbed Freud Weights. Entropy, 25(5), 829. https://doi.org/10.3390/e25050829