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Abstract: Community structure exists widely in real social networks. To investigate the effect of
community structure on the spreading of infectious diseases, this paper proposes a community
network model that considers both the connection rate and the number of connected edges. Based on
the presented community network, a new SIRS transmission model is constructed via the mean-field
theory. Furthermore, the basic reproduction number of the model is calculated via the next-generation
matrix method. The results reveal that the connection rate and the number of connected edges of the
community nodes play crucial roles in the spreading process of infectious diseases. Specifically, it is
demonstrated that the basic reproduction number of the model decreases as the community strength
increases. However, the density of infected individuals within the community increases as the
community strength increases. For community networks with weak strength, infectious diseases are
likely not to be eradicated and eventually will become endemic. Therefore, controlling the frequency
and range of intercommunity contact will be an effective initiative to curb outbreaks of infectious
diseases throughout the network. Our results can provide a theoretical basis for preventing and
controlling the spreading of infectious diseases.

Keywords: community structure; epidemic spreading; connection rate

1. Introduction

Throughout history, viruses have been a major factor in the development of societies.
Describing the mechanisms of epidemics spreading and predicting their epidemiological
trends is the long-standing focus of research with the aim of effectively controlling the
spread of diseases [1-3].

As we know, the study of complex networks has gradually become a hot issue in
the field of complexity disciplines. Scholars have made significant contributions to the
study of areas such as transportation, social, financial, and biological networks. As research
into complex networks has continued, the spreading of computer viruses in computer
networks, contagious diseases in social populations, and public opinion and rumors in
social networks can have an egregious effect on the development of human society [4-6].
Therefore, the behavior of transmission dynamics on complex networks has become one of
the research directions of great interest.

Following the introduction of small-world networks and scale-free networks [7-10],
scientists have studied the many networks that exist in the real world and found that
complex networks also have characteristics of community structure. Girvan and Newman
have introduced community structure properties in many networks and proposed methods
for detecting such structures [11]. The community structure means that the nodes in the
network are divided into several groups; i.e., the individuals within the groups are relatively
tightly connected, and the individuals between the groups are relatively sparsely connected.
In real social networks, individuals form groups because of the same characteristics. In
turn, scientists study the dynamics of disease transmission in networks by constructing
community network models to mirror real networks [12-25].
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Ref. [26] defined a parameter to represent the degree of communities to study the effect
of community structure on propagation dynamics. Ultimately, it was found that community
networks have wider degree distributions and smaller epidemic thresholds compared with
random networks. Newman and Girvan defined the modularity coefficient to determine
the strength of the community structure network [27]. Later, Salathe and Jones studied
the impact of interventions on the spread of disease between communities and found that
immunization interventions for individuals within communities in a strong community-
structured network were a more effective way to control the spread of disease [28]. Authors
investigated two models of community networks with different structures and concluded
that the community structure can both prompt and inhibit the spread of viruses, while the
intracommunity structure does not affect the spread behavior between communities [29].
Jean-Gabriel studied the emergence of community structures and the network model of
structural evolution within communities [30]. Li and Jiang considered a disease model
with community heterogeneity and found that the community heterogeneity affects the
transmission threshold and disease prevalence rate [31].

Although network propagation models with community structures have been studied
very extensively [32,33], most of the models ignore the effect of the number of connected
edges within and among communities. To understand the influence of community con-
nectivity on dynamic processes, this paper further studies the epidemic spread model on
dynamic networks with community structures. Moreover, demographics play a crucial
role in the disease-spreading process. Demographics change the number and internal
relationships of individuals in different communities. Therefore, we investigate the effect of
the connection rate and the number of connected edges among communities on epidemic
propagation in the proposed model.

In fact, in real social networks, the physical contacts among individuals in some
communities are closer than in other communities, reflecting the connections among
communities. For example, in real social networks, the young-student community interacts
with each other more frequently than the elderly-people community. Furthermore, studies
have suggested that coupling strength in contact patterns among individuals in different
communities has an important effect on epidemic spreading. We firstly construct a new
community structure network model with the connection rate and the number of connected
edges among communities. Then we establish a novel epidemic spreading model based on
this network model and calculate the epidemic threshold.

This paper is organized as follows. In Section 2, a community growth network
that considers the number of connected edges is presented. Moreover, we introduce
a modularity coefficient to determine the strength of the community structure. Section 3
focuses on the SIR epidemic model via applying the mean-field approach and calculating
the basic reproduction number. In Section 4, we give numerical simulations to verify the
theoretical results. Finally, Section 5 concludes the paper.

2. Community Network Model

The network model generation algorithm with community structure can be con-
structed as follows [26,29].

Consider a network containing m communities, and each community contains ny, 11,
-+, ny nodes, respectively. Here, we assume that the number of nodes in each community
is n;.

At the initial moment, the nodes of the network are independent. Each node is con-
nected to 71 nodes with probability « of intracommunity links, and every two communities
have m, links.

At each time step, each node in the i-th community is connected to m3 nodes with
probability p;, in the same community. Moreover, this node is connected to 74 nodes with
probability p,,: between different communities. Then, a community network is generated.
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In what follows, we discuss the effect of the strength of the community structure on
the spreading of the epidemic by introducing a modularity coefficient. The modularity

coefficient is defined as [27]
2
Q=Y lei— (Y el €))
i j

where ¢;; is the proportion of connected edges in community i and j to the total connected
edges in the network.
According to the above network evolution, one can obtain
namy + npj,ms

ejj = T - 2)
nammy + ym(m — 1)my + npimms + npeyem(m — 1)my

namy + npjms + (m — 1)my + npoys(m — 1)my
Ly = it bty = iy o i S p————) e
7 i nammy + sm(m my + npimms + npeurm(m n

Substituting Equations (2) and (3) into (1), we obtain

2

4)

2
(nammy + Ym(m — V)ymy + npjmmz + npoysm(m — 1)my)

It can be seen from Equation (4) that the community strength is not only related to the
connected rate pj,, pout but also to the number of intracommunity and intercommunity
links. The following numerical simulations are performed. The parameters are taken as
m=4,n=>500,and « = 0.1.

Figure 1 displays the relation between the community strength and the internal and
external connection rates of the nodes. From Figure 1, we observe that the same modularity
coefficient corresponds to different p;,, and p,,:. Moreover, it can be seen that the internal
connection rate p;,, increases as the external connection rate p,,; increases.

0.8

0.6
. 0.4
= Pin

Figure 1. The relationships between Q and p;;,, pout.

Figure 2a shows that when the external connection rate po,; is fixed, the modularity
coefficient increases as the internal connection rate p;,, increases. Figure 2b shows that when
the internal connection rate p;;, is fixed, the modularity coefficient decreases as the external
connection rate p,y¢ increases. It implies that an increase in the frequency of connections
between communities leads to a less distinct community structure in the network.
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Figure 2. (a,b) The relationship between Q and the internal connection rates.

Figure 3a,c display the effect of the number of connected edges of each node within
the community on the modularity coefficient. The result is that the higher the number
of connected edges, the stronger the community strength. Moreover, Figure 3b,d reflect
the increase in the number of connected edges between communities, thus making the
community structure inconspicuous. However, Figure 3a,b show that the number of
connected edges at the initial moment has a smaller effect on the modularity coefficient.
This means that it will not play a decisive role in the strength of the community structure.
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Figure 3. The relationship between the modularity coefficient Q and the connected edges.

3. Infectious Disease Dynamics Model and Analysis
3.1. Model Description

In this subsection, we consider an epidemic network model with two communities.
It is assumed that the individuals in each community will be in three different states:
susceptible (S), infected (I), and recovered (R). Parameters S;, I;x, and R;; are defined
as the density of susceptible, infected, and recovered individuals with degree k at time ¢,
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where i indicates the i —th community, i = 1,2. Table 1 denotes the explanation of the key
parameters in the transmission of infectious diseases. Here, we assume that all parameters
are positive.

Table 1. The explanation of all the system parameters.

Parameter Explanation

Bi Infection rate in the i—th community

Probability of nodes being connected in the inner community at the

& initial moment
Pin Probability of nodes being connected in the inner community at each time step
Pout Probability of nodes being connected in the outer community at each time step
d; Recovery rate of infected in the i—th community
Wi Probability of recovered reverting to susceptible
Vij Coefficient factor affecting the infection rate in the outer community

In order to further explain, the transformation between the states of the infectious
disease in the two communities is described as follows. The Figure 4 shows the infectious
disease transmission in complex network with two communities.

—> S 5 <
V2P
Ble+tp, B (aftp,,)
I }/Zlﬁlpam I
H W,
) &,
L R R —

Figure 4. The flow chart of the infectious disease transmission in two community structure networks.

Based on the above community network model, the SIR epidemic transmission model
is established as the following equations:

dsld,;(t) = —P1pinkS1 kO (t) — B1akSy O (t) — Y12B2PoutkS1 O (t) + 1Ry i (t)
dllakt(t) = B1pinkS1x®N (t) + B1akS1 1O () + Y12B2PoutkS1 kO () — 6111 1 (t)

PO — 5114 (1) — Ry (1) v
B30 — B pikSy @ (£) — BoakSy @ () — Y21 B1 PoutkSy @M (£) + jiaRo(t)
dlzdkt(t) = BapinkSy kO (t) + BoakSy k@ (t) + 721 B1PoutkSo kO () — 621 (1)

ok — 51, (£) — paRo(t)

where 7; ;. represents the total number of individuals of degree k in the i—th community,
k=1,2,...,d,dis the maximum degree, 1; denotes the whole number of individuals in
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)
L = 51T () — Ry (1)
(

the i—th community, and N is the total number of individuals in the network, satisfying
N = ny + ny. We define the power-law degree distribution in the whole network as

Ny +nyk

pk) = —r——=. (6)

ny + np

It is well known that the degree distribution in the i—th community satisfies
Mk

and the average degree in the whole network is

(k) = Tkp(k) = Tk "2k = Ly k(ny o+ mp) -
1 k k k (8)
= N%k(”lpl(k) +napa(k))

In Equation (5), @i (t) = (1T>2 kp(k) Atk Lk nik gonotes the probability that a randomly chosen
k

n, k+7’l

link of a node is connected to an infected node at time t:

LBy nytngr  Ip(BOnge I (tnp(k)
oh(t) = (%%kp( )nllkk+n21/]: - %% ' }111(+n§k ' 7}11,(k+n21,lf - (%gl N ©)
= Wlmzkm( M (t) = a%kpl(k)ll k(1)
where g = W Similarly,
©"(t) = = V) kpa() i (10)
_ n
where b = W

3.2. The Basic Reproduction Number

This subsection focuses on the investigation of the basic reproduction number Ry
via the next-generation matrix scheme. In order to obtain the infection matrix F and the
internal evolution matrix V, we translate Equation (5) into the following format:

= B1PinkS1@" (t) + B1akS1 O (t) 4+ Y12B2PoutkS1 kO (t) — 6111 e (t)
= BopinkSo k@ (t) + BaokSp O (t) + Y211 PoutkS2 O (t) — 621 1 (t)
= —P1pinkS1 kO (t) — B1akS O (t) — Y12B2PourkS1 O (t) + 1Ry i (t)

(11)
= —BopinkSy kO (t) — BrakSy k@ (t) — 721 B1PoutkSz xON (£) + paRop i (t)

—ae= = 0l (1) — PRy (1)

where the infection matrix F and the internal evolution matrix V are given:

B1pinkS1 k@ (t) + B1akS1 kO (t) + Y12B2PoutkS14O (1)
B2pinkSo @ (1) + BoakSy O (1) + 721 B1PoutkSp O (¢)
0

0
0
0
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O11 k(1)
o2l k(1)
v — | PpinkS1 @ () + PrakSy kO () + 112B2PoutkS1 kO™ (£) — p1Ry (1)
BapinkS2 @ (t) + PoakSy kO (t) + ¥21B1PoutkSz kO (£) — HzRo e (t)
=011k (t) + p1Ry i (t)
=02l () + paRo(t)
Then, the infection matrix of the system at the disease-free equilibrium Ey(1,0,0,...,1,0,0) can
be obtained:
B1(pin +a)-a-p1(1) B1(pin+a)a-2-p1(2) -+ Pi(pmta)-a-d-pi(d)
By — B1(pin+a)-2-a-p1(1) Pr(pim+a)-2-a-2-p1(2) -+ Pi(pm+a)-2-a-d-pi(1)
B1(pin+a) -d-a-p1(1) Pr(pm+a)-d-a-2-p1(1) -+ PBr(pim+a)-d-a-d-pi(d)
Y12B2Poutb - p2(1) -+ Yy12B2Poutb - d - p2(d)
Fpp = : :
Y12B2Poutd - b - p2(1) -+ Y12B2poutd -b-d - pa(d)
Y21B1Poutapr(1) -+ y2B1pouta-d - p1(d)
Fxn = : :
Y2B1Poutd -a-p1(1) - ynB1powd-a-d-pi(d)
Bo(pin +a)bp2(1) -+ Po(pin+a)b-d-pa(d)
B = : :
Ba(pin+a)d-b-pa(1) - PBo(pin+a)d-b-d-ps(d)
where Find, i=1,2,j=3,...,6,and ngd, i=3,...,6,and j =1,2,...,6 are zero matrix.
The internal evolution matrix of the system at the disease-free equilibrium Ey(1,0,0,...,1,0,0)
is given by
0 0 oy 0
Vi : : Vop=| + =
0 - & 0 - 6
Br(pin +a)b-pr(1) -+ Bi(pin+a)b-d-pi(d)
Va1 : :
B1(pin+a)d-b-p1(1) - Pi(pin+a)d-b-d-pi(d)
Y12B2Poutb - p2(1) -+ Y12B2pouth - d - p2(d)
V3 = : . :
Y12B2Poutd - b - p2(1) -+ Y12Bopourd -b-d - p2(d)
—u; -0
Vs : :
0 —M
Y21B1Poutap1(1) o y21B1poua-d - pr(d)
Vi : ' :

Y21B1Poutd - a-p1(1) -+ youB1poutd-a-d-pi(d)
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Ba(pin +)bp2(1) -+ Bo(pin +a)b-d - pa(d)
Vi = : :
Ba(pin +a)d-b-pa(1) -+ PBo(pin+a)d-b-d-pa(d)
—p -0 & - 0 oo 0
Vi = V51 = V55 = :
0 - —u 0 - —& 0 -
& -0 w - 0
Vo2 = T Voo = | .o
0 - -0 0 -

where Vlded,j =2,...,6 Vzdjxd,j =1,3,...,6 ngde,j = 3,4,6, Vf].xd,j = 3,4,5, ngxd,
j=23,46, Vgled, and j = 1,3,4,5 are zero matrices according to the principle of the

next-generation matrix, where Ry = p(FV~!), which denotes the spectral radius of the
matrix FV 1.

Defining C = FV~!, we have C{/?, (j = 3,...,6), C§*, (j = 3,...,6), C{*%, and
(i=3,...,6,j=1,...,6) are zero matrices, C‘lilx"l = Wﬂix‘i, szx'i = %MT;X"I,
dxd _ 7 outd rdxd  ~dxd _ Bo(Pinta)b rdxd
G = 721%1’7 ST, Cpt = Barpe i p(sz "
pi(1) - dpi(d)

where Tidx‘i =

dpi(1) - Ppi(d)

In the following, we determine the matrix C of the spectral radius:

dxd dxd
c=(dita clia):
Gt O
It is found that the matrix C has 2d — 2 eigenvalues equal to 0 by applying similar
transformation to the matrix C. The remaining two eigenvalues satisfy

Bilpinta)al?), - quabapoub(k),
o 2 % 2 =0. (12)
V21B1pouta (k) B2(pin+a)b(k?),
o 5 - X

From the determinant (12), the characteristic equation can be obtained as

P1(pin + a)alk®), B2(pin + 2)b(K?), 112B2Poutb(K?);  v21P1pountalk®)
—x —x| - . = 0. (13)
0 0 ) 3
Therefore, the discriminant of the roots of quadratic Equation (13) is
Brlputn(), | Palpuctp (), )
A = ( 1 . < >1 + % < >2

B1(pinta)a(k?),  Ba(pin+a)b(K2),  112Bapoutb(kK), v2B1poura(k?),

—4 o ) o o o ) o : (14)
1 2 2 1

2
(ﬁl(Pin+;)ﬂ<k2>1 B ﬂz(r’i;1+;¢)b<k2>2> +4712/32Po;tb<k2>2 _ 721!31Pzgua<k2>1 <0
1 2 2 1
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The roots of the quadratic equation; that is, the eigenvalues of the matrix C, are

(/31(an+;;)ﬂ<kz>1 i ﬁZ(Pin"'ts";)b<k2>2) + VA
X12 = > ) (15)

Thus, the basic reproduction number of the whole network is expressed as [34]

int K? inHa)b (K
Ry = %(ﬁl(P g)ﬂ( >1+/32(p 54;)( )z)

(16)

1 ﬁl(pin+“)a<k2>1 ﬁZ(pin+“)b<k2>2 2 4712,32poutb<k2>2 721ﬁ1pouta<k2>l
+ 2 o1 - Oy + P ’ o1 :

Equation (16) shows that the probability of being connected in the inner and outer
communities plays a positive role in the basic reproduction number. According to the
above analysis, the following theorem is obtained.

Theorem 1: For system (5), if the basic reproduction number Ry < 1, the disease-free equilibrium
is stable and the disease will die out in two communities. If the basic reproduction number Ry > 1,
the disease-free equilibrium is unstable and the epidemic can occur in two communities.

4. The Impact of Community Structure on the Spreading of Infectious Diseases

In the following, we study the influence of community structure on the process of
spreading infectious diseases. Here, we focus on the variation in the basic reproduction
number and infection density.

4.1. The Influence of the Connection Rate on the Basic Reproduction Number

Firstly, we study the impact of the connection rate within and between the communities
on the basic reproduction number. The parameters are taken as (k1) = 9.08, (k) = 8.83,
61 =0.05,0, = 0.1, 712 = 0.5, and 721 = 0.35.

Fix parameter p,,; = 0.2; Figure 5 shows the spatial-temporal distribution of the basic
reproduction number in the network with the infection and connection rates within the
community. Let parameter p;;, = 0.2; Figure 6 shows the spatial-temporal distribution of
the basic reproduction number in the network with the infection rate within the community
and the external connection rate. These figures represent that the internal connection
rate and the external connection rate are positively correlated with the basic reproduction
number. Comparing Figures 5 and 6, it is observed that the external connection rate has a
greater impact on the basic reproduction number for the network.

0.5 .
2,

04 n
. L5 .
2503 Zosf

1
02 .
0.5
0.1 .
1 0.2 03 04 0.5
8,

5]

0

(a)

Figure 5. (a,b) The spatial-temporal distribution of Ry with B and p;,,.
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0.9

Figure 6. (a,b) The spatial-temporal distribution of Ry with § and pou;.

4.2. The Influence of the Connection Rate and Connected Edges on Infection Density

In this section, we discuss the impact of the connection rate and the number of
connected edges within and outside the communities on the transmission of infectious
diseases. The parameter takes the value n = 100, and the initial infected node I(0) = 1.

Figure 7 shows the variation in infection density with the internal connection rate in
the community when p,,+ = 0.2. One can see that the greater the internal connection rate
in the community, the more rapidly the density of infected individuals grows. The reason
is that individual-to-individual contact becomes frequent within the community, and if
an infected individual appears at this time, it is more likely for the infected individual to
spread the virus to susceptible individuals, which leads to an increase in the size of the
infection in the community as a whole. It is also found that p;, can affect the peak time in
single communities.

0.2

0.15

0.1

1t)

0.05 &

0 50 100 ¢ 150 200 250

Figure 7. The variation curves of infection density with time for different p;,,, pout = 0.2.

Figure 8 describes the variation in the infection density with the external connection
rate when p;;, = 0.5. It can be observed that if the external connection rate p,, increases, it
means that intercommunity contact increases, which then also increases the rate and scale
of the spreading of infectious diseases throughout the network. In reality, the multiple
cross-provincial movements of individuals lead to frequent external connections, with
the result that infectious diseases spread on a large scale across the country. Thus, it
seems that reducing the number of trips is an effective way to control the spreading of
infectious diseases.
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02

—=—p,, =015

I(t)

0 50 100 150 200 250
t

Figure 8. The evolutions of infection density with time for different p,yt, pj;, = 0.5.

Observing the red solid line and the blue dashed part in Figures 7 and 8, it is known
that when p,,+ increases by 0.05, the density of infection can increase by about 0.03. When
pin increases by 0.15, the density of infection only increases by less than 0.02. Based on the
above data, one obtains that intercommunity connection plays a crucial role in the spread
of infectious diseases.

In what follows, we investigate the effect of the number of connected edges within com-
munities and between communities on the transmission of infectious diseases, respectively.

Figure 9 shows the variation in infection density with the number of connected edges
within the community for the case of Ry < 1. It can be observed when the number of new
connected edges m3 of nodes within the community increases, the speed of infection and
the size of the outbreak increase. Thus, it can be concluded that the more susceptible people
an infected person in the community comes in contact with, the wider the spread of the
infection within the network, and ultimately the greater the number of infected people.

0.14
—a—m3:2
0.12 —e—m =5 |
+m3:8
0.1 1
0.08 1
0.06 1
0.04 ]
0.02 1
0 '===:::::>:"7 ee IOttt
0 50 100 150 200

t

Figure 9. The variation curves of infection density with time for different m3 and Ry < 1.

Figure 10 indicates the variation in infection density with the number of connected
edges between communities for the case of Ry > 1. From this figure, one can observe that
the higher the number of connected edges between communities, the faster the speed of the
infection. When infected individuals move between communities, they come into contact
with many individuals from various other communities. The result shows that the speed
of the spreading of infected individuals, as well as the final size of the infectious disease,
also increases.

The above analysis implies that reducing the movement of individuals across provinces
can control large-scale outbreaks of infectious diseases in certain conditions.
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0.35
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0.15

0.1

0'05 L 1 1
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t
Figure 10. The variation curves of infection density with time for different m4 and R > 1.

In addition, we consider the number of nodes within the communities is n; = np, = 100.
The number of new connected edges added by individuals at each time step within the two
communities is m} = 8, m§ = 5. Figure 11 gives the curve of the density of each state of the
infectious disease with time for different community structures.

1 T T 1
—o—5 1,® © Sz,mm B
I +11,m(t) - [z,m(‘)
0.8F 0,;:' “»‘-':.-_-_.,:::::h ——R, (O 081 +—R, (0
90006660000006s0sh
06 1 0.6
0.4% 1 0.4
0.2 0.2
0 A . 0 iiiaa
0 50 t 100 150 0 50 t 100 150

@ m=8, (k)=1346, p(k)=014  (b) nm =5, (k,)=9.18, p,(k)=0.05
Figure 11. The variation in S(¢), I(t), and R(t) with time.

Comparing the infection density curves in Figure 11, the basic reproduction number
Ro > 1, the infection density of the network with more connected nodes within the
community, will continue to increase until it reaches a steady state. This implies that the
virus is not spreading massively, so the curve of the infection density in the graph gradually
decreases to a steady state.

As we know, intercommunity activities play an important role in the spreading of
infectious diseases. Here we combine Equations (4) and (16) to investigate the effect of
community strength on the spread of infectious diseases. Figure 12 shows the variation
curve of community strength with the basic reproduction number, where « = 0.1 and
pin = 0.2.

From Figure 12, we can find that the basic reproduction number decreases as the
modularity coefficient Q increases. This implies that the stronger the community structure,
the less widespread the spread of infectious diseases will be. In fact, this conclusion holds,
but only if the internal connection rate p-in and the number of inner edges are constant and
the external connection rate p-out and the number of intracommunity edges are decreasing.
Therefore, the possibility of a virus outbreak at the social level as a whole is small. When
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the community structure is weak enough, the basic regeneration number is greater than 1,
and eventually the epidemic evolves into an endemic disease.

1.6

0.6 r

04r

02r

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Q

Figure 12. The variation in Ry with Q.

From the above analysis, we can summarize that the strength of the community can
affect the final form of the infectious disease, i.e., whether it is eradicated or forms an
endemic disease.

5. Conclusions

This paper presents a modified community network model considering the connection
rate of nodes and the number of connected edges between communities. Based on this
model, an SIR infectious disease transmission model with two community structures is
constructed, which is closer to real networks. Furthermore, the transmission dynamics of
epidemics are analyzed via theoretical analysis and numerical simulation. Our results show
that the higher the frequency of susceptible nodes being infected due to the frequent contact
of individuals within the community, the easier the infectious disease will spread within the
community. When the external connection rate of the community increases, the movement
of people between communities becomes frequent, which leads to the transmission of
the infection throughout the network. In addition, when the external connected edges of
communities increase, the infectious disease spreads rapidly between communities, and
the number of infected individuals in the entire network increases massively.

In conclusion, controlling unnecessary movement of people and minimizing visits
to crowded spaces are effective measures to curb the transmission of infectious diseases.
This is also in line with our current epidemic prevention policy of not going out of town
unless necessary and reducing the number of trips. In the future, we intend to investigate
mathematical properties of the epidemic model and further explore the impact of data-
driven models for multiplex networks.
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