
Citation: Jiang, J.; Shang, J. Feature

Screening for High-Dimensional

Variable Selection in Generalized

Linear Models. Entropy 2023, 25, 851.

https://doi.org/10.3390/e25060851

Academic Editor: Christian H. Weiss

Received: 3 April 2023

Revised: 20 April 2023

Accepted: 25 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Feature Screening for High-Dimensional Variable Selection in
Generalized Linear Models
Jinzhu Jiang and Junfeng Shang *

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
* Correspondence: jshang@bgsu.edu

Abstract: The two-stage feature screening method for linear models applies dimension reduction at
first stage to screen out nuisance features and dramatically reduce the dimension to a moderate size; at
the second stage, penalized methods such as LASSO and SCAD could be applied for feature selection.
A majority of subsequent works on the sure independent screening methods have focused mainly on
the linear model. This motivates us to extend the independence screening method to generalized
linear models, and particularly with binary response by using the point-biserial correlation. We
develop a two-stage feature screening method called point-biserial sure independence screening
(PB-SIS) for high-dimensional generalized linear models, aiming for high selection accuracy and low
computational cost. We demonstrate that PB-SIS is a feature screening method with high efficiency.
The PB-SIS method possesses the sure independence property under certain regularity conditions. A
set of simulation studies are conducted and confirm the sure independence property and the accuracy
and efficiency of PB-SIS. Finally we apply PB-SIS to one real data example to show its effectiveness.

Keywords: feature screening; high dimensional data; generalized linear models; logit model

1. Introduction

As the data with a huge number of features becomes popular in real life, many feature
screening approaches have been developed to reduce the size of features [1]. introduced a
model-free category-adaptive feature screening approach to detect category-specific im-
portant covariates for high-dimensional heterogeneous data [2]. proposed cumulative
divergence (CD) metric and developed a model-free CD-based forward screening proce-
dure. In [3], a distributed screening framework was utilized, which applies a correlation
measure as a function of several component parameters and each of those components can
be distributively estimated. With the components estimates, a final correlation estimate
can be adopted for screening features [4]. proposed a model-free and data-adaptive fea-
ture screening method which is based on the projection correlation between two random
vectors for ultra-high dimensional data. This approach is applicable for heavy tail and
multivariate responses.

A large number of variable selection approaches based on regularization have been
developed to tackle the high-dimensionality issue. One of the most popular and renowned
regularization method, the Least Absolute Shrinkage and Selection Operator (LASSO)
method, was proposed by Tibshirani [5]. The LASSO uses the l1 penalty and minimizes
the squared error. The major advantage of LASSO method is that it performs the variable
selection and parameter estimation simultaneously. Unlike the ridge regression, the LASSO
is able to shrink the coefficient estimate towards zero. Despite the popularity of the LASSO,
many alternative choices of penalty functions are also available. Fan and Li [6] proposed
the smoothly clipped absolute deviations (SCAD) penalty, which is a nonconvex penalty.
Another example is the Dantzig selector (DS) method proposed by [7], which minimizes
the maximum component of the gradient of the squared error function [6]. reviewed and
summarized a family of well-established work on variable selection problems by using a
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penalized likelihood approach in the finite parameter settings and established the oracle
properties for non-concave penalized likelihood estimators.

It was argued that the regularization methods cited above may not perform as ex-
pected due to the simultaneous challenges of computational expediency, statistical accuracy,
and algorithm stability [8]. Thus, a large number of two-stage approaches have been
proposed to improve the performance of the regularization methods and reduce the com-
putational cost. In the first stage of these two-stage methods, the dimension of the data
was reduced. One can choose from different dimension reduction methods to reduce the
number of variables from very large to moderate. Then in the second stage, classic variable
selection algorithms can be applied without the curse of high-dimensionality to identify
the important features selected from the first stage. The choice of variable selection algo-
rithms ranges from regularization to model selection criteria. Ideally, all of the important
features are selected and only a few nuisance variables are kept in the first stage. Therefore,
the first stage is usually referred to as the feature screening stage and the second stage as
the post-screening stage.

The two-stage approach can be applied to linear models. Fan and Lv [9] proposed
the sure independence screening (SIS) method to select important variables based on
marginal Pearson correlation coefficient between each predictors and response variable
in the first stage. By applying SIS in the first stage, we can select the features that have
the strongest correlation with the response variable and reduce high-dimensionality to a
relative moderate size. Following the first stage, appropriate regularization methods such
as LASSO, SCAD, and Dantzig can be applied in the second stage to further select the
important features. Those methods are referred as SIS-LASSO, SIS-SCAD, and SIS-DS.

To broaden the application of two-stage feature screening and variable selection,
generalized linear models are involved, and they are popularized via McCullagh and
Nelder [10]. In such models, a link function (often nonlinear) connects the mean of a
response variable and linear combinations of predictors. A generalized linear model
serves as a flexible and more general framework that can be used to build many types
of regression models. The response variable is assumed to follow an exponential family
distribution and does not have to be a normal distribution. With the release of normality
assumption, generalized linear models can therefore be applied to a wide spectrum of data
for modeling analysis. As an extension of the linear regression, generalized linear models
are substantially utilized in a variety of fields, such as biomedical and educational research,
social sciences, agriculture, environmental health, financial analysis, etc.

Sure independent screening method was demonstrated to be capable of efficiently
selecting important predictors with low computational cost in linear models. Therefore, it is
a natural extension to apply the feature screening method to generalized linear models. Fan
and Song [11] extended the feature screening procedure for generalized linear models by
ranking the marginal maximum marginal likelihood estimator (MMLE). This method ranks
marginal regression coefficient of generalized linear model to screen the important features.
It is able to dramatically reduce the dimension of the data and make the computation
more feasible after the screening. Actually, the MMLE ranking is the same as the marginal
correlation ranking in the linear model setting. Further, it does not depend on normality
assumption and can be applied to other models. A variety of marginal screening procedures
have been proposed by applied different types of correlations and for different types
of models.

Even though some feature screening procedures such as MMLE and Kolmogorov
filter [12] have been proposed for generalized linear models, those methods have their
own limitations. MMLE approaches can select important predictors efficiently, but the
computational cost for this method is relative high since it requires fitting the marginal
model for each predictor. The Kolmogorov filter method is computationally fast, but the
selection accuracy is relatively low compared with certain methods. Inspired by those
two-stage feature screening approaches, we propose a two-stage feature screening approach
for high-dimensional variable selection in generalized linear model with binary response
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variable. The point-biserial correlation [13] is a well-known correlation that can be used to
measure the strength and the direction between one continuous variable and one binary
variable. In the first stage, we can apply point-biserial correlation as a marginal index to
check the correlation between each predictor and the response to reduce the dimension
of the data to a moderate size. Then, we apply a regularization method to further select
important predictors and build the final sparse model.

The primary objective of this paper is to develop a two-stage feature screening method
called point-biserial sure independence screening (PB-SIS) for high-dimensional gener-
alized linear models, aiming for high selection accuracy and low computational cost.
The latter property is quite important in the era of big data, where the size of data sets
becomes larger and never stops growing with the advancement of modern science and
technology. We demonstrate that PB-SIS is a feature screening method with high efficiency.

Section 2 introduces generalized linear models. Section 3 presents the PB-SIS method
and the two-stage point-biserial correlation screening procedure. Section 4 conducts a set of
simulation studies to compare the performance of the proposed method with MMLE [11]
and Kolmogorov filter method [12]. The predictors are set to have different strengths
of pair-wise correlation and the response variable is generated by using different link
functions. These simulations confirm the sure independence property and the accuracy
and efficiency of PB-SIS. We demonstrate the effectiveness of PB-SIS with the application to
one real data example in Section 5. Section 6 concludes and discusses.

2. Generalized Linear Models (GLMs)

Even though the sure independence screening (SIS) method proposed by Fan and
Lv [9] provides a very useful and powerful tool for high-dimensional data analysis, it
focuses on the linear models setting and its properties dependent on the joint normality
assumptions. Fan and Song [11] also proposed a more general version of sure indepen-
dence screening method for generalized linear models (GLMs), which ranks the maximum
marginal likelihood estimator (MMLE) or maximum marginal likelihood itself. Assume
that the response Y is from an exponential family with the canonical form:

fY(y, θ) = exp{yθ − b(θ) + c(y)},

where let X = (X1, X2, . . . , Xp) be the p-dimensional explanatory variables shown as
the n × p design matrix. Denote Xij as the ith observation of the jth variable, then we
have Xi = (Xi1, Xi2, . . . , Xip)

T . The b(·), c(·) are some unknown functions, and natural
parameter θ. Then we have the following generalized linear model:

E(Y|x) = b′(θ(x)) = g−1(β0 + xT β),

where g(·) is the link function, β0 is an unknown scalar. Let β = (β1, β2, . . . , βp)T be
a p-dimensional unknown vector. Let {xi, Yi}, i = 1, 2, . . . , n, be an independent and
identically distributed sample from a population {x, Y}. For the MMLE method, β̂M

j for
the jth predictor Xj is defined as

β̂
M
j = (β̂M

j0 , β̂M
j1 )

T = argmin
β j0,β j1

1
n

n

∑
i=1

`(Yi, β j,0 + β j1Xij),

where `(y, θ) = −yθ(x) + b(θ)− c(y) is the log likelihood function. Ref. [11] considered to
rank magnitude of the marginal regression coefficients β̂M

j1 to select important features and
defined the selected submodel as

M̂γn = {i ≤ j ≤ p : |β̂M
j | > γn},

where γn is a pre-specified threshold. The dimension of p will dramatically decrease to a
moderate size when we choose a large value of γn.
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To establish the theoretical properties of MMLE, Fan and Song [11] defined the popu-
lation version of the marginal likelihood maximize as

βM
j = (βM

j0 , βM
j1 )

T =
β j0,β j1

argminE[`(Yi, β j,0 + β j1Xij)],

where E denotes the expectation under the true model. Based on this population aspect, it
was shown that the marginal regression parameter βM

j1 = 0 if and only if cov(Y, Xj) = 0,

for j = 1, 2, . . . , p. Thus, βM
j1 6= 0 when the important features are correlated with the

response variable. Define the true model asM? = {1 ≤ j ≤ p : β j 6= 0} with the size
s = |M|. Under some conditions, if |cov(Y, Xj)| ≥ c1n−κ for j ∈ M and some c1 > 0, then
we have

min
j∈M?

|βM
j1 | ≥ c2nκ ,

for some c2, κ > 0. Thus, the marginal signals βM
j1 ’s are stronger than the stochastic noise

provided that Xj’s are marginally correlated with Y.
Fan and Song [11] also showed that under proper regularity conditions, this proce-

dure has sure screening property and size control property if γn follows an ideal rate.
Under certain conditions, we have

Pr(M? ⊂Mγn)→ 1 as n → ∞.

where γn = cn1−2k for some 0 < k < 1/2 and c > 0. TheM∗ = {1 ≤ j ≤ p : β∗j 6= 0} is the
true index set of model.

3. Feature Screening Methodology for Generalized Linear Models via
Point-Biserial Correlation

We propose a two stage feature screening method for GLMs variable selection by using
point-biserial correlation. In the first stage, we use point-biserial correlation as a marginal
utility to rank predictors and select the submodel by using some predefined threshold.
This step can reduce the number of features from a very large scale to a moderate size in a
computationally fast manner. Then in the second stage, we apply a regularization method,
such as LASSO, SCAD or MCP, to further shrink the number of parameters and find the
final sparse model from the screened set we got from the first stage. This proposed method
is referred as the two-stage PB-SIS.

We remark that [9] demonstrated that the two-stage methods which combine inde-
pendence screening and penalized method outperform an one-step penalized method.
The effectiveness of the two-stage method is guaranteed by the sure screening property.
The sure screening properties mean all important predictors are selected in the reduced
model almost surely, e.g., the sure screening property for PB-SIS guarantees that PB-SIS
is able to retain all of the variables from the true model in the screened submodel with
probability going to one as the sample size goes to infinity, and the convergence rate is
exponential. It can be shown that PB-SIS possesses the sure independence property under
certain regularity conditions and that the PB-SIS method can select all of the important
variables in the model with probability one.

3.1. Point-Biserial Correlation and Its Asymptotic Distribution

Let Y be a binary variable with two classes y0 = 0, y1 = 1, and again X = (X1, X2, . . . ,
Xp)T be a n× p covariate matrix. Given n independent identically distribution random
sample Xi = (Xi1, . . . , Xip)

T . Let Xij, i = 1, 2, . . . , n, j = 1, . . . , p, be the ith sample of the
jth covariate. To investigate the point-biserial correlation between Y and Xj, j = 1, 2, . . . , p,
we consider the correlation between each Xj and Y.
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For each j, consider (Xi, Yi), i = 1, 2, . . . , n, a sequence of independent random vectors.
Assume Yi have the Bernoulli distribution:

P(Yi = 1) = p1, P(Yi = 0) = p0, (1)

where 0 < p < 1 and p1 + p1 = 1. Assume Xi have the mixture normal distribution which
can be written as either the distribution function F or the density function f :

F(x) = p1F1(x) + p0F0(x) and (2)

f (x) = p1 f1(x) + p0 f0(x),

where

Fk = P(X ≤ x|X = k) =
∫ x

−∞

1
σ
√

2π
e−

(z−µk)
2

2σ2 dz, k = 0, 1.

The random variable Z is asymptotically normal with a mean of µ and a variance of σ2.
Consider X normally distributed in Z0 and Z1 separately with different mean µ1, µ0

and same variance σ2
1 , σ2

0 , where we have

µ1 = E(X|Yi = 1), µ0 = E(X|Yi = 0),

σ2
1 = Var(X|Yi = 1), σ2

0 = Var(X|Yi = 0), and σ2
1 = σ2

0 = σ.

Thus, the point-biserial correlation can be defined as

rpb =
∑n

i=1(XiYi − nX̄Ȳ)√
∑n

i=1(Xi − X̄)2
√

∑n
i=1(Yi − Ȳ)2

.

Since Yi has the Bernoulli distribution with probability in Equation (1), the mean and
variance of random variable Y are

E(Y) = 1(p1) + 0(p0) = p1 and

Var(Y) = (1− p1)
2(p1) + (0− p0)

2(p0) = p1 p0.

Since X follows the mixture normal with CDF in Equation (2), the expected value and
variance of X are

E(X) = p1µ1 + p0µ0 and

Var(X) = σ2
(

1 + p0 p1
(µ1 − µ0)

2

σ2

)
.

Denote the standardized difference of means µ1 and µ0, µ1−µ0
σ , as ∆. Thus, the variance

of random variable X can be written as

Var(X) = σ2(1 + p0 p1∆2).

Then, we can derive the expected value of product of X and Y. Since the product of XY
is zero when X = 0 or Y = 0, the expected value of XY only takes the value when Y = 1.
Therefore, we have

E(XY) = pµ1.

Now we can find the population correlation coefficient X and Y

ρ(X, Y) =
Cov(X, Y)

σxσY

=
µ1 − µ0

σ

√
p1 p0

1 + p1 p0∆2 ,
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which has the form ρ(X, Y) = ∆
√

p1 p0
1+p1 p0∆2 and it has a natural estimator, rpb.

Remark 1 states the asymptotic distribution of point-biserial correlation which can be
easily extended from [13].

Remark 1. Let random variable Y have a Bernoulli distribution and random variable X have
mixture normal distribution with CDF in form (2), then the point-biserial correlation, rpb, between X
and Y has the asymptotic distribution

rpb ∼ N[ρ,
4p1 p0 − ρ2(6p1 p0 − 1)

4np1 p0
(1− ρ2)2].

3.2. Two-Stage Point-Biserial Correlation Screening Procedure

We consider using the point-biserial correlation to measure the correlation between
Xj, j = 1, 2, . . . , p, and Y. We define the following index

ωj =
E[(Xj − E(Xj)(Y− E(Y)]√

Var(Xj)
√

Var(Y)
,

as a marginal utility measure for screening. Intuitively, we can see that if Xj and Y are
independent or close to independent, then ωj = 0 or ωj is very close to 0. On the other hand,
if Xj and Y have strong correlation, ωj is close to−1 or 1. Thus, we can rank the marginal ωj
value to select important features that have higher correlation with the response variable.

A natural estimator for ωj can be defined as

ω̂j =
∑n

i=1(XijYi)− nX̄jȲ√
∑n

i=1(Xij − X̄j)2
√

∑n
i=1(Yi − Ȳ)2

.

Based on ω̂j, we propose a two-stage screening procedure for high-dimensional GLMs
with binary response variable. In the first stage, we compute sample point-biserial cor-
relation ω̂j, j = 1, 2, . . . , p for each predictor. Then we can sort the magnitudes of all the
components of !̂ = (ω̂1, ω̂2, . . . , ω̂p)T in a decreasing order and select a submodel as

M̂d = {j : 1 ≤ j ≤ p : |ω̂j| is among the first d largest of all}, (3)

where the submodel size d is smaller than the sample size n. Thus, we can reduce the high
dimension p to the moderate size d. As Ref. [9] suggested, the submodel size d could be
set as bn/ log(n)c, where the bac refers as the floor function of a. The submodel (3) has the
equivalent from

M̂d = {1 ≤ j ≤ p : |ω̂j| > γ},

where the d or γ is a predefined threshold value. This proposed procedure is referred to as
point-biserial correlation sure independence screening (PB-SIS).

Although the PB-SIS method can reduce the high dimensionality p to a moderate size
d, we can apply a penalized method in the second stage to further select important variables
to find the final sparse model. In the second stage, a penalty regression procedure, such
as the least absolute shrinkage and selector operator (LASSO), can be applied to further
select important variables and estimate the coefficients in model. LASSO is a shrinkage
method which places a constraint on the absolute values of the parameter in a model. It
is the most popular approach for selecting significant variable and estimating coefficients
simultaneously. The LASSO estimates is defined as

β̂lasso = argmin
(β0,β)∈Rd+1

{
1
2
(yi − β0 − xT

i β)2 + λ
d

∑
j=1
|β j|
}

. (4)
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Ref. [14] proposed fast regularization path for GLMs via coordinate descent. This method
can handle LASSO penalty for estimation problems efficiently.

For solving Equation (4) in generalized linear models setting, Ref. [14] considered a
coordinate descent steps. Suppose we have estimates β̃0 and β̃l for l 6= j, and we would like
to partially optimize with respect to β j. Let R(β0, β) be the objective function in Equation (4).
The gradient at β j = β̃ j could be computed if β̃ j 6= 0. Thus, if β̃ j > 0, then we have

∂R
∂β j
|β=β̃ = − 1

N

N

∑
i=1

xij(yi − β̃0 − xT
i β̃) + λ.

Ref. [15] showed that after a simple calculation, the coordinate-wise update has
the form:

β̃ j ← S

(
1
N

N

∑
i=1

xij(yi − ỹ(j)
i ), λ

)

where ỹj
i = β̃0 + ∑l 6=j xil β̃l is the fitted value excluding the contribution from xij, and

yi − ỹ(j)
i is the partial residual for fitting β j. The S(z, γ) is the soft-threshold operator with

the value:

sign(z)(|z| − γ)+ =


z− γ i f z > 0 and γ < |z|
z + γ i f z < 0 and γ < |z|
0 i f γ ≥ |z|.

The details of this derivation are showed in [16].
Since we focus on feature screening for GLMs with binary response question, the lo-

gistic regression model is commonly used. We would like to investigate the model opti-
mization and estimation for penalized logistic regression as follow. As we discussed before,
the logistic regression model can be represented by the class-conditional probabilities
through a linear function of the predictors as

P(G = 1|x) = 1
1 + e−(β0+xT β)

, (5)

P(G = 0|x) = 1
1 + e+(β0+xT β)

,

where P(G = 1|x) = 1− P(G = 0|x). This can imply the logistic regression formula:

log
P(G = 1|x)
P(G = 0|x) = β0 + xT β.

Let p(xi) = P(G = 1|xi) be the probability in Equation (5) for observation i at a particular
value for the parameters (β0, β), then Ref. [14] maximized the penalized log-likelihood:

min
(β0,β)∈Rd+1

[
1
N ∑

i=1
N{I(gi = 1) log p(xi) + I(gi = 0) log(1− p(xi))} − λPλ(β)

]
. (6)

Denote yi = I(gi = 1), then the penalized log-likelihood in Equation (6) can be repre-
sented as

`(β0, β) =
1
N

N

∑
i=1

yi(β0 + xT
i β)− log(1 + e(β0+xT

i β)), (7)

which is a concave function of the parameter. For the unpenalized log-likelihood problem,
we could apply Newton’s method to work on maximizing iteratively reweighted least
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squares. We could form a quadratic approximation (Taylor expansion) for the log-likelihood
to estimate (β̃0, β̃) as

`Q(β0, β) = − 1
2N

wi(zi − β0 − xT
i β)2 + C(β̃0, β̃), (8)

where

zi = β̃0 + xT
i β̃ +

yi − p̃(xi)

p̃(xi)(1− p̃(xi))
and

ωi = p̃(xi)(1− p̃(xi)),
(9)

and p̃(xi) is evaluated at current parameter. The last term in Equation (8) is constant,
and zi is the working response and ωi is weights in Equations (9). The Newton update
could be obtained by minimizing ` in Equation (8). Ref. [14] proposed the coordinate
descent approach to optimize the penalized log-likelihood in (7), which is similar as the
Newton’s method. As they suggested, we can create an outer loop which computes the
quadratic approximation `Q about the current parameters (β̃0, β̃) for each value of λ. Then
use coordinate descent to solve the penalized weighted least-squares problem as

min
(β0,β)∈Rd+1

{−`Q(β0, β) + λPα(β)}. (10)

To implement this algorithm, we need to use a sequence of loops at the same time. We
can use the outer loop to decrement λ, use the middle loop to update the quadratic
approximation `Q using the current parameter (β̃0, β̃), and apply the inner loop to run the
coordinate descent algorithm on the penalized weighted least squares problems in objective
function (10). We then iterate those nested loops until convergence.

Besides LASSO penalty, the smoothly clipped absolute deviation (SCAD) penalty [6]
and the minimax concave penalty (MCP) [17] also can be applied in the second stage to
further select important predictors and estimate the coefficients. The SCAD and MCP are
concave penalties that satisfy the oracle properties. It means that those two penalized meth-
ods can correctly select important variables and estimate coefficients with high probabilities
if certain regularity conditions are met. For the SCAD penalty, Ref. [6] proposed a local
quadratic approximation (LQA) algorithm to find the optimal solutions. However, once a
coefficient is set to zero at any iteration, it will keep staying at zero and the corresponding
variable is removed from the final model for LQA algorithm. Ref. [18] proposed the
majorization-minimization (MM) approach to optimize a perturbed version of LQA by
bounding the denominator away from zero. Besides, Ref. [19] proposed a local linear ap-
proximation (LLA) algorithm to approximate the concave penalized solution by repeatedly
using the algorithms for the LASSO penalty. However, most of those optimization methods
are for linear models. Ref. [20] proposed a majorization minimization by coordinate descent
(MMCD) to find the optimal solutions of a concave penalized in GLMs, with emphasis on
the logistic regression. They implemented this algorithm for a penalized logistic regression
model using the SCAD and MCP penalties.

Since this algorithm can not run λ all the way to zero if p is much greater than n since
the saturated logistic regression fit is undefined, it is necessary to apply the first stage of
our proposed method first to reduce the number of parameters to a moderate size. Then we
use a penalized method, such as LASSO, SCAD and MCP, at the second stage to obtain the
final model. This algorithm is easily to implement by using R package SIS. By applying
the SIS, one can use cross-validation (CV), AIC [21], BIC [22] or EBIC [23] to choose tuning
parameter λ.

The summary of two-stage PB-SIS method is provided in Algorithm 1.
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Algorithm 1 Two-stage PB - SIS Algorithm.

1: Compute the point-biserial correlation between xj and y as ω̂j and rank the magnitude
of the absolute value of marginal correlation ω̂j.

2: Choose the predefined threshold value d and take the selected submodel to be
M̂d = {j : 1 ≤ j ≤ p : |ω̂j| is among the first d largest of all},
where d is some predefined threshold.

3: Start with all variables in the submodel M̂d, then apply a penalized method, such as
LASSO, SCAD or MCD, to further select important variables and estimate coefficients
(β̃0, β̃).

4. Simulations

We will conduct Monte Carlo simulations to evaluate the performance for the proposed
PB-SIS method with some existing feature screening methods for generalized linear models
(GLMs), like sure screening by ranking the magnitude likelihood estimator (MMLE) [11],
and screening for binary classification based on the Kolmogorov-Smirnov statistic (Kol-
mogorov Filter) [12]. We will also check the performance of two-stage PB-SIS method with
different penalized methods by using different tuning parameter selection criteria.

4.1. Simulation Settings

In each example, the data (XT
1 , Y1), (XT

2 , Y2), . . . , (XT
n , Yn) are independent copies of a

pair (XT , Y), where the conditional distribution of the response Y given X = x is a bino-
mial distribution with probability of success πi. We generate x = (X1, X2, . . . , Xp)T from
multivariate normal distribution with mean 0 and covariance matrix Σ = (σij)p×p = ρ|i−j|.
We set up 5 different ρ values from small to large to generate X with different correla-
tion strength among the p predictors. There are independence (ρ = 0), low correlation
(ρ = 0.2), moderate correlation (ρ = 0.4), high correlation (ρ = 0.6) and very high correla-
tion (ρ = 0.8). We vary the size of the non-sparse set of coefficients as s = 2, 3, 4 with vary
signals and set up the number of parameter with p = 200 and p = 600. Besides, we apply
one link function, logit, to generate the binomial proportion πi, then generate the binary
response variable Y. For each link function, we consider 6 different models which are
presented in Table 1 with different covariates. The true coefficients for these 6 models are
β = (2, 3), β = (2,−3), β = (2, 3, 3), β = (2,−3, 3), β = (2, 3, 3, 3), and β = (2,−3, 3,−3)
and the same constant term β0 = 1. Note that these parameters are randomly selected
and some easily recognizable numbers are chosen for brevity. The patterns and trends of
the simulation results do not depend on the parameter values. Thus, the proposed PB-SIS
method is compared with MMLE and Kolmogorov filter method under all 2× 6 = 18
simulation settings. All simulation results are based on 1000 replicates.

Table 1. Variables included in 6 example models.

Model Variables Model Variables

model 1 x1, x3 model 4 x1, x4, x8
model 2 x1, x6 model 5 x1, x3, x6, x10
model 3 x1, x3, x6 model 6 x1, x4, x8, x12

For each simulation, we use the proportion of submodelsMd with size d that contain
all the true predictors among 1000 replications, P1, and computing time to evaluate the
performance for each setting. For the threshold value d, we follows [9] and choose d to
be d1 = bn/ log nc, d2 = 2bn/ log nc and d3 = 3bn/ log nc throughout our simulations to
empirically examine the effect of the cutoff, where the bn/ log ncmeans the floor function
of n/ log(n). Since in our simulation setting, we take n = 100, we have d1 = 21, d2 = 43,
and d3 = 65. We also evaluate each method by summarizing the median minimum model
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size (MMMS) of each selected models and its robust estimate of the standard deviation
(RSD). RSD is the interquantile range (IQR) divided by 1.34, which is given by [11].

For the principle to define the value of d, Ref. [9] set d = n/ log(n) as one way of
choices for d, and this way is conservative yet effective. Their preference is to select suffi-
ciently many features in the first stage, and when d is not very small, the selection results
are not very sensitive to the choice of d. It is obvious that larger d means larger probability
of including the true modelM∗ in the submodelMd. Provide that d = n/ log(n) is large
enough, we can use it as the threshold. Doing so can detect all significant predictors in
the selected subset and the P1 value is large. Therefore, the principle for choosing d is to
obtain a relatively large value of d to ensure the selection of the first stage can include all
important predictors in the submodelMd. The simulation results in the next subsection
will show that taking d1 = bn/ log nc, d2 = 2bn/ log nc and d3 = 3bn/ log nc as thresholds
results in the P1 values being close to 1, verifying that these thresholds perform effectively
in the proposed feature screening method.

4.2. Presentation of Simulation Results for Logit Models

We present a series of simulation results where the response variable is generated
from GLMs for binary data by using logit link. For the link function, we will summarize
simulation results for 6 different models in Table 1. The proportion P1 and computing time
are tabulated in first 6 tables and the MMMS and the associated RSD are summarized in
Tables 7–12 for each link.

The simulation results for model 1 to model 6 where data is generated from logit
link are tabulated in Tables 2–7. From Table 2, we can see that the all proportions P1
are close to 1, which illustrates the sure screening property. MMLE screening procedure
usually has highest proportion P1 than the other two methods, but it takes much longer
computing time than PB-SIS method and Kolmogorov-filter method in all settings. Even
through the proportion P1 for PB-SIS is slightly lower than MMLE when ρ = 0 and ρ = 0.2,
the difference is very small. The biggest difference for proportion P1 is only 1.3% between
PB-SIS and MMLE when ρ = 0 and p = 600. When ρ is greater than 0.4, the PB-SIS and
MMLE have the exact same proportion P1. But when we consider about computational cost,
the PB-SIS method can be implemented much fast than the MMLE method. The average
computing time for the PB-SIS and MMLE methods in logit model 1 are 41.85 seconds and
579.18 seconds when p = 200, and 282.05 seconds and 1289.69 seconds when p = 600.
The computing time for MMLE is almost 6.74 times and 2.23 times longer than the PB-SIS
method when p = 200 and p = 600. The Kolmogorov filter method has lowest proportion
P1 and moderate computing time in each setting. Since we assign all coefficients are
positive in logit model 1, the proportions P1 do not dependent on the independence
assumption. Even for the highly correlated predictors, all three feature screening methods
still can successfully select all the true predictors. For example, the proportions P1 are all
equals to 100% when ρ = 0.6 and ρ = 0.8. Besides, the proportion P1 decreases as the
dimensionality increases. As the number of features increases from p = 200 to p = 600,
the proportions P1 decrease in most settings.

The proportion P1 and computing time for logit model 2 are reported in Table 3.
In logit model 2, the two true covariates are assigned different signs. All P1 of PB-SIS
and MMLE are still very close. It means those two screening procedures perform equally
well in most of settings. However, when we compare the computing time for the different
methods, we can observe that PB-SIS takes much shorter computing time than MMLE in
all settings. If we compare covariance structures with different ρ’s, those predictors are
independent to each other (ρ = 0) and predictors have low correlation (ρ = 0.2) settings
typically perform better than those with high (ρ = 0.6) or very high ρ = 0.8 correlation
settings for all three screening procedure. This is due to the probabilities of selecting some
unimportant variables are inflated by the adjacent important ones when the predictors
are highly correlated. Then some unimportant predictors may be selected since those
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predictors have strong correlation with the true predictors and it weakens the probabilities
of selecting all true predictors.

Table 2. The proportion P1 and computing time for logit model 1.

p = 200 p = 600

ρ d Method P1 Computing Time P1 Computing Time

PB-SIS 0.995 39.38 0.975 505.59
bn/ log(n)c MMLE 0.999 288.42 0.988 1205.60

Kolmogorov Filter 0.977 48.74 0.919 542.18
PB-SIS 0.998 38.02 0.988 468.69

0 2bn/ log(n)c MMLE 1.000 287.70 0.996 1230.62
Kolmogorov Filter 0.991 47.88 0.962 508.56

PB-SIS 1.000 39.82 0.992 505.59
3bn/ log(n)c MMLE 1.000 283.24 0.998 1243.36

Kolmogorov Filter 0.996 45.76 0.979 523.13

PB-SIS 0.995 40.74 0.991 770.15
bn/ log(n)c MMLE 1.000 279.03 0.998 1475.47

Kolmogorov Filter 0.975 50.36 0.957 779.80
PB-SIS 0.998 42.94 0.988 736.83

0.2 2bn/ log(n)c MMLE 1.000 261.59 0.999 1428.22
Kolmogorov Filter 0.993 50.68 0.984 759.09

PB-SIS 1.000 44.61 0.998 785.37
3bn/ log(n)c MMLE 1.000 273.67 0.998 1521.22

Kolmogorov Filter 0.997 54.36 0.979 787.53

PB-SIS 0.999 42.84 1.000 567.13
bn/ log(n)c MMLE 0.999 282.91 1.000 1263.29

Kolmogorov Filter 0.997 52.59 0.987 634.73
PB-SIS 1.000 43.26 1.000 580.38

0.4 2bn/ log(n)c MMLE 1.000 287.04 1.000 1226.48
Kolmogorov Filter 0.998 52.45 0.996 583.40

PB-SIS 1.000 43.59 1.000 558.09
3bn/ log(n)c MMLE 1.000 286.37 1.000 1255.63

Kolmogorov Filter 0.998 50.44 0.998 626.35

PB-SIS 1.000 42.49 1.000 550.95
bn/ log(n)c MMLE 1.000 273.55 1.000 1246.91

Kolmogorov Filter 1.000 51.20 1.000 549.72
PB-SIS 1.000 43.03 1.000 546.40

0.6 2bn/ log(n)c MMLE 1.000 278.38 1.000 1214.87
Kolmogorov Filter 1.000 49.17 1.000 593.88

PB-SIS 1.000 44.14 1.000 530.59
3bn/ log(n)c MMLE 1.000 290.29 1.000 1268.62

Kolmogorov Filter 1.000 51.98 1.000 555.51

PB-SIS 1.000 40.74 1.000 542.07
bn/ log(n)c MMLE 1.000 287.68 1.000 1291.00

Kolmogorov Filter 1.000 51.68 1.000 568.75
PB-SIS 1.000 42.35 1.000 534.23

0.8 2bn/ log(n)c MMLE 1.000 287.70 1.000 1230.62
Kolmogorov Filter 1.000 47.88 1.000 508.56

PB-SIS 1.000 39.82 1.000 505.59
3bn/ log(n)c MMLE 1.000 283.24 1.000 1243.36

Kolmogorov Filter 1.000 45.76 1.000 523.13
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Table 3. The proportion P1 and computing time for logit model 2.

p = 200 p = 600

ρ d Method P1 Computing Time P1 Computing Time

PB-SIS 0.995 37.37 0.983 437.96
bn/ log(n)c MMLE 0.996 268.83 0.984 1184.72

Kolmogorov Filter 0.978 46.90 0.929 464.81
PB-SIS 1.000 38.36 0.993 488.97

0 2bn/ log(n)c MMLE 1.000 274.81 0.994 1185.93
Kolmogorov Filter 0.994 48.85 0.967 504.09

PB-SIS 1.000 34.08 0.996 468.94
3bn/ log(n)c MMLE 1.000 271.79 0.996 1192.29

Kolmogorov Filter 0.996 44.15 0.983 478.46

PB-SIS 0.996 39.26 0.981 755.63
bn/ log(n)c MMLE 0.997 273.23 0.982 1489.18

Kolmogorov Filter 0.980 47.95 0.944 794.48
PB-SIS 1.000 42.63 0.990 720.63

0.2 2bn/ log(n)c MMLE 1.000 285.16 0.991 1378.25
Kolmogorov Filter 1.000 47.37 0.975 717.61

PB-SIS 1.000 40.98 0.993 723.23
3bn/ log(n)c MMLE 1.000 253.00 0.994 1341.77

Kolmogorov Filter 1.000 46.29 0.985 730.53

PB-SIS 0.994 41.98 0.977 531.22
bn/ log(n)c MMLE 0.994 286.45 0.981 1165.33

Kolmogorov Filter 0.974 49.49 0.920 537.84
PB-SIS 0.998 44.08 0.990 532.30

0.4 2bn/ log(n)c MMLE 0.998 258.44 0.996 1197.96
Kolmogorov Filter 0.989 44.74 0.956 544.83

PB-SIS 0.999 37.38 0.999 543.72
3bn/ log(n)c MMLE 1.000 245.51 0.998 1251.88

Kolmogorov Filter 0.994 45.03 0.977 553.20

PB-SIS 0.970 42.43 0.938 530.02
bn/ log(n)c MMLE 0.972 300.79 0.945 1151.30

Kolmogorov Filter 0.921 49.95 0.839 564.04
PB-SIS 0.995 40.68 0.976 531.98

0.6 2bn/ log(n)c MMLE 0.995 268.51 0.978 1188.18
Kolmogorov Filter 0.968 47.67 0.914 546.76

PB-SIS 0.997 39.91 0.985 526.89
bn/ log(n)c MMLE 0.997 283.26 0.985 1250.08

Kolmogorov Filter 0.981 47.86 0.951 569.76

PB-SIS 0.694 39.19 0.514 575.19
bn/ log(n)c MMLE 0.684 271.63 0.509 1317.29

Kolmogorov Filter 0.577 46.40 0.409 541.47
PB-SIS 0.829 38.37 0.660 537.29

0.8 2bn/ log(n)c MMLE 0.830 273.97 0.654 1261.09
Kolmogorov Filter 0.733 51.21 0.571 524.29

PB-SIS 0.890 40.03 0.729 497.74
3bn/ log(n)c MMLE 0.899 272.52 0.731 1319.60

Kolmogorov Filter 0.855 53.15 0.645 590.93
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Table 4. The proportion P1 and computing time for logit model 3.

p = 200 p = 600

ρ d Method P1 Computing Time P1 Computing Time

PB-SIS 0.935 36.20 0.864 502.72
bn/ log(n)c MMLE 0.971 280.09 0.924 1166.15

Kolmogorov Filter 0.881 52.00 0.740 547.10
PB-SIS 0.978 38.16 0.922 474.66

0 2bn/ log(n)c MMLE 0.992 271.48 0.959 1240.70
Kolmogorov Filter 0.946 46.66 0.825 503.62

PB-SIS 0.985 39.48 0.943 479.89
3bn/ log(n)c MMLE 0.997 276.80 0.970 1136.54

Kolmogorov Filter 0.965 48.10 0.879 526.78

PB-SIS 0.961 41.48 0.917 742.75
bn/ log(n)c MMLE 0.986 289.34 0.962 1438.22

Kolmogorov Filter 0.905 55.04 0.798 770.48
PB-SIS 0.990 42.19 0.967 794.98

0.2 2bn/ log(n)c MMLE 0.996 277.53 0.988 1466.96
Kolmogorov Filter 0.959 52.51 0.894 796.17

PB-SIS 0.992 41.88 0.982 774.20
3bn/ log(n)c MMLE 0.998 290.60 0.992 1374.91

Kolmogorov Filter 0.982 48.75 0.930 733.47

PB-SIS 0.988 41.07 0.958 565.21
bn/ log(n)c MMLE 0.997 279.45 0.975 1248.67

Kolmogorov Filter 0.950 51.02 0.877 579.06
PB-SIS 0.997 41.34 0.982 552.32

0.4 2bn/ log(n)c MMLE 1.000 272.84 0.991 1181.52
Kolmogorov Filter 0.981 48.93 0.939 578.01

PB-SIS 0.999 41.43 0.989 525.80
3bn/ log(n)c MMLE 1.000 278.69 0.998 1184.50

Kolmogorov Filter 0.993 50.99 0.961 568.98

PB-SIS 1.000 40.85 0.994 479.37
bn/ log(n)c MMLE 1.000 261.02 0.999 1210.61

Kolmogorov Filter 0.995 47.03 0.973 539.30
PB-SIS 1.000 39.03 0.999 521.73

0.6 2bn/ log(n)c MMLE 1.000 251.97 1.000 1199.08
Kolmogorov Filter 0.999 55.13 0.990 537.87

PB-SIS 1.000 39.24 1.000 523.81
3bn/ log(n)c MMLE 1.000 301.92 1.000 1161.30

Kolmogorov Filter 1.000 47.95 0.997 552.51

PB-SIS 1.000 45.36 1.000 551.47
bn/ log(n)c MMLE 1.000 275.32 1.000 1224.08

Kolmogorov Filter 1.000 48.72 1.000 546.31
PB-SIS 1.000 39.99 1.000 501.41

0.8 2bn/ log(n)c MMLE 1.000 274.83 1.000 1268.72
Kolmogorov Filter 1.000 48.80 1.000 529.60

PB-SIS 1.000 39.83 1.000 485.13
3bn/ log(n)c MMLE 1.000 269.04 1.000 1130.20

Kolmogorov Filter 1.000 48.96 1.000 537.90
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Table 5. The proportion P1 and computing time for logit model 4.

p = 200 p = 600

ρ K Method P1 Computing Time P1 Computing Time

PB-SIS 0.936 35.93 0.883 426.98
bn/ log(n)c MMLE 0.940 265.00 0.873 1086.98

Kolmogorov Filter 0.855 44.41 0.748 465.31
PB-SIS 0.976 36.54 0.927 443.60

0 2bn/ log(n)c MMLE 0.977 278.12 0.930 1082.53
Kolmogorov Filter 0.932 44.96 0.858 465.15

PB-SIS 0.991 34.45 0.954 433.69
3bn/ log(n)c MMLE 0.990 249.25 0.958 1197.08

Kolmogorov Filter 0.958 46.96 0.900 473.00

PB-SIS 0.945 39.95 0.851 713.96
bn/ log(n)c MMLE 0.949 243.40 0.855 1394.15

Kolmogorov Filter 0.880 51.41 0.737 712.64
PB-SIS 0.978 41.57 0.907 802.01

0.2 2bn/ log(n)c MMLE 0.981 272.46 0.912 1478.99
Kolmogorov Filter 0.945 49.03 0.833 761.84

PB-SIS 0.994 46.06 0.936 753.77
3bn/ log(n)c MMLE 0.994 274.61 0.938 1431.19

Kolmogorov Filter 0.969 48.54 0.880 767.63

PB-SIS 0.909 42.22 0.794 545.33
bn/ log(n)c MMLE 0.906 296.03 0.801 1180.15

Kolmogorov Filter 0.825 50.06 0.657 632.42
PB-SIS 0.956 42.07 0.881 599.55

0.4 2bn/ log(n)c MMLE 0.958 285.00 0.882 1280.89
Kolmogorov Filter 0.922 49.72 0.785 587.09

PB-SIS 0.980 43.19 0.924 629.28
3bn/ log(n)c MMLE 0.980 298.65 0.924 1292.71

Kolmogorov Filter 0.948 47.11 0.844 629.28

PB-SIS 0.800 43.01 0.598 525.71
bn/ log(n)c MMLE 0.798 276.76 0.588 1280.99

Kolmogorov Filter 0.635 51.55 0.429 659.16
PB-SIS 0.896 41.85 0.752 594.56

0.6 2bn/ log(n)c MMLE 0.904 275.58 0.754 1277.47
Kolmogorov Filter 0.820 50.37 0.578 579.13

PB-SIS 0.931 41.78 0.813 545.98
3bn/ log(n)c MMLE 0.932 267.36 0.814 1231.71

Kolmogorov Filter 0.893 53.89 0.684 536.37

PB-SIS 0.218 46.23 0.059 550.16
bn/ log(n)c MMLE 0.216 277.66 0.067 1335.47

Kolmogorov Filter 0.127 50.44 0.026 554.30
PB-SIS 0.432 42.89 0.158 526.25

0.8 2bn/ log(n)c MMLE 0.442 299.96 0.162 1266.48
Kolmogorov Filter 0.310 56.43 0.099 651.79

PB-SIS 0.604 44.17 0.264 583.63
3bn/ log(n)c MMLE 0.594 278.57 0.270 1247.51

Kolmogorov Filter 0.463 50.32 0.162 583.90
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Table 6. The proportion P1 and computing time for logit model 5.

p = 200 p = 600

ρ d Method P1 Computing Time P1 Computing Time

PB-SIS 0.844 39.86 0.687 507.72
bn/ log(n)c MMLE 0.924 290.59 0.789 1196.92

Kolmogorov Filter 0.733 47.99 0.477 524.65
PB-SIS 0.934 45.49 0.806 496.18

0 2bn/ log(n)c MMLE 0.980 307.30 0.892 1320.07
Kolmogorov Filter 0.874 48.32 0.660 514.57

PB-SIS 0.968 38.92 0.865 511.94
3bn/ log(n)c MMLE 0.993 281.47 0.923 1203.18

Kolmogorov Filter 0.925 48.92 0.721 511.44

PB-SIS 0.872 47.05 0.748 788.45
bn/ log(n)c MMLE 0.930 299.69 0.815 1586.81

Kolmogorov Filter 0.793 53.65 0.510 802.89
PB-SIS 0.943 46.47 0.840 784.76

0.2 2bn/ log(n)c MMLE 0.976 292.03 0.920 1580.97
Kolmogorov Filter 0.885 56.24 0.691 804.61

PB-SIS 0.967 45.28 0.891 771.98
3bn/ log(n)c MMLE 0.990 290.32 0.954 1527.41

Kolmogorov Filter 0.935 52.22 0.800 806.50

PB-SIS 0.932 43.66 0.884 574.49
bn/ log(n)c MMLE 0.975 291.91 0.923 1304.39

Kolmogorov Filter 0.868 52.67 0.652 614.94
PB-SIS 0.983 42.56 0.937 619.95

0.4 2bn/ log(n)c MMLE 0.994 282.09 0.968 1362.47
Kolmogorov Filter 0.932 51.89 0.814 672.44

PB-SIS 0.992 42.75 0.959 628.02
3bn/ log(n)c MMLE 1.000 282.06 0.984 1293.01

Kolmogorov Filter 0.973 51.92 0.904 647.03

PB-SIS 0.981 44.65 0.956 544.51
bn/ log(n)c MMLE 0.994 290.00 0.975 1267.73

Kolmogorov Filter 0.964 52.80 0.825 580.31
PB-SIS 0.997 44.76 0.982 553.40

0.6 2bn/ log(n)c MMLE 1.000 282.58 0.994 1282.41
Kolmogorov Filter 0.980 52.50 0.925 606.67

PB-SIS 0.999 45.02 0.989 532.70
3bn/ log(n)c MMLE 1.000 285.58 1.000 1222.21

Kolmogorov Filter 0.989 53.36 0.971 542.50

PB-SIS 1.000 40.42 1.000 511.58
bn/ log(n)c MMLE 1.000 276.40 1.000 1239.96

Kolmogorov Filter 0.999 52.17 0.990 599.25
PB-SIS 1.000 42.16 1.000 540.55

0.8 2bn/ log(n)c MMLE 1.000 277.42 1.000 1187.89
Kolmogorov Filter 1.000 57.86 0.998 580.64

PB-SIS 1.000 39.85 1.000 566.37
3bn/ log(n)c MMLE 1.000 308.91 1.000 1312.42

Kolmogorov Filter 1.000 57.67 1.000 587.58
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Table 7. The proportion P1 and computing time for logit model 6.

p = 200 p = 600

ρ d Method P1 Computing Time P1 Computing Time

PB-SIS 0.840 42.99 0.687 466.47
bn/ log(n)c MMLE 0.844 291.11 0.693 1189.08

Kolmogorov Filter 0.745 48.41 0.477 521.30
PB-SIS 0.935 37.95 0.815 493.00

0 2bn/ log(n)c MMLE 0.939 270.72 0.824 1183.49
Kolmogorov Filter 0.872 47.06 0.672 507.86

PB-SIS 0.960 36.90 0.875 509.89
3bn/ log(n)c MMLE 0.964 283.93 0.867 1130.61

Kolmogorov Filter 0.917 49.45 0.758 489.71

PB-SIS 0.843 37.87 0.652 716.89
bn/ log(n)c MMLE 0.837 268.97 0.656 1429.28

Kolmogorov Filter 0.708 45.97 0.457 726.55
PB-SIS 0.929 37.94 0.804 715.15

0.2 2bn/ log(n)c MMLE 0.930 252.99 0.797 1416.59
Kolmogorov Filter 0.859 52.56 0.637 739.95

PB-SIS 0.963 42.50 0.846 746.24
3bn/ log(n)c MMLE 0.962 302.94 0.856 1466.25

Kolmogorov Filter 0.918 54.08 0.738 783.26

PB-SIS 0.789 41.23 0.583 583.63
bn/ log(n)c MMLE 0.795 277.62 0.580 1259.25

Kolmogorov Filter 0.643 49.71 0.386 605.72
PB-SIS 0.906 40.48 0.725 606.81

0.4 2bn/ log(n)c MMLE 0.909 278.11 0.731 1256.01
Kolmogorov Filter 0.815 54.40 0.578 609.39

PB-SIS 0.951 41.88 0.644 530.94
3bn/ log(n)c MMLE 0.958 282.17 0.802 1309.29

Kolmogorov Filter 0.892 52.22 0.682 649.21

PB-SIS 0.600 40.15 0.362 554.15
bn/ log(n)c MMLE 0.594 288.81 0.365 1203.03

Kolmogorov Filter 0.420 49.31 0.184 549.55
PB-SIS 0.765 40.11 0.544 564.71

0.6 2bn/ log(n)c MMLE 0.774 264.14 0.540 1235.46
Kolmogorov Filter 0.670 53.53 0.354 615.18

PB-SIS 0.849 42.30 0.644 569.00
3bn/ log(n)c MMLE 0.849 283.28 0.642 1307.29

Kolmogorov Filter 0.773 52.34 0.470 621.75

PB-SIS 0.113 44.71 0.014 558.41
bn/ log(n)c MMLE 0.108 284.46 0.016 1166.51

Kolmogorov Filter 0.051 51.12 0.003 551.09
PB-SIS 0.319 41.79 0.071 492.50

0.8 2bn/ log(n)c MMLE 0.318 298.61 0.071 1258.24
Kolmogorov Filter 0.216 48.99 0.031 561.30

PB-SIS 0.487 45.32 0.143 527.95
3bn/ log(n)c MMLE 0.485 305.90 0.152 1217.13

Kolmogorov Filter 0.358 52.90 0.082 558.29

Table 4 depicts the proportion P1 and computing time for logit model 3. Similar
conclusions can be drawn from Table 4 as from Table 2. All proportions P1 of all three
screening approaches are close to one. It means those three approaches are able to select all
important predictors in this setting. As the submodel size d increases, the proportions P1
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for all three approaches increase as well. Thus increasing the submodel size d is helpful
for increasing the proportion P1. The computing time does not change too much as the
submodel size d increases. If we would like to get higher proportion P1, we can choose a
larger threshold d. However, the larger threshold d means the model will become more
complex. There is a trade off between the model complexity and the selection accuracy.
Our suggestion is to choose the smaller submodel model size d = bn/ log(n)c, since the
small growth of the proportion P1 is not worth the increasing of twice or three times of
model complexity.

Table 5 reports the proportion P1 and computing time for logit model 4. In logit model
4, the three true covariates are assigned different signs. The PB-SIS and MMLE perform
equally well and PB-SIS approach is more efficient when ρ = 0, ρ = 0.2, ρ = 0.4 or ρ = 0.6.
However, when predictors are highly correlated (ρ = 0.8), all three feature screening fail to
detect important predictors. This is because when predictors are highly correlated (ρ = 0.8),
each predictor’s contribution to the response variable is cancelled out, especially for the
predictors have opposite sign.

The proportion P1 and computing time for logit model 5 and logit model 6 are
summarized in Tables 6 and 7. For logit model 5, we observe a qualitative pattern similar
to logit model 1 and logit model 3. The PB-SIS and MMLE approaches perform equally
well, and the PB-SIS approach yields a comparable computing time. The Kolmogorov
filter approach performs a little bit worse than the PB-SIS in both selection accuracy and
computing time. We also observe that the proportion P1 increases as the correlation ρ
increases. From Table 7, the simulation results show the PB-SIS and MMLE perform equally
well in selection accuracy, while the PB-SIS approach has lower computational cost than
MMLE when predictors are independent or have lower correlation. Similar to logit model 1
and logit model 3 simulation results, when predictors are highly correlated, all three feature
screening approaches tend to fail select important predictors.

Table 8 summarizes the MMMS which contains all true predictors for logit model 1 and
its RSD. Those two values could be used to measure the effectiveness of a screening method.
The MMMS value can avoid the issues of choosing different threshold d. From Table 8, we
can observe that the PB-SIS and MMLE methods perform equally well and Kolmogorov
filter approach performs a little bit worse than the PB-SIS and MMLE approaches in all
settings. The Kolmogorov filter has a little bit larger RSD due to some outliers, which
makes the minimum model size spread out in some cases. For the high correlation and very
high correlation settings, the RSD values for PB-SIS and MMLE are larger, which means
the minimum model size has higher variability when covariates are highly correlated to
each other.

Table 8. The MMMS and the associated RSD for logit model 1.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 2 (0) 2 (0) 2 (0.75) 2 (0) 2 (0) 2 (2.24)
0.2 2 (0) 2 (0) 2 (0.75) 2 (0) 2 (0) 2 (0.75)
0.4 2 (0) 2 (0) 2 (0.75) 2 (0) 2 (0) 2 (0.75)
0.6 2 (0.75) 2 (0.75) 2 (0.75) 2 (0.75) 2 (0.75) 2 (0.75)
0.8 3 (0.75) 3 (0.75) 3 (0.75) 2 (0.75) 2 (0.75) 3 (0.75)

Table 9 depicts the MMMS and RSD for logit model 2. We can observe the similar
results as logit model 1. The PB-SIS and MMLE still perform well in selecting all important
variables when predictors are independent or have low correlation. However, all three
feature screening procedures fail to detect important predictors when predictors are highly
correlated (ρ = 0.8), especially for Kolmogorov filter method. For example, when the
correlation is high, the MMMS of Kolmogorov filter are 16 and 33 for p = 200 and 600,
and the RSD values even achieve 30.60 and 79.85 when p = 200 and p = 600. This means
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the minimum size models containing all important predictors are very spread out over
the 1000 replications and may exist some outliers. This is mainly because each predictor’s
contribution to the response variable is cancelled out when they are of the different signs
and highly correlated to each other.

Table 9. The MMMS and the associated RSD for logit model 2.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 2 (0) 2 (0) 2 (0.75) 2 (0) 2 (0) 2 (1.68)
0.2 2 (0) 2 (0) 2 (0.75) 2 (0) 2 (0) 2 (1.49)
0.4 2 (0) 2 (0) 2 (1.49) 2 (0.75) 2 (0.75) 2 (2.24)
0.6 3 (1.49) 3 (2.24) 3 (2.99) 3 (2.24) 3 (2.99) 4 (7.46)
0.8 11 (17.91) 11 (16.41) 16 (30.60) 20 (49.25) 20 (47.76) 33 (79.85)

Table 10 summarizes the MMMS and RSD for logit model 3. The PB-SIS and MMLE
approaches are more robust to select important predictors than Kolmogorov filter in most
of settings. The MMMS value for PB-SIS and MMLE are almost same in all settings,
and MMLE usually has smallest RSD values among all three feature screening procedures.
The Kolmogorov filter method still performs a little bit worse than the PB-SIS and MMLE
methods. In general, these three screening approaches do not make a big difference when
the number of true predictors is small and of the same signs.

Table 10. The MMMS and the associated RSD for logit model 3.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 3 (1.49) 3 (0.75) 5 (5.22) 4 (5.22) 3 (2.99) 7 (14.93)
0.2 3 (1.49) 3 (0.75) 4 (4.48) 3 (2.99) 3 (1.49) 6 (9.89)
0.4 3 (1.49) 3 (0.75) 4 (2.24) 4 (1.49) 4 (1.49) 5 (5.97)
0.6 5 (1.49) 5 (1.49) 5 (1.49) 5 (1.49) 5 (1.49) 5 (1.49)
0.8 6 (0.75) 6 (0.75) 6 (0.75) 6 (0.75) 6 (0.75) 6 (0.75)

Table 11 presents the simulation results for logit model 4 in terms of MMMS and the
associated RSD. The simulation results illustrate that the PB-SIS and MMLE have more
effective and consistent performance than Kolmogorov filter method when ρ = 0, 0.2 or
0.4. In addition, we also notice that for the different dimension and correlation levels,
the MMMS and the associated RSD usually increase as the dimension increases or the
correlation level increases. When predictors are highly correlated, the PB-SIS, MMLE and
Kolmogorov filter methods fail to select important predictors. For example, when ρ = 0.8,
the MMMS of PB-SIS, MMLE and Kolmogorov filter procedures are 105, 105 and 144 for
p = 200 and 140, 140 and 199 for p = 600, which are much larger than our true model size 3.

Table 11. The MMMS and the associated RSD for logit model 4.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 3 (1.68) 3 (1.49) 5 (5.22) 4 (3.73) 4 (4.48) 7 (13.43)
0.2 3 (1.49) 3 (1.49) 5 (5.22) 4 (5.22) 4 (5.22) 7 (14.93)
0.4 4 (3.73) 4 (3.73) 6 (8.21) 5 (9.70) 6 (9.70) 11 (23.88)
0.6 8 (9.70) 8 (10.45) 13 (20.90) 14 (28.36) 16 (28.36) 30 (58.21)
0.8 51 (53.17) 51 (51.49) 71 (61.94) 140 (161.94) 140 (160.26) 199 (174.63)
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The simulation results for logit model 5 about the MMMS and the associated RSD are
presented in Table 12. The overall pattern of logit model 5 is similar to logit model 1 and 3.
The PB-SIS and MMLE methods still outperform Kolmogorov filter method in selection
effectiveness. The Kolmogorov filter method has larger MMMS and the associated RSD
than PB-SIS and MMLE in almost all settings.

Table 12. The MMMS and the associated RSD for logit model 5.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 6 (6.72) 5 (2.98) 10 (12.69) 10 (20.15) 7 (8.96) 24 (49.25)
0.2 6 (5.22) 5 (2.99) 9 (11.94) 9 (15.67) 7 (8.21) 21 (35.26)
0.4 6 (2.99) 5 (2.99) 8 (7.46) 7 (5.97) 6 (3.73) 13 (17.91)
0.6 7 (2.24) 7 (2.24) 8 (2.99) 8 (2.99) 7 (2.99) 10 (7.46)
0.8 10 (0.75) 10 (0.75) 10 (0.75) 10 (0.75) 9 (0.75) 10 (2.24)

The simulation results of MMMS with the associated RSD for logit model 6 are summa-
rized in Table 13. From Table 13, we can observe that as the correlation increases, the MMMS
and the associated RSD usually increase as well for all PB-SIS, MMLE and Kolmogorov
filter approaches. In addition, we also see that as the dimension increases from 200 to
600, the MMMS also increases for all three feature screening approaches. Among the all
approaches, the PB-SIS method usually can achieve smallest MMMS value in most settings.
When predictors are highly correlated, all three feature screening methods fail to select
important predictors. As we discussed before, this is due to the contribution of predictors
with opposite signs may cancel out when predictors are highly correlated.

Table 13. The MMMS and the associated RSD for logit model 6.

p = 200 p = 600

ρ PB-SIS MMLE Kolmogorov Filter PB-SIS MMLE Kolmogorov Filter

0 6 (6.72) 6 (6.72) 9 (12.69) 10 (17.97) 23 (38.81) 23 (38.81)
0.2 6 (7.46) 6 (6.90) 10 (14.93) 11 (20.90) 11 (20.15) 25 (44.03)
0.4 8 (9.70) 8 (8.96) 14 (18.66) 16 (31.34) 16 (30.22) 32 (56.72)
0.6 16 (23.88) 16 (23.13) 27 (33.58) 37 (64.37) 38 (64.18) 70 (102.43)
0.8 67 (63.43) 68 (61.38) 86 (64.93) 203 (191.04) 200 (191.04) 252 (202.24)

4.3. Simulations in Two-Stage Approach

We investigate the selection performance of two-stage PB-SIS method with different
penalties. We consider the LASSO penalty, SCAD penalty and MCP along with four tuning
parameter selection criteria: cross-validation(CV), Akaike information criterion (AIC),
Bayesian information criterion (BIC) and Extended Bayesian information criteria (EBIC).
In this section, only the logit link is applied to generate the binomial proportion πi and
the binary response Y. We use the same model settings as Section 4.1 and are presented
in Table 1. In the first stage, PB-SIS is conducted to obtain the submodelMd with size
d = bn/ log(n)c. Then in the second stage, three different penalized methods are applied
to further select important predictors and recover final sparse model. All the simulation
results are based on 1000 replicates.

We evaluate the two-stage PB-SIS performance based on the P2, the proportion of final
models containing all the true predictors among 1000 iterations and the mean of the final
model size. The proportion P2 and mean model size are summarized for model 1 to model
6 in Tables 14–19 and the mean of the final model size after regularization is reported in the
parentheses. We use package SIS in R to implement the penalized methods in the second
stage. The tune. f it function in SIS package fits a generalized linear model via penalized
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maximum likelihood, with available penalties such as LASSO, SCAD and MPC as indicated
in the glmnet and ncvreg packages. The number of folds used in cross-validation is 10
and loss function used in selecting the final model is deviance.

Table 14. The proportion P2 and mean model size for model 1.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.991 (11.04) 0.989 (5.20) 0.979 (2.80)
AIC 0.994 (18.74) 0.991 (9.63) 0.990 (8.68)
BIC 0.992 (12.65) 0.962 (4.69) 0.973 (3.63)

EBIC 0.985 (14.05) 0.742 (2.07) 0.871 (2.04)

600 CV 0.979 (14.87) 0.979 (7.90) 0.976 (3.68)
AIC 0.971 (18.31) 0.964 (9.36) 0.962 (8.64)
BIC 0.968 (15.94) 0.937 (6.54) 0.954 (5.39)

EBIC 0.960 (16.42) 0.599 (2.31) 0.793 (2.21)

Table 15. The proportion P2 and mean model size for model 2.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.992 (11.00) 0.993 (5.18) 0.981 (2.80)
AIC 0.995 (18.79) 0.993 (9.58) 0.994 (8.76)
BIC 0.993 (12.67) 0.957 (4.85) 0.975 (3.71)

EBIC 0.978 (14.10) 0.712 (1.98) 0.860 (2.03)

600 CV 0.977 (14.92) 0.975 (7.79) 0.961 (3.65)
AIC 0.978 (18.26) 0.968 (9.34) 0.967 (8.60)
BIC 0.975 (15.98) 0.937 (6.52) 0.957 (5.32)

EBIC 0.973 (16.59) 0.605 (2.43) 0.789 (2.17)

Table 16. The proportion P2 and mean model size for model 3.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.939 (13.09) 0.933 (6.29) 0.909 (3.85)
AIC 0.934 (18.36) 0.928 (8.79) 0.925 (8.16)
BIC 0.932 (15.43) 0.908 (6.63) 0.912 (5.21)

EBIC 0.929 (17.34) 0.557 (3.25) 0.797 (3.38)

600 CV 0.871 (16.10) 0.871 (8.76) 0.861 (4.68)
AIC 0.858 (18.11) 0.846 (8.82) 0.846 (8.14)
BIC 0.858 (17.05) 0.831 (7.46) 0.841 (5.98)

EBIC 0.856 (18.03) 0.504 (3.55) 0.704 (3.68)

Table 17. The proportion P2 and mean model size for model 4.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.955 (13.26) 0.953 (6.42) 0.925 (3.89)
AIC 0.935 (18.36) 0.929 (8.72) 0.926 (8.06)
BIC 0.931 (15.18) 0.906 (6.52) 0.914 (5.10)

EBIC 0.927 (17.45) 0.575 (3.26) 0.780 (3.31)

600 CV 0.866 (15.92) 0.865 (8.62) 0.861 (4.68)
AIC 0.879 (18.10) 0.858 (8.87) 0.846 (8.14)
BIC 0.878 (17.12) 0.834 (7.40) 0.841 (5.98)

EBIC 0.880 (18.02) 0.482 (3.50) 0.704 (3.68)
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Table 18. The proportion P2 and mean model size for model 5.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.840 (14.41) 0.838 (7.65) 0.821 (4.89)
AIC 0.841 (18.45) 0.829 (8.80) 0.827 (8.16)
BIC 0.838 (16.88) 0.821 (7.50) 0.823 (6.14)

EBIC 0.838 (18.50) 0.459 (3.33) 0.662 (4.08)

600 CV 0.664 (16.62) 0.661 (9.80) 0.647 (5.69)
AIC 0.683 (18.26) 0.653 (8.99) 0.655 (8.31)
BIC 0.684 (17.60) 0.643 (7.89) 0.655 (6.90)

EBIC 0.684 (18.49) 0.390 (3.55) 0.526 (4.31)

Table 19. The proportion P2 and mean model size for model 6.

p PB-SIS+LASSO PB-SIS+SCAD PB-SIS+MCP

200 CV 0.863 (14.67) 0.859 (7.57) 0.826 (4.94)
AIC 0.832 (18.30) 0.812 (8.77) 0.811 (8.14)
BIC 0.830 (16.77) 0.806 (7.47) 0.817 (6.14)

EBIC 0.833 (18.30) 0.474 (3.45) 0.683 (4.20)

600 CV 0.697 (16.74) 0.696 (9.74) 0.685 (5.77)
AIC 0.683 (18.24) 0.660 (8.95) 0.653 (8.34)
BIC 0.683 (17.74) 0.652 (8.03) 0.652 (7.00)

EBIC 0.684 (18.49) 0.399 (3.56) 0.514 (4.10)

The proportion P2 and mean model size for model 1 and model 2 are tabulated in
Tables 14 and 15. For model 1 and model 2, the number of true parameters are both two.
In general, we can observe that the PB-SIS+LASSO two-stage approaches with different
tuning selection criteria have the higher proportions P2, while the PB-SIS+MCP two stage
approaches with different tuning parameter selection criteria yield the sparsest models
among all three different penalties. Even though the PB-SIS+LASSO two stage approaches
usually have highest proportion P2, they also give us the largest final models size for all
different tuning parameter selection criteria. Furthermore, the PB-SIS+SCAD two-stage
approach by using EBIC to select tuning parameter occasionally fails to select important
predictors. For example, in Table 14, the proportions P2 for the PB-SIS+SCAD two-stage
approach by using EBIC to select tuning parameter are just 0.742 and 0.599 when p = 200
and p = 600, which are smallest among all two-stage approaches with different penalties.
We also notice that as the dimension p increases, the proportion P2 decreases and the mean
model size increases for all three penalties.

Tables 16 and 17 summarize the proportion P2 and mean model size for model 3 and
model 4. Model 3 and model 4 both contain three true parameters. For those two models,
we observe similar overall pattern as model 1 and model 2. The final models which
are selected by the PB-SIS+MCP two-stage approach with different tuning parameter
selection criteria usually have smallest model size among the three penalties. The PB-
SIS+SCAD two-stage approaches with different tuning parameter selection criteria return
the moderate size final models and the PB-SIS+LASSO two-stage approaches with different
tuning parameter selection criteria return the largest size final models. If we consider the
proportion P2, the PB-SIS+LASSO two-stage approaches with different tuning parameter
selection criteria have the largest proportion P2. We can conclude that the PB-SIS+LASSO
two-stage approach performs better in selection accuracy and the PB-SIS+MCP two-stage
approach performs better in finding the sparsest model.

The simulation results for model 5 and model 6 about proportion P2 and mean model
size are presented in Tables 18 and 19. The overall performance of PB-SIS+LASSO, PB-
SIS+SCAD and PB-SIS+MCP two-stage approaches for model 5 and model 6 are similar
to model 1 to model 4. The PB-SIS+LASSO two-stages approaches with different tuning



Entropy 2023, 25, 851 22 of 26

parameter selection criteria have the highest proportion P2 along with largest mean model
sizes. On the other hand, the PB-SIS+MCP two stage approaches with different tuning
parameter selection criteria end up with the smallest model size on average with a slightly
smaller proportion P2 than the PB-SIS+LASSO and PB-SIS+SCAD two-stage approaches.
Therefore, there is a trade-off between the selection accuracy and the final model size
for those two-stage methods. Our suggestion is that we can choose the two-stage PB-
SIS+LASSO method when we care more about selecting all true predictors, while the
two-stage PB-SIS+MCP approach is a better choice if we would like to find the sparest
final model.

We now remark on the choice of a criterion for selecting tuning parameter λ. In the
simulations, as mentioned prior to Algorithm 1, one can use cross-validation (CV), AIC [21],
BIC [22] or EBIC [23] to choose tuning parameter λ, each of which serves as a model
selection criterion. Depending on the property of each model selection criterion, we can
choose one for selecting tuning parameter λ based on different needs. CV is a method
for choosing a model with the best out-of-sample predictive accuracy. AIC is an efficient
model selection criterion, but not consistent. AIC is a method for choosing a model with
the minimum disparity between a candidate model and the true model and is very likely to
select an overfitted model including more predictors than the true model. BIC is consistent,
which means asymptotically BIC chooses the true model. EBIC is extended BIC and
consistent as well and may incur a small loss in the positive rate but tightly control the
false discovery rate (see [23]). In many applications, CV or BIC is used for selecting tuning
parameter λ.

5. Application in COPD Gene Expression Data

The simulation studies in Section 4 demonstrate that PB-SIS method can select impor-
tant variables for generalized linear models with high accuracy rate and low computational
cost. We therefore apply the proposed method to a real data example, chronic obstructive
pulmonary disease data, which has been utilized in Bahr et al. [24].

Chronic obstructive pulmonary disease (COPD) was classified by the Centers for
Disease Control and Prevention in 2014 as the 3rd leading cause of death in the United
States (US). COPD weakens lung function and reduces lung capacity. In COPD, there are
inflammation of the bronchial tubes (chronic bronchitis) and destruction of the air sacs
(emphysema) within the lungs, and the chronic bronchitis and emphysema usually concur
under COPD. In addition, the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) calls COPD as a common and preventable disease, which is caused by exposure to
harmful particles and gases that affect the airways and alveolar of the lungs. The symptoms
of COPD include shortness of breath due to lowered concentrations of oxygen in the blood
and a chronic cough accompanied by mucus production. COPD progresses with time and
the damage caused to the lungs is irreversible.

The main cause of COPD is exposure to tobacco smoke and air pollutants. Problems
associated with COPD include under-diagnosis of the disease and an increase in the
number of smokers worldwide. Based on previous research, tobacco exposure through
smoking cigarettes, second-hand exposure to smoke, continuous exposure to burning
fuels, chemicals, polluted air and dust all can cause COPD. Besides tobacco smoke and air
pollution, previous study also found that a genetic deficiency, alpha-1 antitrypsin deficiency
(AATD), is also associated with COPD. AATD can protect lungs and lungs will become
vulnerable due to COPD without AATD. There were over 250 million reported COPD cases
in year 2016 and 3.17 million individuals died from this COPD in the year 2015 all over the
world. The prevalence of COPD is expected to rise due to increasing smoking rates and
aging people in many countries.

Prior to the analysis of the COPD data, we remark on the usage conditions for the
difference between the proposed method and some other known methods such as minimum
redundancy and maximum relevance (MRMR, e.g., Ding and Peng [25], Radovic et al. [26])
and mutual information feature screening (MIFS, e.g., Hoque et al. [27]). When the response
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variable of a real data set is binary, the proposed PB-SIS employs point-biserial correlations
to conduct feature screening in the first stage and regularization method in the second
stage, which ensures that the two-stage variable selection method is consistent. The MRMR
method utilizes various measures/criteria (e.g., mutual information difference criteria,
mutual information quotient criteria) to maximize relevance and to minimize redundancy
and then choose a subset of genes. The MIFS method depends on mutual information and
a computational algorithm to obtain a subset of genes. Since the response variable in the
COPD data set has two possibles (disease or not disease), it conforms the condition that
we use point-biserial correlations for the first-stage feature screening and for GLMs-logit
modeling in the second-stage variable selection, so the proposed PB-SIS method is applied
to the COPD data for the two-stage feature screening and variable selection. On the contrary
to the proposed method, the MRMR and MIFS approaches do not have such restriction on
data types or data distributions.

Some previous studies have been conducted for identifying biomarkers for earlier
diagnosis of COPD in blood. Ref. [24] compared gene expression profiles of smokers with
COPD and smokers without COPD. They applied multiple linear regression to identify
candidate genes and pathways.

The goal of our study is to identify disease variability in the gene expression profiles
of COPD subjects compared to controls, by re-analyzing pre-existing, publicly available
micro-array expression datasets. The data merge resulted in 1262 samples (574 controls
and 688 COPD subjects) and 16,237 genes. Our 1262 samples consists of 792 males and
470 females, including 661 former smokers, 418 current smokers and 183 non-smokers.

To check the performance of different variable selection methods, we randomly split
the dataset into two parts, the training set and the test set, to evaluate the prediction
performance of different methods. The training set contains 80% of the observations and
the test set contains 20% of the observations. Thus, the training data sample size is 1010
and the test set sample size is 252. We compare the two-stage PB-SIS approach with the
two-stage MMLE and the two-stage Kolmogorov filter approach. For the second stage, we
apply three different penalized methods including LASSO [5], SCAD [6] and MCP [17].
For the tuning parameter selection options of each penalized method, we report the results
using cross-validation (CV), AIC [21], BIC [22] and EBIC [23] .

The final model size and classification accuracy rates are summarized in Table 20.
The numbers in the parentheses are the final model size. When we use CV, AIC, BIC,
EBIC as the tuning parameter selection criteria, the PB-SIS+LASSO, PB-SIS+SCAD and
PB-SIS+MCP methods select a model with higher classification accuracy than the MMLE
and Kolmogorov filter with different penalties with the exception of PB-SIS+LASSO with
AIC as tuning parameter selection criterion and PB-SIS+MCP with EBIC as tuning pa-
rameter selection criterion. When we use more stringent tuning parameter such as EBIC,
we can find that the PB-SIS method with different penalties perform significantly better
than MMLE with different penalties. For example, when EBIC is used to select tuning
parameter, PB-SIS+MCP selects 4 predictors and has a classification accuracy rate 0.817
and the MMLE+MCP method selects 2 predictors and has a classification accuracy rate
0.765. It is clearly demonstrated that by using the two-stage PB-SIS approach, we can
select a model with a reasonably good prediction performance and appropriate model size.
In Table 20, we bold the best results in each column with a relatively high classification
accuracy and a medium model size, indicating that the proposed PB-SIS method and using
CV or BIC as the criterion to select tuning parameter can perform best in feature screening
and variable selection. Even though using AIC can have a better classification accuracy
than BIC, the results have larger model sizes, which is not favorable because AIC tends to
select overfitted models.
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Table 20. Two-stage features screening results for COPD gene expression.

LASSO SCAD MCP

PB-SIS CV 0.829 (11) 0.829 (6) 0.829 (6)
AIC 0.833 (34) 0.833 (17) 0.833 (17)
BIC 0.829 (11) 0.829 (6) 0.829 (6)

EBIC 0.829 (11) 0.817 (4) 0.817 (4)

MMLE CV 0.821 (37) 0.802 (14) 0.806 (5)
AIC 0.825 (87) 0.806 (37) 0.786 (18)
BIC 0.817 (20) 0.798 (12) 0.798 (7)

EBIC 0.802 (11) 0.798 (12) 0.765 (2)

Kolmogorov CV 0.817 (15) 0.821 (8) 0.790 (3)
Filter AIC 0.837 (29) 0.786 (14) 0.825 (29)

BIC 0.821 (3) 0.790 (3) 0.821 (3)
EBIC 0.821 (3) 0.790 (3) 0.821 (3)

In the paper of [24], they listed 16 top candidates as the most significant genes in their
final selection (Table 2 of the paper). Based on the proposed PB-SIS method, in stage 1,
we select 176 genes which have the highest absolute point-biserial correlations with the
response variable. However, our selection result does not align with the results in [24].
We judge that this could happen in the gene expression analysis. Both analyses are just
exploratory research of the COPD data set, and the real mechanism of COPD is still
unknown, so there is no benchmark to compare which selection result is more accurate in
reality. Further, no ground truth is available to show which gene does have an association
with COPD. So, it is very possible that different approaches can have different results based
on different measures. Theoretically, the proposed two-stage PB-SIS method is consistent,
which means as the sample size goes to infinity, the procedure selects the true model with
probability 1. The simulation results demonstrate that the two-stage PB-SIS method has
higher accuracy compared to the MMLE and Kolmogorov Filter approaches in variable
selection, and we can select the best model with reasonably good accuracy and appropriate
model size in the real data example as in the test set of the simulations. Even though the
final gene selection results are not very consistent with the previous study, the proposed
method is an effective way for high-dimensional generalized linear model feature screening
with high selection accuracy and low computation cost.

6. Conclusions and Discussion

We propose a two-stage feature screening method PB-SIS for variable selection of
generalized linear models. The point-biserial correlation is utilized as a marginal utility
measure to rank and filter the important features that have higher correlation with the
response variable in the first stage. After the first stage, the model size can be dramatically
reduced from a high-dimensionality p to a moderate size d. The subsequent step is to
further select the important variables and build the final model through a regularization
method, such as LASSO, SCAD or MCP. This two-stage approach is confirmed to be very
efficient with high selection accuracy and low computational cost.

The PB-SIS method can retain all of the important variables in the selected submodel
Md with probability going to one as the sample size goes to infinity. To investigate the per-
formance of the proposed feature screening method, we conduct Monte Carlo simulations.
The simulations evaluate the PB-SIS ability for generalized linear models in variable selec-
tion by generating data from two different link functions: logit and probit. The simulation
results using logit link are presented in this paper. The simulation results using probit link
have similar trends, but not presented here. We compare proportion of submodelsMd with
size d that contain all the true predictors among 1000 replications, P1, and computing time
for our proposed method with the MMLE and Kolmogorov filter methods in three different
choices of submodel size d. We also compare the MMMS and the associated RSD for those
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three different feature screening approaches. The simulation results demonstrate that the
the proposed method and MMLE perform equally well in almost all settings, but MMLE
takes much longer computing time than the proposed method.

The simulation results also show that the proposed method PB-SIS outperforms
the Kolmogorov filter method in both selection accuracy and computational cost. We
notice that when true predictors have different signs and are highly correlated, all three
feature screening approaches fail to select important predictors. Therefore, we need always
checking the independence assumption before we apply feature screening approaches.
Besides, we also compare the performance of two-stage PB-SIS method with different
penalized methods by using different tuning parameter selection criteria. The simulation
results show that PB-SIS+LASSO method usually has the highest selection accuracy and
the PB-SIS+MCP method can obtain the sparest model.

We also apply the two-stage PB-SIS method to COPD gene expression data. The real
data example shows that the PB-SIS method is effective to identify important predictors in
the data from the real world.

We comment that the proposed PB-SIS method has limitations. In the application
of the proposed method, it is assumed that the response variable is binary data or has a
binomial distribution. To achieve a competitive result in variable selection, the proposed
PB-SIS method can be applied when the data meets this assumption, and well-performed
results are expected. However, if the response variable in a real data set is not binary data,
the variable selection result via the proposed PB-SIS method is not an option. In addition,
if predictors are not continuous, the result of variable selection using the second stage of
the proposed method may be deficient.

Future research are still needed on feature screening for high-dimensional and ultrahigh-
dimensional variable selection problems. Even though the PB-SIS method is able to ef-
ficiently select important predictors for high-dimensional generalized linear models, it
encounters a similar issue as in SIS [9]. Since the PB-SIS method is based on marginal
point-biserial correlation ω̂j, it tends to miss the important predictors that are marginally
uncorrelated but jointly correlated with the response variable. To deal with this issue,
Ref. [9] also proposed iterative sure independence screening (ISIS) to use more joint infor-
mation of the predictors rather than just the marginal information in dimensional variable
selection. Therefore, it will be an interesting topic to extend the marginal PB-SIS proce-
dure to an iterative feature screening procedure by iteratively carrying out the marginal
screening procedure.

In the numerical studies, we generate predictors from multivariate normal distribution
and apply a specific model (generalized linear models) to generate response variable.
For future research, we could consider examining the performance of PB-SIS for predictors
with heavy tails or outliers. In addition, the proposed method also can be applied in
other classical classification methods such as the linear discriminant analysis, quadratic
discriminant analysis, robust discriminant analysis or even model-free. Some pioneer
work can be found in the related references, including model-free screening procedure
for ultrahigh dimensional analysis based on conditional distribution function by [28] and
model free feature screening with dependent variables in ultrahigh dimensional binary
classification by [29].
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