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Abstract: The Dyson index, β, plays an essential role in random matrix theory, as it labels the so-called
“three-fold way” that refers to the symmetries satisfied by ensembles under unitary transformations.
As is known, its 1, 2, and 4 values denote the orthogonal, unitary, and symplectic classes, whose
matrix elements are real, complex, and quaternion numbers, respectively. It functions, therefore, as a
measure of the number of independent non-diagonal variables. On the other hand, in the case of β

ensembles, which represent the tridiagonal form of the theory, it can assume any real positive value,
thus losing that function. Our purpose, however, is to show that, when the Hermitian condition of
the real matrices generated with a given value of β is removed, and, as a consequence, the number
of non-diagonal independent variables doubles, non-Hermitian matrices exist that asymptotically
behave as if they had been generated with a value 2β. Therefore, it is as if the β index were, in this
way, again operative. It is shown that this effect happens for the three tridiagonal ensembles, namely,
the β–Hermite, the β–Laguerre, and the β–Jacobi ensembles.

Keywords: random matrix theory; β-ensembles; pseudo-Hermitian; PT-symmetry

1. Introduction

The possibility of reducing a full matrix into a tridiagonal matrix by employing uni-
tary transformations inspired some researchers [1] to search for ensembles of tridiagonal
matrices that would have the same properties of the ensembles of random matrix theory
(RMT) [2]. This objective has been achieved in a seminal paper [3] in which ensembles of
tridiagonal Hermitian matrices are constructed for the classes associated with the Hermite
and the Laguerre polynomials. The tridiagonal matrices associated with the Jacobi poly-
nomials, on the other hand, were obtained in [4–6]. In these three tridiagonal ensembles,
the Dyson index, β, which in RMT has the integer values 1, 2, and 4, can assume any
positive real value. Therefore, the β ensemble generalized Dyson’s “three-fold way” [7]
associated with invariance under the orthogonal (GOE), unitary (GUE), and symplectic
(GSE) transformations of the three classes of the Gaussian ensemble.

Once the β ensembles were established, it was natural to investigate what happens if
its Hermitian condition is removed. Of course, this interest parallels the introduction of the
non-Hermitian random matrices by Ginibre [8] a few years after Wigner’s proposal of the
Hermitian random matrices by the end of the 1950s [9]. In the tridiagonal Hermite case,
this investigation was undertaken in ref. [10], in which, besides the question of introducing
non-Hermiticity in β ensembles, there was also another motivation.

In fact, the main interest of this study was in the special class of non-Hermitian
operators in which the operator is connected to its adjoint by a similarity transformation;
namely, it satisfies the condition

A† = ηAη−1 (1)

where A is non-Hermitian and η is Hermitian. This condition defines a pseudo-Hermitian
operator [11], and it implies that its spectrum is made of real or complex conjugate eigenval-
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ues. This kind of non-Hermitian operator attracted a lot of interest with the discovery that
Hamiltonian invariants under the combined parity and time-reversal transformation, called
PT symmetry, also have real or complex conjugate spectra [12–14]. This led to an extension
of quantum mechanics to include this special class of non-Hermitian Hamiltonians with PT
symmetry [14] (see [15] for a review).

Concomitantly, there have been attempts to find, in the context of random matrix
theory (RMT), ensembles of matrices satisfying the above relationship [16,17]. In [10], it
was shown that in its tridiagonal form, the removal of the Hermitian condition produces
matrices that satisfy the above pseudo-Hermitian constraint. We are here revisiting that
work to report an important result that has since been overlooked. In fact, there, it was
shown that the eigenvalues of the non-Hermitian ensemble are real and distributed with
the same semi-circle law as those of the Hermitian ensemble. However, not much could be
said about the fluctuations. In this respect, what we have now found is that asymptotically,
that is, for arbitrary large matrices, the passage to non-Hermiticity is accompanied by
the doubling of Dyson’s β index. It is important to emphasize that, in order for this
doubling index effect to occur, it is necessary to take into account the presence of traces in
the structure of the joint distributions of matrix elements in the case of the Hermite and
Laguerre ensembles. In the Jacobi ensemble, it will be shown that the important quantity
is the variance of the diagonal and the off-diagonal elements. Therefore, the effect occurs
in the three β ensembles. Moreover, it affects the short-range statistics, measured by the
nearest-neighbor spacing distribution (NNSD), and the long-range statistics, measured by
the number variance. This is illustrated with plots of NNSD for the three ensembles and
number variance for the Jacobi ensemble. The figures with similar results for the two other
ensembles are omitted.

2. Preliminares

We start by recalling some results from [10]. Considering the general case of a non-
Hermitian tridiagonal matrix, A, with a diagonal a = (an, . . . , a1), an upper sub-diagonal
b = (bn−1, . . . , b1),, and a lower sub-diagonal c = (cn−1, . . . , c1), in which elements can
assume any real value, it is easily proved that the matrix A is pseudo-Hermitian. In fact, by
defining the diagonal matrix η, whose elements are given by

diag(η) =
(

1,
bn−1

cn−1
,

bn−1bn−2

cn−1cn−2
, . . . ,

bn−1bn−2 . . . b1

cn−1cn−2 . . . c1

)
, (2)

it is immediately verified that A and its adjoint A† satisfy Equation (1), belonging, therefore,
to the class of pseudo-Hermitian matrices. Moreover, by defining the diagonal matrix

√
η

whose elements are obtained by taking the square roots of the elements of η, that is,

diag(
√

η) =

(
1,

√
bn−1

cn−1
,

√
bn−1bn−2

cn−1cn−2
, . . . ,

√
bn−1bn−2 . . . b1

cn−1cn−2 . . . c1

)
(3)

we find that, if the products bici are positive, then we can define a matrix

K = η
1
2 Aη−

1
2 = η−

1
2

(
ηAη−1

)
η

1
2 = η−

1
2 A†η

1
2 = K† (4)

which is Hermitian and iso-spectral with A and whose diagonal is the same of A, while the
sub-diagonals are the geometrical means

(√
bn−1cn−1, . . . ,

√
b1c1

)
.

Considering now the distribution

hν(y) =
2 exp(−y2/2)yν−1

2ν/2Γ[ν/2]
(5)
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with a first moment < y >=
√

2Γ[(ν+1)/2]
Γ(ν/2) ∼

√
ν and a second moment < y2 >= ν, it is

found that by constructing a new variable z =
√

xy, where x and y are both sorted, its
distribution is the K-distribution

gν(z =
√

xy) =
8

2νΓ2(ν/2)
z2ν−1K0

(
z2
)

, (6)

where K0(x) is a modified Bessel function of the second kind. For large values of ν, the
contributions to the K-distribution come from large values of its argument. This being
the case, we are allowed to replace in the expression of gν(z) the Bessel function with its

asymptotic expression K0(z) ∼
√

π
2z exp(−z), which leads to

gν(z) ∼
8
√

π

2ν+1/2Γ2(ν/2)
z2ν−2 exp

(
−z2

)
. (7)

Using now the gamma function duplication formula

Γ
(

µ− 1
2

)
=

2µ−1
√

2π
Γ
(

µ

2
− 1

4

)
Γ
(

µ

2
+

1
4

)
(8)

and the fact that, for large ν,

Γ
(

µ

2
− 1

4

)
Γ
(

µ

2
+

1
4

)
∼ Γ2

(µ

2

)
, (9)

it is found that the distribution of the geometrical mean variable can be approximated as

gν(z) ∼
2

Γ(ν− 1/2)
z2ν−2 exp

(
−z2

)
= f2ν−1(z) ∼ f2ν(z), (10)

where

fν(y) = hν(y
√

2)
√

2 =
2yν−1

Γ(ν/2)
exp(−y2). (11)

Let us now consider the beta distribution

B(s, t) =
21−s−tΓ(s + t)

Γ(s)Γ(t)
(1− x)s−1(1 + x)t−1 (12)

in the asymptotic situation in which s >> 1 and t >> 1. In this case, we can make
the expansion

F(x) = (s− 1) log(1− x) + (t− 1) log(1 + x) = F(xs) + F′(xs)(x− xs) +
1
2!

F′′(xs)(x− xs)
2 . . . (13)

neglecting higher-order terms. Imposing then that F′(xs) = 0, after approximating the
gamma functions by their Stirling expressions, it is found that the beta distribution ap-
proaches the normal distribution

B(s, t) ∼ N
(

t− s
s + t− 2

,
4(t− 1)(s− 1)
(t + s− 2)3

)
. (14)

For normal distributions, by constructing the mean quantity

y = 1 +
1
k

k

∑
i=1

(±)xi (15)

in which xi is Gaussian distributed with an average of x̄i and variances of σi, it is then
found that y is distributed according to the normal distribution



Entropy 2023, 25, 868 4 of 11

N
(

1 +
1
k

k

∑
i=1

(±)x̄i,
1
k2

k

∑
i=1

σ2
i

)
. (16)

3. The Pseudo-Hermitian Hermite–β Ensemble

A matrix of the Hermite–β ensemble is a Hermitian tridiagonal matrix whose joint
density distribution of the matrix elements is given by

P(Hβ) =
2n−1

(2π)n/2 ∏n−1
j=1 Γ[(N − j)β/2]

exp
(
−1

2
trH2

β

) n−1

∏
j=1

b(n−j)β−1
j (17)

such that the diagonal elements ai are normally distributed, namely N(0, 1), while the off-
diagonal bj elements are distrtributed according to fν(y), as seen in Equation (11), where
νj = (n− j)β and β is a real positive parameter. Using the lemmas of the tridiagonal form
that relate the Vandermonde determinant to the off-diagonal elements, it is then found that
the joint density distribution of the eigenvalues is given by [3]

P(λ1, λ2, . . . , λn) = Cn exp

(
−1

2

n

∑
k=1

λ2
k

)
∏
j>i
|λj − λi|β. (18)

By expanding the determinant of the characteristic polynomial, it is obtained that its
average satisfies the recursion relationship

< Pn(λ) >= −λ < Pn−1(λ) > −
n− 1

2
β < Pn−2(λ) > (19)

such that a comparison with Hermite polynomials recursion relationships leads to the

identity < Pn(λ) >=
(

β
2

) n
2 Hn

(
λ√
2β

)
. This means that, asymptotically, the eigenvalues

occupy the same compact support of the zeros of Hermite polynomials [18] defined by
Wigner’s semi-circle law [2],

ρW(β, λ) =
1

πβ

√
2nβ− λ2. (20)

Considering the fluctuations, we assume that the nearest-neighbor distribution (NND)
can be described by the NND of the 2 × 2 matrices that is found to be given by the
generalized Wigner surmise

pW(β, s) =
2κβ+1sβ

Γ( β+1
2 )

exp(−κ2s2), (21)

where κ = Γ( β
2 + 1)/Γ( β+1

2 ).
Let us now remove the Hermitian condition of Hβ by filling one of the off-diagonals

by new random variables cj. In [10], this was carried out by sorting the elements of the
two sub-diagonals from the same fν(y) distribution of the Hermitian case. However, this
choice does not keep the structure of the above joint distribution of elements in terms of the
exponential of the trace. If we sort them instead from hν(y), using Equation (5), the joint
distribution of the non-Hermitian matrices Ĥβ can be written as

P(Ĥβ) =
22n−2

(2π)n/2 ∏n−1
j=1 Γ2[(n− j)β/2]

exp
(
−1

2
trĤ2

β

) n−1

∏
j=1

(
bjcj
)(n−j)β−1. (22)

In this case, the recursion relationship of the average characteristic polynomial be-
comes

< P̂n(λ) >= −λ < P̂n−1(λ) > −(n− 1)β < P̂n−2(λ) >, (23)
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which leads to the semi-circle law ρW(2β, λ), in which β is replaced by 2β.
From the preliminary results stated above, Ĥβ is a pseudo-Hermitian matrix whose

eigenvalues are real, and, at the same time, they also are eigenvalues of a Hermitian matrix
Kβ. The diagonal elements of Kβ are the same of Ĥβ, while the off-diagonal elements are the
geometrical mean di =

√
bici of the Ĥβ elements and are therefore distributed according

to Equation (6). Using, then, the asymptotic of these functions and Equation (7), the joint
density distribution of the Kβ approaches the distribution

P(Kβ) ∼
2n−1

(2π)n/2 ∏n−1
j=1 Γ[(n− j)β]

exp
(
−1

2
trK2

β

) n−1

∏
j=1

, d(n−j)2β−1
j , (24)

which is just the joint distribution of the Hermitian case with a β replaced by 2β. The joint
distribution of the eigenvalues is then given by Equation (18), with β replaced by 2β. In
Figure 1, this 2β effect is illustrated in the case of the eigenvalues of the pseudo-Hermitian
β–Hermite ensemble.

Figure 1. NNSD for pseudo-Hermitian matrices of size n = 128 of the Hermite (blue circles) and
Laguerre ensembles (red squares) for the indicated values of β = 0.5 and β = 2. The black full lines
were calculated with Wigner surmise and Equation (21), with β = 1 and β = 4, respectively.

4. The Pseudo-Hermitian Laguerre–β Ensemble

Let B be the bidiagonal matrix with diagonal elements z = (zn, zn−1, . . . , z1) and
sub-diagonal elements x = (xn−1, xn−2, . . . , x1), whose joint distribution of the elements is
given by

P(Bβ) ∝
n

∏
i=1

z2α−(i−1)β−1
n−i+1 exp

(
−1

2
z2

n−i+1

) n−1

∏
j=1

x(n−j)β−1
n−j exp

(
−1

2
x2

n−j

)
, (25)

where α = mβ/2 with m ≥ n. Therefore, the elements obey the distribution hν(y), where
ν = 2α− (i− 1)β for the diagonal elements and ν = (n− j)β for the sub-diagonal elements.
The Laguerre β ensemble is then defined as the tridiagonal matrix

Lβ = BBT =



z2
n znxn−1

znxn−1 z2
n−1 + x2

n−1 zn−1xn−2
. . .

. . .
. . .

z3x2 z2
2 + x2

2 z2x1
z2x1 z2

1 + x2
1


. (26)
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As shown in Ref. [3], in order to change from a bidiagonal to a tridiagonal matrix, the
Jacobian

JB→L =

(
2nz1

n

∏
i=2

z2
i

)−1

(27)

is used to give

P(Lβ) ∝ 2−nz2α−(n−1)β−2
1 exp

(
−1

2
trLβ

) n−1

∏
i=1

z2α−(n−1−i)β−3
i+1

n−1

∏
j=1

xjβ−1
j (28)

such that, using lemmas of the tridiagonal form, it is found that the joint distribution of the
eigenvalues is given by [3]

P(λ1, λ2, . . . , λn) = Cn,m exp

(
−1

2

n

∑
i=1

λi

)
n

∏
i=1

λ
(m−n+1) β

2−1
i ∏

i 6=j
|λj − λi|β. (29)

Let us start by obtaining the average characteristic polynomial whose derivation is
also valid in the pseudo-Hermitian case. By expanding the determinant polynomial and
taking the average of elements, we have the recursion relationship

< Pn(λ) >= (mβ− λ) < Rn−1(λ) > −m(n− 1)β2 < Rn−2(λ) >, (30)

where the R-polynomials satisfy the recursion relationship

< Rn−1(λ) >= [(m + n− 2)β− λ] < Rn−2(λ) > −(m− 1)(n− 2)β2 < Rn−3(λ) > . (31)

These above relationships, respectively, are solved by the two generalized Laguerre
polynomials < Rn−1(λ) >= (n − 1)!βn−1Lm−n+1

n−1 ( λ
β ) and < Pn(λ) >= (n)!βnLm−n

n ( λ
β ).

The density of the eigenvalues, which is also that of the zeros of the polynomials, is given
by the Marchenko–Pastur expression

ρ(λ) =
1

2βπλ

√
(λ+ − λ)(λ− λ−), (32)

where λ± = nβ(
√

m
n ± 1)2, and from this, we have the cumulative function

N (λ) =
1

4πβ

{
−4
√

λ+λ− arctan
√

λ+(λ−λ−)
λ−(λ+−λ)

+ (λ+ + λ−) arccos λ++λ−−2λ
λ+−λ−

+2
√
(λ+ − λ)(λ− λ−)

. (33)

To construct the pseudo-Hermitian–Laguerre ensemble, we introduce a new bidi-
agonal matrix C with a diagonal w = (wn, wn−1, . . . , w1), and a lower sub-diagonal
y = (yn−1, yn−2, . . . , y1), whose elements are sorted from the same distribution of the el-
ements of B. Once this is carried out, a non-Hermitian β–Laguerre matrix is obtained by
taking the product L̂β = BCT that produces the matrix

L̂β =



znwn znyn−1
wnxn−1 zn−1wn−1 + xn−1yn−1 zn−1yn−2

wm−1xm−2 . .
. . .

. . .
w3x2 z2w2 + x2y2 z2y1

w2x1 z1w1 + x1y1


(34)
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Immediately, the pseudo-Hermitian nature of this matrix is proved, and, furthermore,
it can be seen that it is iso-spectral with the Hermitian matrix Mβ = DDT in which D is the
bidiagonal matrix

D =



√
znwn√

xn−1yn−1
√

zn−1wn−1√
xn−2yn−2

√
zn−2wn−2 .

. . .
. . .√

x2y2
√

z2w2√
x1y1

√
z1w1


. (35)

Denoting the diagonal elements as ai =
√

ziwi and the sub-diagonals as bi =
√

xiyi,
of course, they are distributed according to gν(y), as per Equation (6), with ν = 2α− (j−
1)β for the diagonals and ν = (n − j)β for the sub-diagonals. Replacing gν(y) with its
asymptotic expression, we obtain

P(Mβ) ∝ a4α−2(n−1)β−2
1 exp

(
−trMβ

) n−1

∏
i=1

a4α−2(n−1−j)β−3
i+1

n−1

∏
j=1

b2jβ−1
j , (36)

and for the eigenvalues, we obtain

P(λ1, λ2, . . . , λn) = Cn,m exp

(
−

n

∑
i=1

λi

)
n

∏
i=1

λ
(m−n+1)β−1
i ∏

i 6=j
|λj − λi|2β. (37)

In Figure 1, the 2β effect is illustrated in the case of the pseudo-Hermitian β–Laguerre
ensemble.

5. The Pseudo-Hermitian Jacobi–β Ensemble

A matrix of the Jacobi β ensemble is a Hermitian tridiagonal matrix [4–6,19]

Jβ =



a1 b1
b1 a2 b2

. . .
. . .

. . .
bn−2 an−1 bn−1

bn−1 an


(38)

where the diagonal elements are given by

ak+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2 (39)

and the off-diagonal elements are given by

bk+1 =
√
(1− α2k−1)(1− α2

2k)(1 + α2k+1), (40)

where, with 0 ≤ k ≤ 2n− 1, the αk are β-distributed, following Equation (12), with variables
given by

B
(

2n− k− 2
4

β + a + 1,
2n− k− 2

4
β + b + 1

)
for k even (41)

and

B
(

2n− k− 3
4

β + a + b + 2,
2n− k− 1

4
β

)
for k odd, (42)
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aside from the special cases α2n−1 = α−1 = −1. It has been proven that the joint distribution
of the eigenvalues of the these matrices is given by

P(λ1, λ2, . . . , λn) = Cn

n

∏
i=1

(2− λi)
a−1(2 + λi)

b−1 ∏
j>i
|λj − λi|β. (43)

The density of the eigenvalues satisfies an inverted semi-circle law

ρ(λ) =
n

π
√

4− λ2
+ c, (44)

where the constant c is a small parameter necessary to adjust the results of the numerical
simulations. As a consequence, the unfolding of the eigenvalues is performed with the
cumulative function

N(λ) =
n
π

arcsin(
λ

2
) + cλ. (45)

As the above parameters of the beta distributions increase for large matrix sizes, it is
justified to assume that when n >> 1, they can be replaced by the Gaussian approximations

N
(

2(b− a)
(2n− k− 2)β + 2a + 2b

,
2[(2n− k− 2)β + 4a)][(2n− k− 2)β + 4b]

[(2n− k− 2)β + 2a + 2b]3

)
for k even (46)

and

N
(

β− 2(a + b)− 4
(2n− k− 2)β + 2a + 2b

,
2[(2n− k− 3)β + 4a + 4b + 4)][(2n− k− 1)β− 4]

[(2n− k− 2)β + 2a + 2b]3

)
for k odd, (47)

which were derived in the preliminary section.
The important point to observe in these equations is that the average positions and

the variances of the above Gaussians approach zero when the size n of the matrices
becomes arbitrarily large. As a consequence, the above expressions connecting the matrix
elements to the variables αk can be linearized as ak+1 ∼ α2k − α2k−2 for the diagonal
elements and bk+1 ∼ 1− (α2k−1 − α2k+1)/2 for the off-diagonal ones. These approximated
expressions show that, asymptotically, the diagonal and the off-diagonal elements decouple,
and, moreover, all elements become Gaussian distributed, such that we have for the
diagonal elements

P(ak+1) ∼ N
(

ᾱ2k − ᾱ2k−2, σ2
2k + σ2

2k−2

)
, (48)

and for the off-diagonal elements, we have

P(bk+1) ∼ N
(

1− ᾱ2k−1 − ᾱ2k+1
2

,
σ2

2k−1 + σ2
2k+1

4

)
. (49)

Therefore, the off-diagonal elements fluctuate around one, while the diagonal ones
fluctuate around zero. Thus, it is reasonable to expect that the off-diagonal elements
have a determinant role in the behavior of the eigenvalue properties inasmuch as, for
tridiagonal matrices, the eigenvalues are directly connected to the off-diagonal elements.
The precision of this approximated description as compared to the exact expressions is
attested to in Figure 2.

Therefore, the matrix elements are constructed using the 2n−1 random components
of the vector α(k) , which are shared by both the diagonal and the sub-diagonal elements.
Thus, it does not seem to have a clear way to remove the Hermitian condition. On the other
hand, the basic idea of the 2β Dyson effect is that it is caused by doubling the number of
independent variables, especially those in the off-diagonal matrix elements. Considering
now the removal of the Hermitian condition of the matrices, this can be executed by just
sorting a new vector α̃(k) from which only the odd elements are used to fill the lower
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sub-diagonal. Therefore, only the number of odd elements are doubled. This defines a
lower sub-diagonal whose elements ck+1 differ from bk+1 by odd terms. As the elements of
these two off-diagonal are positive, these non-Hermitian matrices, besides being pseudo-
Hermitian, are iso-spectral with the Hermitian matrix whose off-diagonal elements are
given by

√
bk+1ck+1.

Figure 2. Comparison of the Gaussian approximation with the exact calculation of NNSD for β = 1
and β = 2, as indicated in the figure.The calculations were performed with 50 matrices of size n = 450.

Turning now to the asymptotic description, consistent with our level of approxima-
tions, the geometrical mean of the two off-diagonal elements can be linearized as√

bk+1ck+1 ∼ 1− [(α2k−1 − α2k+1) + (α′2k−1 − α′2k+1)]/4, (50)

where the primes denote α variables belonging to the ck+1 sub-diagonal. Using the re-
sult (16) from Section 2, we can write

P(
√

bk+1ck+1) ∼ N
(

1− ᾱ2k−1 − ᾱ2k+1
2

,
1
2

σ2
2k−1 + σ2

2k+1
4

)
(51)

such that the factor 1/2 affects the variances of the odd k terms as

2[(2n− k− 3)2β + 8(a + b + 1)][(2n− k− 1)2β− 8]
[(2n− k− 2)2β + 2(a + b)]3

. (52)

The above expression shows the occurrence of a 2β effect, which affects only the
odd terms of the off-diagonal elements. This means that we are dealing with a hybrid
pseudo-Hermitian ensemble that combines the even elements generated with β and the
odd ones sorted with 2β. The evidence from numerical simulations (see Figure 3) suggests
that the spectral statistics, that is, the NNSD, can be fitted with a parameter

√
2β. It is

interesting to observe that
√

2β is the geometric mean of β and 2β. To ’fix’ this, what we
can do is, in the pseudo-Hermitian case, generate the even elements with a parameter 2β
while sorting the odd elements with β. The results of the numerical simulations following
this procedure demonstrate a clear 2β effect, as is shown in Figure 4 for the NNSD and in
Figure 5 for the number variance.
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Figure 3. The hybrid pseudo-Hermitian β–Jacobi ensemble in which even elements are sorted with
β, while the odd ones, asymptotically, become sorted with 2β. The blue line is calculated with
Equation (21) using as parameters the geometric mean of β and 2β, that is,

√
2β. The calculations

were performed with 50 matrices of size n = 360.

Figure 4. NNSD for 100 matrices of size 120 in which the even elements of the pseudo-Hermitian
β–Jacobi ensemble are sorted with 2β (black and blue dots) for the indicated values of beta. The
full lines were calculated with Wigner surmise, as seen in Equation (21), with β = 1 and β = 4,
respectively.

Figure 5. The verification of the 2β effect in the number variance statistics: black dots were calculated
with 600 matrices of size n = 120 of the pseudo-Hermitian β–Jacobi ensemble sorted with β = 0.5,
and the red full line corresponds to the GOE number variance.
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6. Conclusions

In conclusion, we have extended the universality of RMT Wigner–Dyson statistics to a
class of non-Hermitian matrices with real eigenvalues. Matrices of this class are connected
to their adjoints by a similarity transformation, a discrete symmetry condition that defines
a pseudo-Hermitian matrix. In our case, the matrices are constructed by removing the
Hermitian condition of the tridiagonal matrices of the three so-called β ensembles. By
doing this, the number of off-diagonal independent elements doubles, and, as also occurs
in standard random matrix theory, the Dyson β index also doubles. One obvious question
is to investigate if this 2β effect can be observed in pseudo-Hermitian full random matrices.
However, it is not clear how, in this case, a pseudo-Hermitian model can be constructed
in which the number of independent variables doubles. Another question is if the effect
can be observed in a Hamiltonian with real eigenvalues, as this can lead to a link between
PT symmetry and quantum chaos. As a final remark, we emphasize that the origin of the
2β effect stems from the asymptotic behavior of the geometric mean calculated with the
distribution functions of the matrix elements of the three ensembles. This suggests another
universality associated with random matrix theories.
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