Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer
Abstract
:1. Introduction
2. Protocol
- State preparation: In each round, Alice pumps her phase randomized type-II PDC source using appropriate intensities to generate polarization-entangled states with half of the expected photon pair number generated by one pulse, , randomly selected from according to probability distribution . The single-photon-pair state prepared by Alice is , where is the encoded bit, corresponds to bases , 1 and 2 label the two optical modes of the PDC source, and mode 2 is delayed by with respect to mode 1. Then, she delays her vertical polarization mode by , where . Similarly, the single-photon-pair state prepared by Bob is where mode 4 is also delayed by with respect to mode 3, and is randomly chosen from with the same probability distribution. Then, he delays his vertical polarization mode by as well.
- Measurement: Alice and Bob send the signals to Charlie, who is supposed to perform
- (1)
- Polarization randomization using a set of wave plates to make the protocol independent of specific environment and reference frame,
- (2)
- Delay for the horizontal polarization mode of both incoming signals by , such that both photons of the states in DFS are delayed once,
- (3)
- Phase scrambling to project the single-photon-pair states into the DFS, which can be done by exploiting Pockel cells driven by quantum random number generators (QRNG),
- (4)
- Logical BSM using the logical Bell state analyzer.
Additionally, Charlie needs to set the polarization controllers in the logical BSM apparatus to act as nothing in some randomly selected rounds retained for parameter estimation, which we call sampling rounds. The other rounds where both polarization controllers act as half-wave plates are named BSM rounds. Charlie publicly announces the results of parity check measurements and click patterns of the four single-photon-detectors in all rounds, together with the time-bins in which the detectors click and the location of sampling rounds. - Postselection: Alice and Bob postselect the BSM rounds where one two-fold coincidence detection is followed by another two-fold coincidence detection after . They determine which logical Bell states are the input states successfully projected onto according to Charlie’s announcement (see Section 3). Events with unsuccessful logical BSM are discarded.
- Sifting: The parties announce and in the remaining rounds via an authenticated public channel. After discarding the rounds where their bases are unmatched, one communication party, say, Bob, should flip part of his bits to make his bit strings correctly correlated with Alice’s, depending on the logical Bell states identified (see Table 1).
- Parameter estimation: For BSM rounds, Alice and Bob estimate the quantum bit error rate in Z basis with intensity setting . Raw data in Z and X basis are used to estimate the single-photon-pair yield and single-photon-pair QBER , respectively, via decoy-state method introduced in Section 4. For sampling rounds, they use data with intensity setting and to estimate the probability that their single-photon-pair states are projected into the DFS, denoted as and , respectively.
- Key distillation: The parties use data of BSM rounds in Z basis with intensity setting to generate a key. They run error correction and privacy amplification based on and to distill the final secure key.
3. Logical Bell State Measurement
4. Security Analysis
5. Simulation
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details of MDI Decoy-State Analysis
Appendix B. Simulation Details
- and no error occurs in both X-quadrature measurements, which happens with probability ;
- and error occurs in both X-quadrature measurements, which happens with probability ;
- and error occurs only in the lower X-quadrature measurements, which happens with probability ;
- and error occurs only in the upper X-quadrature measurements, which happens with probability .
Appendix C. An Approach to Estimate pa(b)
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.J.; Jiang, C.; Chen, J.P.; Zhang, C.; Pan, W.X.; Ma, D.; Dong, H.; Xiong, J.M.; Zhang, C.J.; et al. Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber Distance. Phys. Rev. Lett. 2023, 130, 210801. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Tan, H.; Lu, Y.; Liao, S.K.; Huang, J.; Li, H.; Wang, Z.; Mao, H.K.; Yan, B.; et al. High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photonics 2023, 17, 416–421. [Google Scholar] [CrossRef]
- Zhao, Y.; Fung, C.H.F.; Qi, B.; Chen, C.; Lo, H.K. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 2008, 78, 042333. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef]
- Gerhardt, I.; Liu, Q.; Lamas-Linares, A.; Skaar, J.; Kurtsiefer, C.; Makarov, V. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2011, 2, 349. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Da Silva, T.F.; Vitoreti, D.; Xavier, G.B.; Do Amaral, G.C.; Temporão, G.P.; Von Der Weid, J.P. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 2013, 88, 052303. [Google Scholar] [CrossRef]
- Comandar, L.C.; Lucamarini, M.; Fröhlich, B.; Dynes, J.F.; Sharpe, A.W.; Tam, S.B.; Yuan, Z.L.; Penty, R.V.; Shields, A.J. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics 2016, 10, 312–315. [Google Scholar] [CrossRef]
- Wei, K.; Li, W.; Tan, H.; Li, Y.; Min, H.; Zhang, W.J.; Li, H.; You, L.; Wang, Z.; Jiang, X.; et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 2020, 10, 031030. [Google Scholar] [CrossRef]
- Tamaki, K.; Lo, H.K.; Fung, C.H.F.; Qi, B. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 2012, 85, 042307. [Google Scholar] [CrossRef]
- Ma, X.; Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 2012, 86, 062319. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T.Y.; Wang, L.J.; Liang, H.; Shentu, G.L.; Wang, J.; Cui, K.; Yin, H.L.; Liu, N.L.; Li, L.; et al. Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2013, 111, 130502. [Google Scholar] [CrossRef]
- Wang, C.; Yin, Z.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 2017, 4, 1016–1023. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W.; Wei, K.; Fang, X.T.; Li, L.; Liu, N.L.; Liang, H.; Zhang, S.J.; Zhang, W.; Li, H.; et al. Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett. 2019, 122, 160501. [Google Scholar] [CrossRef]
- Xu, F.; Curty, M.; Qi, B.; Lo, H.K. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 2013, 15, 113007. [Google Scholar] [CrossRef]
- Takesue, H.; Inoue, K. Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev. A 2004, 70, 031802. [Google Scholar] [CrossRef]
- Boileau, J.C.; Laflamme, R.; Laforest, M.; Myers, C.R. Robust quantum communication using a polarization-entangled photon pair. Phys. Rev. Lett. 2004, 93, 220501. [Google Scholar] [CrossRef] [PubMed]
- Laing, A.; Scarani, V.; Rarity, J.G.; O’Brien, J.L. Reference-frame-independent quantum key distribution. Phys. Rev. A 2010, 82, 012304. [Google Scholar] [CrossRef]
- Tang, B.Y.; Chen, H.; Wang, J.P.; Yu, H.C.; Shi, L.; Sun, S.H.; Peng, W.; Liu, B.; Yu, W.R. Free-running long-distance reference-frame-independent quantum key distribution. NPJ Quantum Inf. 2022, 8, 117. [Google Scholar] [CrossRef]
- Ma, X.; Fung, C.H.F.; Razavi, M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 2012, 86, 052305. [Google Scholar] [CrossRef]
- Xu, F.; Xu, H.; Lo, H.K. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052333. [Google Scholar] [CrossRef]
- Imoto, N.; Haus, H.A.; Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 1985, 32, 2287. [Google Scholar] [CrossRef]
- Nemoto, K.; Munro, W.J. Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 2004, 93, 250502. [Google Scholar] [CrossRef]
- Munro, W.J.; Nemoto, K.; Beausoleil, R.G.; Spiller, T.P. High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 2005, 71, 033819. [Google Scholar] [CrossRef]
- Barrett, S.D.; Kok, P.; Nemoto, K.; Beausoleil, R.G.; Munro, W.J.; Spiller, T.P. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 2005, 71, 060302. [Google Scholar] [CrossRef]
- Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef]
- Lo, H.-K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef]
- Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Zhou, L. Two-step complete polarization logic Bell-state analysis. Sci. Rep. 2015, 5, 13453. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Zhang, J.; Boileau, J.C.; Jin, X.M.; Yang, B.; Zhang, Q.; Yang, T.; Laflamme, R.; Pan, J.W. Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 2006, 96, 150504. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R.; Mauerer, W.; Andersen, U.L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711–715. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. NPJ Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Kok, P.; Braunstein, S.L. Postselected versus nonpostselected quantum teleportation using parametric down-conversion. Phys. Rev. A 2000, 61, 042304. [Google Scholar] [CrossRef]
- Ma, X.; Fung, C.H.F.; Lo, H.K. Quantum key distribution with entangled photon sources. Phys. Rev. A 2007, 76, 012307. [Google Scholar] [CrossRef]
- Huttner, B.; Imoto, N.; Gisin, N.; Mor, T. Quantum cryptography with coherent states. Phys. Rev. A 1995, 51, 1863. [Google Scholar] [CrossRef]
- Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 2000, 85, 1330. [Google Scholar] [CrossRef]
- Lütkenhaus, N.; Jahma, M. Quantum key distribution with realistic states: Photon-number statistics in the photon-number splitting attack. New J. Phys. 2002, 4, 44. [Google Scholar] [CrossRef]
- Yin, Z.Q.; Zhao, Y.B.; Zhou, Z.W.; Han, Z.F.; Guo, G.C. Decoy states for quantum key distribution based on decoherence-free subspaces. Phys. Rev. A 2008, 77, 062326. [Google Scholar] [CrossRef]
- Wang, W.; Xu, F.; Lo, H.K. Asymmetric protocols for scalable high-rate measurement-device-independent quantum key distribution networks. Phys. Rev. X 2019, 9, 041012. [Google Scholar] [CrossRef]
- Lo, H.K.; Chau, H.F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef]
- Gottesman, D.; Lo, H.K.; Lutkenhaus, N.; Preskill, J. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 2004, 4, 325–360. [Google Scholar]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef]
- Lu, C.Y.; Cao, Y.; Peng, C.Z.; Pan, J.W. Micius quantum experiments in space. Rev. Mod. Phys. 2022, 94, 035001. [Google Scholar] [CrossRef]
- Harris, S.E.; Hau, L.V. Nonlinear optics at low light levels. Phys. Rev. Lett. 1999, 82, 4611. [Google Scholar] [CrossRef]
- Braje, D.A.; Balić, V.; Yin, G.Y.; Harris, S.E. Low-light-level nonlinear optics with slow light. Phys. Rev. A 2003, 68, 041801. [Google Scholar] [CrossRef]
- Li, X.; Voss, P.L.; Sharping, J.E.; Kumar, P. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 2005, 94, 053601. [Google Scholar] [CrossRef]
- Matsuda, N.; Shimizu, R.; Mitsumori, Y.; Kosaka, H.; Edamatsu, K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photonics 2009, 3, 95–98. [Google Scholar] [CrossRef]
- Aolita, L.; Walborn, S.P. Quantum communication without alignment using multiple-qubit single-photon states. Phys. Rev. Lett. 2007, 98, 100501. [Google Scholar] [CrossRef] [PubMed]
- D’ambrosio, V.; Nagali, E.; Walborn, S.P.; Aolita, L.; Slussarenko, S.; Marrucci, L.; Sciarrino, F. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 2012, 3, 961. [Google Scholar] [CrossRef]
- Chen, D.; Shang-Hong, Z.; Ying, S. Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 2015, 14, 4575–4584. [Google Scholar] [CrossRef]
- Chen, D.; Wei, L.; YaLiang, C.; Qing, P.; Lei, S. Reference-frame-independent measurement-device-independent quantum key distribution using hybrid logical basis. Quantum Inf. Process. 2018, 17, 256. [Google Scholar] [CrossRef]
- Śliwa, C.; Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 2003, 67, 030101. [Google Scholar] [CrossRef]
- Wagenknecht, C.; Li, C.M.; Reingruber, A.; Bao, X.H.; Goebel, A.; Chen, Y.A.; Zhang, Q.; Chen, K.; Pan, J.W. Experimental demonstration of a heralded entanglement source. Nat. Photonics 2010, 4, 549–552. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, H.; Wu, W.; Ma, X. Mode-pairing quantum key distribution. Nat. Commun. 2022, 13, 3903. [Google Scholar] [CrossRef]
- Zhu, H.T.; Huang, Y.; Liu, H.; Zeng, P.; Zou, M.; Dai, Y.; Tang, S.; Li, H.; You, L.; Wang, Z.; et al. Experimental Mode-Pairing Measurement-Device-Independent Quantum Key Distribution without Global Phase Locking. Phys. Rev. Lett. 2023, 130, 030801. [Google Scholar] [CrossRef]
- Xu, F.; Qi, B.; Liao, Z.; Lo, H.K. Long distance measurement-device-independent quantum key distribution with entangled photon sources. Appl. Phys. Lett. 2013, 103, 061101. [Google Scholar] [CrossRef]
Alice and Bob’s Basis | Logical Bell State | |||
---|---|---|---|---|
Z basis | No flip | flip | No flip | flip |
X basis | flip | No flip | No flip | flip |
PCM Result | Bell State | PCM Result | Bell State | ||||
---|---|---|---|---|---|---|---|
even/odd | / | even/odd | / | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.-H.; Xu, X.-Y.; Hu, S.-M.; Zhou, Q.; Li, L.; Liu, N.-L.; Chen, K. Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer. Entropy 2023, 25, 869. https://doi.org/10.3390/e25060869
Wei J-H, Xu X-Y, Hu S-M, Zhou Q, Li L, Liu N-L, Chen K. Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer. Entropy. 2023; 25(6):869. https://doi.org/10.3390/e25060869
Chicago/Turabian StyleWei, Jun-Hao, Xin-Yu Xu, Shu-Ming Hu, Qing Zhou, Li Li, Nai-Le Liu, and Kai Chen. 2023. "Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer" Entropy 25, no. 6: 869. https://doi.org/10.3390/e25060869
APA StyleWei, J. -H., Xu, X. -Y., Hu, S. -M., Zhou, Q., Li, L., Liu, N. -L., & Chen, K. (2023). Measurement-Device-Independent Quantum Key Distribution Based on Decoherence-Free Subspaces with Logical Bell State Analyzer. Entropy, 25(6), 869. https://doi.org/10.3390/e25060869