Boosted Binary Quantum Classifier via Graphical Kernel
Abstract
:1. Introduction
2. Quantum Machine Learning Based on Graphical Feature Space
2.1. The Basic Map of Feature Space in Quantum Machine Learning
2.2. Two-Level Quantum Nested Graphical States Mapped to Feature Space
3. Swap-Test Quantum Classifier with Large-Scale Data
3.1. Quantum Swap-Test Classification Based on Graph State
3.2. Quantum Graph Kernels and Graph Segmentation
3.3. Fidelity Analysis in Quantum Classifiers
4. Experiments
4.1. Algorithm
Algorithm 1: Quantum classifier with respect to quantum encoding |
Prepare: Sample set X, unlabeled test point and quantum classifier circuit . Input: graph , adjacent matrix 1. for , do encode into with quantum phase encoder. 2. Applying H to entangle the sample states with , so that two-level graph state coupling graph is formed. 3. Resort to the circuit , fordo obtain M classes of weak quantum classifiers . 4. Computing the distances between and Output: The label y that belongs to. |
4.2. Boosted Classification Algorithm and Comparison
Algorithm 2: Boosted quantum classifier with T cycles |
Input: Quantum training dataset ; weak learning algorithm ; integer T of iterative cycle; form sample state vector and ancilla vector Initialize the weight of graph for , and for, do 1. Construct cluster states and 2. Compute mixed state to obtain 3. Apply to provide , return . 4. Obtain the error of . 5. Update weights vector Output: the of graph state . |
4.3. Running Time Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.; Aand Chuang, I.S. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cirac, J.I.; Zoller, P. Scalable quantum computer with ions in an array of microtraps. Nature 2000, 404, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Carlini, A. Quantum learning and universal quantum matching machine. Phys. Rev. A 2002, 66, 022303. [Google Scholar] [CrossRef]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Braunstein, S.L. Quantum decision tree classifier. Quantum Inf. Process. 2014, 13, 757–770. [Google Scholar] [CrossRef]
- Hu, W. Comparison of Two Quantum Nearest Neighbor Classifiers on IBM’s Quantum Simulator. Nat. Sci. 2018, 10, 87–98. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195. [Google Scholar] [CrossRef]
- Blank, C.; Park, D.K.; Rhee, J.K.K.; Petruccione, F. Quantum classifier with tailored quantum kernel. npj Quantum Inf. 2020, 6, 41. [Google Scholar] [CrossRef]
- Du, Y.; Hsieh, M.H.; Liu, T.; Tao, D. A Grover-search based quantum learning scheme for classification. New J. Phys. 2021, 23, 023020. [Google Scholar] [CrossRef]
- Liao, H.; Convy, I.; Huggins, W.J.; Whaley, K.B. Robust in practice: Adversarial attacks on quantum machine learning. Phys. Rev. A 2021, 103, 042427. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Y.; Luo, Y. Quantum Classifier with Entangled Subgraph States. Int. J. Theor. Phys. 2021, 60, 3529–3538. [Google Scholar] [CrossRef]
- Zhou, N.R.; Zhang, T.F.; Xie, X.W.; Wu, J.Y. Hybrid quantum Cclassical generative adversarial networks for image generation via learning discrete distribution. Signal Process. Image Commun. 2023, 110, 116891. [Google Scholar] [CrossRef]
- Briegel, H.J.; Raussendorf, R. A One-Way Quantum Computer. Phys. Rev. Lett. 2001, 86, 910. [Google Scholar] [CrossRef] [PubMed]
- Mandel, O.; Greiner, M.; Widera, A.; Rom, T.; Hnsch, T.W.; Bloch, I. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 2003, 425, 937. [Google Scholar] [CrossRef] [PubMed]
- Raussendorf, R.; Browne, D.E.; Briegel, H.J. Measurement-based quantum computation using cluster states. Phys. Rev. A 2003, 68, 022312. [Google Scholar] [CrossRef]
- Dür Aschauer, W.H.; Briegel, H.J. Multiparticle Entanglement Purification for Graph States. Phys. Rev. Lett. 2003, 91, 107903. [Google Scholar]
- Walther, P.; Pan, J.W.; Aspelmeyer, M.; Ursin, R.; Gasparoni, S.; Zeilinger, A. De Broglie wavelength of a non-local four-photon state. Nature 2004, 429, 158. [Google Scholar] [CrossRef]
- Hein, M.; Eisert, J.; Briegel, H.J. Multi-party entanglement in graph states. Phys. Rev. A 2004, 69, 062311. [Google Scholar] [CrossRef]
- Clark, S.R.; Alves, C.M.; Jaksch, D. Efficient generation of graph states for quantum computation. New J. Phys. 2005, 7, 124. [Google Scholar] [CrossRef]
- Aschauer, H.; Dur, W.; Briegel, H.J. Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 2005, 71, 012319. [Google Scholar] [CrossRef]
- Hu, D.; Tang, W.; Zhao, M.; Chen, Q.; Yu, S.; Oh, C.H. Graphical Nonbinary Quantum Error-Correcting Codes. Phys. Rev. A 2008, 78, 012306. [Google Scholar] [CrossRef]
- Park, D.K.; Petruccione, F.; Rhee, J.K.K. Circuit-based quantum random access memory for classical data. Sci. Rep. 2019, 9, 3949. [Google Scholar] [CrossRef]
- Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Esma, A.; Gilles, B.; Seebastien, G. Machine learning in a quantum world. In Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 431–442. [Google Scholar]
- Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press: Boston, MA, USA, 2014. [Google Scholar]
- Pudenz, K.L.; Lidar, D.A. Quantum adiabatic machine learning Quantum. Quant. Inf. Proc. 2013, 12, 2027. [Google Scholar] [CrossRef]
- Turkpence, D.; Akncß, T.Ç.; Şeker, S. A steady state quantum classifier. Phys. Lett. A 2019, 383, 1410–1418. [Google Scholar] [CrossRef]
- Schuld, M.; Fingerhuth, M.; Petruccione, F. Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 2017, 119, 60002. [Google Scholar] [CrossRef]
- Danielsen, L.E. On self-dual quantum codes, graphs, and Boolean functions. arXiv 2005, arXiv:0503236. [Google Scholar]
- Li, Y.; Ji, C.L.; Xu, M.T. Nested Quantum Error Correction Codes via Subgraphs. Int. J. Theor. Phys. 2014, 53, 390–396. [Google Scholar] [CrossRef]
- Gottesman, D. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 1996, 54, 1862–1868. [Google Scholar] [CrossRef]
- Calderbank, A.R.; Rains, E.M.; Shor, P.W.; Sloane, N.J. Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 1997, 76, 405–409. [Google Scholar] [CrossRef]
- Calderbank, A.R.; Shor, P. Good quantum error-correcting codes exist. Phys. Rev. A 1996, 54, 1098–1105. [Google Scholar] [CrossRef]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273–1278. [Google Scholar] [CrossRef]
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef] [PubMed]
- Schuld, M.; Bradler, K.; Israel, R.; Su, D.; Gupt, B. Measuring the similarity of graphs with a gaussian boson sampler. Phys. Rev. A 2020, 101, 032314. [Google Scholar] [CrossRef]
- IBM. Quantum Experience. Available online: www.research.ibm.com/quantum (accessed on 21 September 2022).
- Qiskit. Available online: https://qiskit.org/ (accessed on 14 November 2019).
- Fisher, P.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Aaronson, S. Quantum Machine Learning Algorithms: Read the Fine Print. arXiv 2009, arXiv:0910.4698. [Google Scholar]
Dataset | Qubits | Cycle | Experimental (%) | Simulation (%) |
---|---|---|---|---|
Iris | 5 | 1 | 83.51 | 87.92 |
2 | 96.20 | 97.58 | ||
3 | 98.37 | 98.86 | ||
Skin | 5 | 1 | 67.33 | 73.54 |
2 | 76.46 | 79.59 | ||
3 | 83.12 | 84.85 |
Dataset | Model | Method | Precision (%) | Recall (%) | F1-Measure (%) | Qubit Error |
---|---|---|---|---|---|---|
Iris | Classical Model | KNN | 94.12 | 94.06 | 94.09 | |
SVM | 93.54 | 93.26 | 93.40 | |||
Decision Trees | 93.82 | 94.01 | 93.91 | |||
Quantum Model | QBoosting | 95.34 | 96.06 | 95.70 | 0.0183 | |
QKNN | 94.67 | 95.56 | 95.11 | 0.0192 |
Dataset | Model | Method | Precision (%) | Recall (%) | F1-Measure (%) | Qubit Error |
---|---|---|---|---|---|---|
Skin | Classical Model | KNN | 93.54 | 83.41 | 88.19 | |
SVM | 92.23 | 76.13 | 83.41 | |||
Decision Trees | 92.78 | 81.62 | 86.30 | |||
Quantum Model | QBoosting | 93.57 | 78.57 | 85.42 | 0.0327 | |
QKNN | 93.21 | 84.13 | 88.43 | 0.0438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, D. Boosted Binary Quantum Classifier via Graphical Kernel. Entropy 2023, 25, 870. https://doi.org/10.3390/e25060870
Li Y, Huang D. Boosted Binary Quantum Classifier via Graphical Kernel. Entropy. 2023; 25(6):870. https://doi.org/10.3390/e25060870
Chicago/Turabian StyleLi, Yuan, and Duan Huang. 2023. "Boosted Binary Quantum Classifier via Graphical Kernel" Entropy 25, no. 6: 870. https://doi.org/10.3390/e25060870
APA StyleLi, Y., & Huang, D. (2023). Boosted Binary Quantum Classifier via Graphical Kernel. Entropy, 25(6), 870. https://doi.org/10.3390/e25060870