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Abstract: Lightweight block ciphers are normally used in low-power resource-constrained environ-
ments, while providing reliable and sufficient security. Therefore, it is important to study the security
and reliability of lightweight block ciphers. SKINNY is a new lightweight tweakable block cipher. In
this paper, we present an efficient attack scheme for SKINNY-64 based on algebraic fault analysis.
The optimal fault injection location is given by analyzing the diffusion of a single-bit fault at different
locations during the encryption process. At the same time, by combining the algebraic fault analysis
method based on S-box decomposition, the master key can be recovered in an average time of 9 s
using one fault. To the best of our knowledge, our proposed attack scheme requires fewer faults, is
faster to solve, and has a higher success rate than other existing attack methods.

Keywords: SKINNY; fault injection; algebraic fault analysis; key residual entropy; single bit

1. Introduction

IoT (Internet of Things) technology has been developing at a rapid pace over the last
ten years and is playing an important role in various fields. To protect the data transmitted
or processed by such resource-constrained and low-power devices, lightweight block
ciphers have emerged and become a research hot spot in cryptography. The more common
lightweight block ciphers are SKINNY [1], PRESENT [2], GIFT [3], and LED [4]. Research
on these lightweight block ciphers has attracted the attention of many experts and scholars.

Even though the significant goal of a lightweight block cipher is to achieve effective
encryption under the condition of limited computational resources, the most crucial and
core objective is the security of the cryptography. When we apply a lightweight block cipher
to cryptographic devices, we first need to analyze the characteristics of the cryptographic
algorithm to ensure the security of the encrypted message. The most common attack
methods against cryptographic devices include side-channel analysis and fault analysis.
Fault attack, as a powerful attack method, has been one of the pivotal points of research.
Fault attack can recover secret information by actively injecting faults into the cryptosystem.
For a cryptographic device, the common methods of fault attack mainly include laser fault
injection, electromagnetic fault injection, voltage fault injection, temperature fault injection,
etc. When a fault is injected into the encryption chip, the encryption algorithm will generate
an error in its operation, and thus the faulty ciphertext is obtained as the output of the
encryption process, after it is terminated. The structure is not the same between different
encryption algorithms. Therefore, when performing a fault attack on an cryptographic
device, it is necessary to analyze the encryption algorithms contained in the cryptographic
device to provide a specific attack scheme. When a fault occurs, we need to classify and
utilize the results generated by the fault; common analysis methods include algebraic fault
analysis, differential fault analysis, statistical fault analysis, persistent fault analysis, and
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algebraic persistent fault analysis. Different analysis methods require different elements
such as the number of faults and fault injection locations; so, different experimental schemes
need to be designed according to the particular method.

Information security is one of the most critical issues in society that cannot be ignored.
If we perform fault analysis and experiments on various lightweight block ciphers from
the attacker’s perspective, it is beneficial to the improvement of the security of crypto-
graphic products.

1.1. Related Works

SKINNY is a new lightweight tweakable block cipher that was presented to compete
with the SIMON family. Currently, the main research methods for SKINNY-64 include
differential analysis, differential fault analysis [5,6], impossible differential analysis [7],
enhanced persistent fault analysis [8], rectangle attack [9], and algebraic persistent fault
analysis [10,11]. The main idea of differential fault analysis is to analyze the XOR differ-
ential between the correct and the corresponding faulty ciphertexts to extract the master
key. The average number of faults required for the SKINNY-64 block cipher in [5] was
10.6. Impossible differential analysis is a variant of differential cryptanalysis proposed by
Knudsen [12] and Biham [13] et al. Its main idea was to discard the wrong keys using
differentials that hold with a probability of zero. An impossible differential attack method
was proposed in [7] for SKINNY; based on these properties and technique, the new method
could break up to 17 rounds of SKINNY-64, but this method did not enable the recovery
of the master key. Persistent fault analysis is a new approach to fault analysis proposed
in 2018. The main idea of this attack was to inject faults into the lookup table of the S-box
and generate errors when the crypto chip calls the lookup table, thus achieving fault in-
jection. The classical persistent fault analysis method is an analysis method for statistical
discrepancies in the last round due to the S-box fault, which is solved only for the last
round of subkeys. The enhanced persistent fault analysis allows for the analysis and the
solution of multiple rounds of subkeys. In total, 1500–1600 fault ciphertexts were required
for SKINNY-64 in [8]. Algebraic persistent fault analysis is a combination of algebraic
and persistent fault techniques to achieve key recovery by solving algebraic equations.
The algebraic persistent fault analysis method used in [10] required a minimum of 10
faulty ciphertexts to achieve recovery of the master key. An overview table of the existing
literature on SKINNY-64 is given in Table 1.

Table 1. Overview of the existing literature on SKINNY-64.

Methods Reference Minimum Number of Faults Recover
Master Key

Year
Published

DFA [5] 10.6 Yes 2018
IDA [7] - No 2017

EPFA [8] 1500–1600 Yes 2021
APFA [10] 10 Yes 2022
APFA [11] 10 Yes 2022

RA [9] - No 2021

An algebraic fault analysis framework for lightweight block ciphers [14] was proposed
by Zhang et al. in 2016. The method of counting algebraic equations when using algebraic
fault analysis for block ciphers was given in [15]. In previous comparative results of
different fault analysis methods against other lightweight block ciphers, algebraic fault
analysis was a more efficient attack method. Therefore, this paper adopts algebraic fault
analysis as the most fundamental research method for further study. As a masking method,
threshold implementation (TI) [16,17] is a kind of side-channel attack countermeasure
against first-order differential power analysis (DPA). This method was first proposed by
Nikova et al. in 2006. An S-box decomposition scheme was proposed in [16] that could
transform the cubic S-box used in lightweight block ciphers into two quadratic S-boxes.
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The specific steps for the S-box decomposition of the GIFT block cipher were given in [18].
Ref. [11] combined these two methods to propose an algebraic persistent fault analysis,
which achieved efficient experimental results. Inspired by this approach, we use the method
of S-box decomposition to optimize the algebraic equation expressions of the S-box and
thus improve the efficiency of the solver.

Due to the structural characteristics of the SKINNY block cipher, the diffusion paths
of a single fault in different locations of the cipher are varied, and analyzing the impact of
different locations on fault diffusion can further improve the efficiency of the attack.

In order to further reduce the number of faults required in the attack on SKINNY-64
and improve the solving efficiency, we need to synthesize several methods, and we propose
a more optimal fault injection scheme in this paper.

1.2. Contributions

In this paper, we perform differential trace analysis and algebraic fault analysis based
on S-box decomposition of the SKINNY-64 block cipher. Through analysis and experiments,
choosing the appropriate location of fault injection, the recovery of the master key is
possible within 10 s using one fault. The main features can be summarized as follows:

• By analyzing the structure and round function of SKINNY-64, we express the en-
cryption process algebraically. An optimized algebraic equation representation for
the S-box is proposed for SKINNY-64 using the S-box decomposition technique. An
improved algebraic fault analysis method for SKINNY-64 is implemented based on
the above information.

• Due to the characteristics of SKINNY-64, when the fault is in different rows of the
same round, the fault diffusion effect is different. An efficient fault injection scheme is
given by analyzing the diffusion of a single fault at different locations in the 27th and
28th rounds.

• The two algebraic fault analysis methods are compared by several simulation ex-
periments. The appropriate fault injection location and fault utilization method are
given by comparing the solving success rate and the average solving time within the
specified time.

The remainder of this paper is organized as follows. We give the related preliminaries
in Section 2. In this section, we first give a general description of SKINNY-64; then, an
algebraic fault analysis method for SKINNY-64 is briefly introduced. In Section 3, we
analyze the effect of the fault diffusion for different fault locations. An efficient fault
injection scheme is given by analysis. We provide our experimental results for SKINNY-64
in Section 4. Section 5 provides a discussion, followed by a conclusion and future work in
Section 6.

2. Preliminaries

In this section, we briefly describe the SKINNY-64 specification. Next, we give the
expansion scheme of the subkeys and show the subkeys of the last rounds in graphical
form. Finally, we give an improved scheme with algebraic fault analysis based on S-box
decomposition against SKINNY-64.

2.1. General Description of SKINNY-64

SKINNY follows a Substitution-Permutation-Network (SPN) structure. The specifi-
cation of SKINNY describes iterative rounds consisting of a total of five suboperations:
SubCells (SC), AddConstants (AC), AddRoundTweaks (ART), ShiftRows (SR), and Mix-
Columns (MC). In this paper, we focus on analyzing SKINNY-64-64. The number of rounds
for SKINNY-64-64 is 32. Figure 1 presents a schematic diagram of the SKINNY-64 with the
round function.
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Figure 1. Schematic diagram of the SKINNY-64 round function.

• SubCells

The SubCells operation is a nonlinear bijective transformation in the encryption pro-
cess. Table 2 gives the S-box lookup table in form of the hexadecimal notation.

Table 2. S-box lookup table used in SKINNY-64.

X 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[X] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

To prepare the algebraic analysis, let the input of the S-box be x3 ‖ x2 ‖ x1 ‖ x0 and the
output of the S-box be y3 ‖ y2 ‖ y1 ‖ y0. According to the relevant information provided
in [1], the algebraic input–output relationship regarding the S-box can be expressed by the
following equation.

y0 = x1 + x2 + x3 + x0x1 + x0x2 + x0x3 + x1x3 + x0x1x2 + x1x2x3,

y1 = x0 + x3 + x0x1 + x1x2 + x1x3 + x2x3 + x1x2x3,

y2 = 1 + x1 + x2 + x3 + x1x2,

y3 = 1 + x0 + x2 + x3 + x2x3.

(1)

• Addconstants

The Addconstants is an operation of SKINNY that adds the round constants with
the internal state. The constants are generated using a six-bit affine linear feedback shift
register (LFSR), whose state is updated by the following definition,

(rc5, rc4, rc3, rc2, rc1, rc0)← (rc4, rc3, rc2, rc1, rc5 ⊕ rc4 ⊕ 1). (2)

• ShiftRows

The ShiftRows operation performs a cell-wise right-rotation of 0, 1, 2, and 3 cells for
the first, second, third, and fourth rows of the internal state. A permutation P is applied on
the cells positions of the cipher internal state cell array: for all 0 ≤ i ≤ 15, the operation can
be represented as P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

• MixColumns

The MixColumns operation of SKINNY-64 multiplies the internal state with a matrix
M. The matrix M is given as 

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

. (3)
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2.2. Subkeys of SKINNY-64

The AddRoundTweakey operation of the cipher is that the first and second rows of all
tweaked arrays are extracted and bitwise exclusive-or to the cipher’s internal state. For the
SKINNY-64, a permutation PT is applied on the cell positions of all the tweaked arrays.

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] (4)

According to the provided subkeys generation scheme, the subkeys of the last rounds are
shown in Figure 2.
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Master key

Figure 2. The subkeys of SKINNY-64.

2.3. Algebraic Fault Analysis against SKINNY-64

Algebraic fault analysis (AFA), combining algebraic cryptanalysis with fault analysis,
was proposed by Courtois et al. in [19]. A machine solver can be used to automatically
recover the secret key. In literature [14], Zhang et al. proposed a framework for the analysis
and evaluation of algebraic fault attacks on lightweight block ciphers.

For the process of building algebraic equations for the algebraic fault analysis of
lightweight block ciphers, the complicated part is the S-box substitution operation. SubCells,
as the only nonlinear component in the SKINNY-64, are represented using a larger number
of variables and CNF equations.

• Representing the SubCells

The input–output relationship of SubCells is shown in Equation (1). In this paper, we
use the CryptoMiniSAT solver for solving algebraic equations. The Subcells per round can
be represented using 192 variables and 496 CNF equations.

• Representing the AddConstants, AddRoundTweaks, ShiftRows, and MixColumns

For other operations, we represent the round constant with six variables, and each
round of AddConstants can be represented with 64 variables and 64 CNF equations. Each
round of AddRoundTweaks can be represented with 128 variables and 128 CNF equations.
Each round of ShiftRows can be represented using 64 variables and 64 CNF equations, and
the MixColumns can be represented with 64 variables and 64 CNF equations.

In summary, each round of encryption can be represented with 518 variables and
816 CNF equations.

In our previous research, an S-box decomposition scheme was proposed to decompose
a cubic S-box into two quadratic S-boxes, thus reducing the number of quadratic and cubic
variables in the algebraic equations. By rewriting the algebraic equations of the S-box, the
speedup and the reduction of the number of faulty samples can be achieved. Table 3 gives
the two quadratic S-boxes of the SKINNY algorithm after S-box decomposition.

Table 3. The decomposed S-boxes.

X 0 1 2 3 4 5 6 7 8 9 a b c d e f

F[X] 0 1 6 7 d c f e 5 4 3 2 9 8 b a
H[X] c 6 d 5 8 3 9 0 e 4 f 7 a 1 b 2
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The algebraic equations for two quadratic S-boxes are represented as Equations (5)
and (6), respectively.

F(w, z, y, x) = ( f3, f2, f1, f0)

f0 = x + z + xw + w

f1 = y

f2 = y + yz + z + w

f3 = z

(5)

H(w, z, y, x) = (h3, h2, h1, h0)

h0 = y + yz

h1 = x + xy + w

h2 = 1 + z

h3 = 1 + x

. (6)

The new S-box algebraic equations can be represented by 192 variables and 320 CNF
equations per round. We use fewer CNF equations to represent the same encrypted
information and reduce the use of higher-order variables in the equations, which can
effectively improve the efficiency of the solver.

In this paper, we assume that an attacker can inject a single-bit fault at exactly one
location of the encryption process, and the attacker can obtain the fault injection information
and the faulty ciphertext. Therefore, we can create new algebraic equations for the incorrect
encryption process according to the method provided in [14]. After we have determined
the method of fault utilization, we need to select the optimal fault injection location. Since
there is a ShiftRows operation in the SKINNY-64, and the shift value is different for each
row, the diffusion effect is very variable when the fault appears in different rows. Therefore,
it is necessary to analyze the impact of all fault locations.

3. Analysis of the Efficient Location for Fault Injection

The basic principle of the fault attack is to recover the master key by injecting faults
in the encryption process, at the same time, associating the correct ciphertext, faulty
ciphertexts, and other information by establishing the relationship between the faulty and
correct encryption. When performing a fault attack, the location of the fault is important.
If the round of the fault is shallow, the fault does not spread sufficiently, and the number
of required faults is elevated. If the round of fault is too deep, it leads to information
redundancy and is not conducive to key recovery.

Figure 3 gives the fault propagation procedure of SKINNY-64. In the figure, we inject
a fault in the seventh cell at the beginning of round R. After four rounds of cryptographic
operations, the fault spreads to different cells. The SubCells, Addconstant, and AddRound-
Key operations do not affect the diffusion of the faults. The ShiftRows operation allows the
faults to move to other columns by row shifting. The MixColumns operation is the most
important operation that causes fault spreading. Due to the structural characteristics of the
SKINNY-64, the rules of each row are different; so, the impact of the fault diffusion will be
different. At the same time, since only the first and second rows of each round perform
the AddRoundTweakey operation, the effect of the fault on the round key should also be
considered when analyzing the fault propagation.
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Figure 3. The diffusion diagram of SKINNY-64 with the fault injected in the beginning of R-th round.

Therefore, we injected faults into 16 possible locations, and the schematic diagram
after three rounds of fault propagation is shown in Figure 4. All these fault patterns are
distinct. It is very interesting to note that when the faults are in the same row, the patterns
resulting from the four faults are similar, and the same pattern can be obtained by shifting.
When the faults are in different rows, they have very different patterns; in other words,
the effect of the fault propagation is different. When the fault is injected into the first row,
after three rounds, the fault spreads to eight cells; meanwhile, when the fault is injected
into the second, third, and fourth rows, the fault spreads to seven, twelve, and five cells,
respectively. The patterns remain the same up to the input of the RowShifts operation at
the later round.

According to the above analysis, firstly, we inject the fault into the 29th round. The
single fault will obtain the patterns given in Figure 4 after the 29th, 30th, and 31st rounds
of encryption operations. At the same time, this pattern will be maintained until the 32nd
round of AddRoundTweaks.

Using the example of a fault injected into the third column of the third row of round 29,
Figure 5 gives the index of the affected keys after four rounds of diffusion of a single fault.
At the 29th round, no subkey is affected because the fault occurred in the third row, which
was not involved in the AddRoundTweaks operation. After the 29th round of MixColumns,
the fault spread to rows 1, 3, and 4. At the 30th round, the fault in the first column of the
first row was involved in the AddRoundTweakey operation, and its corresponding key
index was 10. Similarly, when the fault spread to the last round, the affected key index
array was [2, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15].
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Figure 4. Schematic diagram of different locations of the fault after three rounds of diffusion (The red
box represents the initial fault, and the green boxes represent the diffused faults after three rounds).
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Figure 5. The schematic diagram for the index of affected keys after four rounds (The blue box
indicates the index of the affected keys, and the orange box indicates the propagation path of
the fault).

Similarly, we analyzed 16 different fault locations for the 29th round and provide the
affected key index arrays separately in Table 4.

From Table 4, it can be noticed that the largest number of affected key indexes was
obtained when the fault was injected into four locations in the third row of the 29th round.
In the case where the number of faults was one, the more keys that were affected by the
fault, the more information was generated for the key recovery, which was more favorable
for recovering the master key. For the key indexes that were not affected by the fault,
the solver used a violent search method for the unaffected key indexes, which was very
time-consuming.
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Table 4. The index distribution of the affected keys under different fault locations in the 29th round.

Location Index of Affected Keys Index of Unaffected Keys

SBox_0 [2,4,6,7,8,10,11,12,14,15] [0,1,3,5,9,13]
SBox_1 [0,2,3,8,9,11,12,13] [1,4,5,6,7,10,14,15]
SBox_2 [0,4,5,6,9,10,12,13,14] [1,2,3,7,8,11,15]
SBox_3 [1,4,7,9,10,11,14,15] [0,2,3,5,6,8,12,13]
SBox_4 [5,7,9,10,11,15] [0,1,2,3,4,6,8,12,13,14]
SBox_5 [2,7,8,10,11,12] [0,1,3,4,5,6,9,13,14,15]
SBox_6 [0,3,8,9,11,13] [1,2,4,5,6,7,10,12,14,15]
SBox_7 [0,4,8,9,10,14] [1,2,3,5,6,7,11,12,13,15]
SBox_8 [0,2,4,5,8,9,10,11,12,13,14] [1,3,6,7,15]
SBox_9 [0,1,4,7,8,9,10,11,13,14,15] [2,3,5,6,12]

SBox_10 [2,4,6,7,8,9,10,11,12,14,15] [0,1,3,5,13]
SBox_11 [0,2,3,7,8,9,10,11,12,13,15] [1,4,5,6,14]
SBox_12 [1,7,10,11,15] [0,2,3,4,5,6,8,9,12,13,14]
SBox_13 [2,6,8,10,11,12] [0,1,3,4,5,7,9,13,14,15]
SBox_14 [0,3,8,9,13] [1,2,4,5,6,7,10,11,12,14,15]
SBox_15 [4,5,9,10,12,14] [0,1,2,3,6,7,8,11,13,15]

From the above analysis, we can find that the depth of the fault was not deep enough to
cause sufficient diffusion using one fault. Therefore, we injected the fault into the beginning
position of the 28th round. According to the different locations of the fault, we give a
schematic diagram of the 16 types of fault diffusion in Figure 6. As we can see in Figure 6,
when the fault was injected into the third row at the beginning of the 28th round, the fault
affected all positions after four rounds of diffusion. Similarly, we still used the example of a
fault injection into the third column of the third row. From Figure 7, we see that the arrays
of the affected key indexes after five rounds were [4] + [10, 12, 14, 15] + [0, 1, 2, 4, 5, 6, 7]
+ [8, 9, 10, 11, 12, 13, 14, 15], merged as [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. After five
rounds of encryption, the fault injected into the 10th cell at the beginning of the 28th round
was fully diffused.

Figure 6. Schematic diagram of different locations of the fault after four rounds of diffusion (The red
box represents the initial fault, and the blue boxes represent the diffused faults after four rounds).



Entropy 2023, 25, 908 10 of 17

SC AC

AddRoundTweakey

 

 >>>>1

>>>>2

>>>>3

ShiftRows

 

 

 

MixColumns

n

 

 >>>>1

>>>>2

>>>>3

ShiftRows

 

 

 

MixColumns

Fault-injection 

in 28th_round

29th_round

 

 >>>>1

>>>>2

>>>>3

ShiftRows

 

 

 

MixColumns
30th_round

 

 >>>>1

>>>>2

>>>>3

ShiftRows

 

 

 

MixColumns

31st_round

SC AC

SC AC

SC AC

 

 >>>>1

>>>>2

>>>>3

ShiftRows

 

 

 

MixColumns
32nd_round

SC AC

12 10 14 9

13 15 11 8

12 10 14 9

13 15 11 8

4 2 6 1

5 7 3 0

4 2 6 1

5 7 3 0

10 8 12 15

14 11 13 9

10 8 12 15

14 11 13 9

2 0 4 7

6 3 5 1

2 0 4 7

6 3 5 1

8 9 10 11

12 13 14 15

8 9 10 11

12 13 14 15

AddRoundTweakey

AddRoundTweakey

AddRoundTweakey

AddRoundTweakey

Figure 7. The schematic diagram for the index of affected keys after five rounds (The blue box
indicates the index of the affected keys, and the orange box indicates the propagation path of
the fault).

We analyzed the other 15 positions at the beginning of the 28th round and provide the
results in Table 5. From Table 4, we can find that the number of unaffected key indexes was
the lowest when the fault location was in SBox_8, SBox_9, SBox_10, and SBox_11. These
locations were all in the third row at the beginning of the 28th round.

Table 5. The index distribution of the affected keys under different fault locations in the 28th round.

Location Index of Affected Keys Index of Unaffected Keys

SBox_0 [1,2,4,5,6,7,8,9,10,11,12,14,15] [0,3,13]
SBox_1 [0,2,3,6,7,8,9,10,11,12,13] [1,4,5,14,15]
SBox_2 [0,3,4,5,6,8,9,10,11,13,14] [1,2,7,12,15]
SBox_3 [0,1,4,5,7,8,9,10,11,12,14,15] [2,3,6,13]
SBox_4 [0,1,4,7,8,9,10,11,13,14,15] [2,3,5,6,12]
SBox_5 [2,6,7,8,9,10,11,12,14,15] [0,1,3,4,5,13]
SBox_6 [0,2,3,7,8,9,10,11,12,13,15] [1,4,5,6,14]
SBox_7 [0,2,4,5,8,9,10,11,12,13,14] [1,3,6,7,15]
SBox_8 [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15] [1]
SBox_9 [0,1,2,3,4,5,7,8,9,10,11,12,13,14,15] [6]

SBox_10 [0,1,2,4,5,6,7,8,9,10,11,12,13,14,15] [3]
SBox_11 [0,1,2,3,4,6,7,8,9,10,11,12,13,14,15] [5]
SBox_12 [1,4,7,9,10,11,14,15] [0,2,3,5,6,8,12,13]
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Table 5. Cont.

SBox_13 [2,4,6,7,8,10,11,12,15] [0,1,3,5,9,13,14]
SBox_14 [0,2,3,8,9,11,12,13] [1,4,5,6,7,10,14,15]
SBox_15 [0,4,5,6,9,10,12,13,14] [1,2,3,7,8,11,15]

As mentioned above, the diffusion effect of the fault was different when the fault
occurred on different rows, and the affected key index arrays were also different. Next,
we used software to simulate fault attacks and analyzed the efficiency of the key recovery
when the fault was in different scenarios.

4. Simulation Experiments and Results

To verify the effectiveness of the proposed attack scheme in reducing the number of
faults and the time of key recovery, we conducted multiple sets of randomized experiments
and statistically analyzed the average solving time and solving success rate for different
scenarios. In our experiments, we simulated the fault injection experiment via Python.
We implemented the experiments on a PC that had 16 GB memory and Intel(R) Core(TM)
i5-9500 CPU at 3 GHz. The operating system was a 64-bit Windows 10. After generating the
algebraic equations file for the solver using the Python script, we completed the solution of
the algebraic equations using the CryptoMiniSAT solver under Ubuntu 18.04.5.

Algorithm 1 was used to implement the encryption of the SKINNY-64 block cipher.
The inputs of the algorithm were P (plaintext) and K (master keys), and the output was
the correct ciphertext C, where MC, SR, and RC represent the MixColumn, ShiftRow, and
round constants, respectively. We obtained the correct encryption result in the output,
which was used in the algebraic fault analysis.

Algorithm 1: The encryption of SKINNY-64.
Input: P, K
Output: C

1 i← 0 , r ← 32;
2 P0 ← P;
3 for i = 0 to r− 1 do
4 Pi+1 ← MC(SR(SC(Pi)⊕ RCi ⊕ Subkeyi));
5 C ← Pr;
6 end
7 return C

Algorithm 2 was used for the process of fault injection in the SKINNY-64 block cipher.
The inputs of the algorithm were P (plaintext), K (master keys), and R f ault, and the output
was the fault ciphertext C∗. Due to the innovation of the fault injection technology, we can
achieve the precise injection of fault using methods such as laser fault injection to achieve a
single-bit fault. Here, we used simulated fault injection to obtain the fault ciphertext.

In Algorithm 3, we give a pseudocode for an efficient algebraic fault attack scheme
against SKINNY-64. The inputs of the algorithm were P, R f ault, and N, which represented
the plaintext, the number of fault rounds, and the number of instances, respectively. In
Line #1, we used algebraic equations based on S-box decomposition instead of the original
algebraic expressions. Similarly, we used the new S-box expressions when building the
equations for faulty encryption in Line #2. In Line #3, we used the CryptoMiniSAT to
recover the master keys.
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Algorithm 2: Fault injection to SKINNY-64.
Input: P, K, R f ault
Output: C∗

1 i← 0 , r ← 32;
2 P0 ← P;
3 for i = 0 to r− 1 do
4 if i = R f ault then
5 Pi ← P∗i ;
6 end
7 Pi+1 ← MC(SR(SC(Pi)⊕ RCi ⊕ Subkeyi));
8 C∗ ← Pr;
9 end

10 return C∗

Algorithm 3: Efficient algebraic fault attack scheme against SKINNY-64.
Input: P, R f ault, N
Output: Tsol , Tave

1 i← 0 , r ← 32;
2 for r = 1; r < 32; rc ++ do
3 Generate the equation set for sub-key;
4 Generate the equation set of correct encryption //#1;
5 end
6 C ← Algorithm 1 (P, K);
7 C∗ ← Algorithm 2 (P, K);
8 Generate the equation set for P, C, C∗;
9 for R = R f ault; r < 32; r ++ do

10 Generation of the equation set of fault-injection encryption //#2;
11 end
12 Tsol = Run AFA() //#3;
13 return Tsol ;
14 Ttol ← 0;
15 for i = 1; i < N; i ++ do
16 Ttol = Tsol,i + Ttol
17 end
18 Tave = Ttol/N

We generated 50 random instances for each scenario and set the solver solving time to
1 hour, after which the attack was considered to have failed. The average solving time and
the success rate of solving for different scenarios are given in Table 6. It should be noted
that the “-” symbol appearing in Table 6 means that all 50 samples could not recover the
master key within a specific time; so, the average solving time had no definite value.

The experimental results indicated that when the fault was injected into the 29th
round, the recovery of the master key was not achieved for one fault within the specified
time, regardless of the location of the fault injection. Analyzed from the perspective of
the algebraic representation of the S-box, no key recovery could be completed within the
specified time using the original S-box algebraic equations under the premise of using one
fault. When the fault was injected into the first row at the beginning of the 28th round,
the success rate of the attack in 50 instances was 26%, and the average solving time was
959.2 s. When the fault was injected into the second row, the success rate was 6%, and the
average solving time was 1007.0s. The most interesting experimental result was that when
the fault was injected into the third row of the 28th round, the success rate of the solving
within the specified time was 100%, and the average solving time was 9.0 s. Meanwhile,
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when the fault was injected into the fourth row of the 28th round, none of the attacks
could be completed. The histogram of the frequency distribution of the solving time for
different scenarios in the 28th round is given in Figure 8. From the experimental results, it
can be seen that the use of the S-box decomposition method proposed in this paper made
it possible to complete the algebraic fault analysis of the SKINNY-64 with a single fault,
while the attack could not be achieved in a specific time using the original S-box. We gave
the optimal fault injection location by analyzing the diffusion effect of different locations,
and the experimental results were consistent with the analysis.

Table 6. The results of the attack against SKINNY-64 under different scenarios.

Round Location Tave (Seconds) of
Original S_Box

Tave (Seconds) of
New S_Boxes

Success Rate of
Original S_Box

Success Rate of
New S_Boxes

29 [0,1,2,3] - - 0% 0%
29 [4,5,6,7] - - 0% 0%
29 [8,9,10,11] - - 0% 0%
29 [12,13,14,15] - - 0% 0%
28 [0,1,2,3] - 959.2 0% 26%
28 [4,5,6,7] - 1007.0 0% 6%
28 [8,9,10,11] - 9.0 0% 100%
28 [12,13,14,15] - - 0% 0%
27 [0,1,2,3] - 956.8 0% 58%
27 [4,5,6,7] - 373.8 0% 94%
27 [8,9,10,11] - 1236.6 0% 26%
27 [12,13,14,15] - 1594.0 0% 32%
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Figure 8. Distribution of the solving time under different scenarios in the 28th round. (a) Locations =
[0,1,2,3]; (b) Locations = [4,5,6,7]; (c) Locations = [8,9,10,11]; (d) Locations = [12,13,14,15].

In the same way, we continued to deepen the fault injection depth. When the fault was
injected into the first row at the beginning of the 27th round, the success rate of the attack in
50 instances was 58%, and the average solving time was 956.8 s. When the fault is injected
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into the second row, the success rate was 94%, and the average solving time was 373.8 s.
Unlike the fault injection into the 28th round, when the fault was injected into the third
row of the 27th round, its solving success rate decreased to 26%, and the average solving
time increased from 9 s to 1236.6 s. This could be caused by information redundancy due
to the faults diffusing too quickly. Meanwhile, when the fault was injected into the fourth
row of the 27th round, the success rate was 32%, and the average solving time was 1594.0 s.
Similarly, recovery of the master key within one hour could not be achieved in 27 rounds
using one fault without the S-box decomposition method. The histogram of the frequency
distribution of the solving time for different scenarios in the 27th round is given in Figure 9.
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Figure 9. Distribution of the solving time under different scenarios in the 27th round. (a) Locations =
[0,1,2,3]; (b) Locations = [4,5,6,7]; (c) Locations = [8,9,10,11]; (d) Locations = [12,13,14,15].

We tried to perform experiments in deeper rounds, and the experimental results
showed that the key recovery could not be completed in the specified time under this
attack model.

5. Discussion

By performing differential trace analysis and improved algebraic fault analysis on
SKINNY, we found that the recovery of the master keys could be achieved using one fault.
This attack scheme was efficient and achievable. When the fault was injected in the 28th
round, the best fault injection point was the third row. When the fault was injected in the
27th round, the best fault injection point was the second row. Choosing the appropriate
fault injection location could effectively reduce the number of faults required and improve
the solving efficiency. At the same time, improving the representation of the algebraic
equations could also improve the success rate of the attack and reduce the number of faults
required for the attack. The attack scheme proposed in this paper has the advantages of a
lower number of faults and a faster solving speed compared with those proposed in the
existing literature. A comparison chart between the different approaches is given in Table 7.
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Table 7. Comparison with existing fault analyses of SKINNY-64.

Methods Reference Location of
Fault

Minimum
Number of

Faults

Average Attack
Time(s)

DFA [5] 28th round 10.6 0.28
APFA [10] S-box table 10 3.7× 105

EPFA [8] S-box table 1500–1600 0.03
AFA this paper 28th round 1 9
AFA this paper 27th round 1 373.8

By comparing the literature in Table 7, we can find that the fault injection locations of
the DFA method proposed in [5] and the method used in this paper were both in the 28th
round. The number of faults used in [5] was 10.6; meanwhile, only one fault was needed in
this paper to complete the recovery of the master key. There was little difference in time
between the two methods, and both completed the attack in a relatively short time. Ref. [10]
and ref. [8] are studies based on persistent fault analysis. First, a fault was injected into the
S-box, causing the cryptographic device to fail during operation. The attacker performed
key recovery based on the generated faulty ciphertexts and related fault information. The
algebraic persistent fault analysis proposed in [10] for SKINNY-64 required a minimum
of 10 fault ciphertexts to recover the master key, and from the experimental results, the
average solving time reached 3.7× 105. The enhanced persistent fault analysis proposed
in [8] for SKINNY-64 required a number of faulty ciphertexts between 1500 and 1600, with
an average solving time of 0.03s. Although this method had a shorter solving time, it
required a larger number of faulty ciphertexts. Therefore, after trading off various elements,
it is concluded that the method proposed in this paper is more efficient and implementable.

6. Conclusions and Future Work

This paper investigated the SKINNY-64 block cipher using algebraic fault analysis.
Compared with the classical algebraic fault analysis framework, the S-box decomposition
technique and the differential path analysis method were introduced in this paper, and the
optimal fault injection model was given according to the characteristics of the algorithm
itself. The S-box decomposition technique reduces the number of algebraic equations to
some extent, expresses the same information using fewer CNF equations, and improves the
solving time of the Solver. The more obvious experimental conclusion is that the use of the
S-box decomposition technique enables the recovery of one fault for all keys in the context
of the same fault attack. As for the analysis of differential paths, choosing the most suitable
fault injection point can effectively improve the fault injection efficiency. The structural
properties of the algorithm lead to differences in the robustness of different locations.
The optimal fault injection point was analyzed by analyzing how the subkey index was
affected when the fault was at different locations. With the popularity of lightweight block
ciphers, many different lightweight block ciphers have appeared on the market. They have
similar but different structures. In order to better implement attack testing and protection,
a targeted analysis of the different ciphers is needed. The structure of the LED-64 is similar
to that of the SKINNY-64 in that they both contain RowShifts operation. The proposed
method based on this paper is also applicable to the LED-64, and we will study the LED
block cipher and give an efficient algebraic fault analysis method for it in future work.

The two main forms contained in lightweight cryptographic algorithms are SPN-
type and Feistel-type. Currently, we have only conducted related research for SPN-type
lightweight block ciphers. In future work, we can use the analysis method proposed in this
paper to investigate cryptographic algorithms with Feistel-type structures.



Entropy 2023, 25, 908 16 of 17

Author Contributions: Conceptualization, H.Z. and X.F.; methodology, X.F.; software, X.F.; valida-
tion, X.F. and L.D.; formal analysis, X.F.; investigation, Y.W.; resources, H.Z.; data curation, X.F.;
writing—original draft preparation, X.F.; writing—review and editing, X.F.; visualization, X.F.; super-
vision, X.C.; project administration, H.Z.; funding acquisition, H.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62071057),
the Fundamental Research Funds for the Central Universities (2019XD17), and the Acronautical
Science Foundation of China (2019ZG073001).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: https://github.com/fancy-t/skinny_AFA_new_sbox_optional, (ac-
cessed on 22 May 2023) offers the relevant data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
study design, data collection, analysis and interpretation, manuscript writing, and decision to
publish results.

References
1. Beierle, C.; Jean, J.; Kölbl, S.; Leander, G.; Moradi, A.; Peyrin, T.; Sasaki, Y.; Sasdrich, P.; Sim, S.M. The SKINNY family of block

ciphers and its low-latency variant MANTIS. In Advances in Cryptology—CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, 14–18 August 2016; Part II; Springer: Berlin/Heidelberg, Germany, 2016; pp. 123–153.

2. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems-CHES 2007: 9th International Workshop, Vienna,
Austria, 10–13 September 2007; Springer: New York, NY, USA, 2007; Volume 4727, pp. 450–466.

3. Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. GIFT: A small present. In Cryptographic Hardware and Embedded
Systems—CHES 2017: 19th International Conference, Taipei, Taiwan, 25–28 September 2017; Springer: Berlin, Germany, 2017; pp. 25–28.

4. Guo, J.; Peyrin, T.; Poschmann, A.; Robshaw, M. The LED block cipher. In Cryptographic Hardware and Embedded Systems—
CHES 2011: 13th International Workshop, Nara, Japan, 28 September–1 October 2011; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 326–341.

5. Vafaei, N.; Bagheri, N.; Saha, S.; Mukhopadhyay, D. Differential fault attack on SKINNY block cipher. In Security, Privacy, and
Applied Cryptography Engineering: 8th International Conference, SPACE 2018, Kanpur, India, 15–19 December 2018; Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11348 LNCS;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 177–197.

6. Zhang, X.; Wei, Y.; Li, L. New Countermeasures against Differential Fault Attacks. In Proceedings of the 2020 International
Conference on Internet of Things and Intelligent Applications (ITIA 2020), Zhenjiang, China, 27–29 November 2020.

7. Yang, D.; Qi, W.-F.; Chen, H.-J. Impossible differential attacks on the SKINNY family of block ciphers. IET Inf. Secur. 2017, 11,
377–385. [CrossRef]

8. Xu, G.; Zhang, F.; Yang, B.; Zhao, X.; He, W.; Ren, K. Pushing the Limit of PFA: Enhanced Persistent Fault Analysis on Block
Ciphers. IEEE Trans. -Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 9311204. [CrossRef]

9. Zhang, J.; Cui, T.; Jin, C. New Rectangle Attack Against SKINNY Block Cipher. In Wireless Algorithms, Systems, and Applications:
16th International Conference (WASA 2021), Nanjing, China, 25–27 June 2021; Liu, Z., Wu, F., Das, S.K., Eds.; Springer: Cham,
Switzerland, 2021; Volume 12939.

10. Zhang, F.; Feng, T.; Li, Z.; Ren, K.; Zhao, X. Free Fault Leakages for Deep Exploitation: Algebraic Persistent Fault Analysis on
Lightweight Block Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 2, 289–311. [CrossRef]

11. Fang, X.; Zhang, H.; Wang, D.; Yan, H.; Fan, F.; Shu, L. Algebraic Persistent Fault Analysis of SKINNY_64 Based on S_Box
Decomposition. Entropy 2022, 24, 1508. [CrossRef] [PubMed]

12. Knudsen, L.R. Deal-a 128-bit block cipher. Complexity 1998, 258, 216.
13. Biham, E.; Biryukov, A.; Shamir, A. Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In Advances

in Cryptology—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic Techniques Prague, Czech
Republic, 2–6 May 1999; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1592, pp. 12–23.

14. Zhang, F.; Guo, S.; Zhao, X.; Wang, T.; Yang, J.; Standaert, F.-X.; Gu, D. A Framework for the Analysis and Evaluation of Algebraic
Fault Attacks on Lightweight Block Ciphers. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1039–1054. [CrossRef]

15. Knudsen, L.R.; Miolane, C.V. Counting equations in algebraic attacks on block ciphers. Int. J. Inf. Secur. 2010, 9, 127–135.
[CrossRef]

16. Kutzner, S.; Nguyen, P.H.; Poschmann, A.; Wang, H. On 3-share Threshold Implementations for 4-bit S-boxes. In Constructive
Side-Channel Analysis and Secure Design:4th International Workshop (COSADE 2013), Paris, France, 6–8 March 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 99–113.

https://github.com/fancy-t/skinny_AFA_new_sbox_optional
http://doi.org/10.1049/iet-ifs.2016.0488
http://dx.doi.org/10.1109/TCAD.2020.3048280
http://dx.doi.org/10.46586/tches.v2022.i2.289-311
http://dx.doi.org/10.3390/e24111508
http://www.ncbi.nlm.nih.gov/pubmed/36359601
http://dx.doi.org/10.1109/TIFS.2016.2516905
http://dx.doi.org/10.1007/s10207-009-0099-9


Entropy 2023, 25, 908 17 of 17

17. Bilgin, B.; Nikova, S.; Nikov, V.; Rijmen, V.; Stütz, G. Threshold implementations of all 3 × 3 and 4 × 4 S-boxes. In Crypto-
graphic Hardware and Embedded Systems (CHES 2012):14th International Workshop, Leuven, Belgium, 9–12 September 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 76–91.

18. Jati, A.; Gupta, N.; Chattopadhyay, A.; Sanadhya, S.K.; Chang, D. Threshold Implementations of GIFT: A Trade-Off Analysis.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2110–2120. [CrossRef]

19. Courtois, N.T.; Ware, D.; Jackson, K. Fault-algebraic attacks on inner rounds of DES. In Proceedings of the E-Smart’10 Proceedings:
The Future of Digital Security Technologiesm, Montreuil, France, 22–24 September 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2019.2957974

	Introduction
	Related Works
	Contributions

	Preliminaries
	General Description of SKINNY-64
	Subkeys of SKINNY-64
	Algebraic Fault Analysis against SKINNY-64

	Analysis of the Efficient Location for Fault Injection
	Simulation Experiments and Results
	Discussion
	Conclusions and Future Work
	References

