
Citation: Cinaglia, P.; Cannataro, M.

Identifying Candidate Gene–Disease

Associations via Graph Neural

Network. Entropy 2023, 25, 909.

https://doi.org/10.3390/e25060909

Academic Editor: Deniz Gençağa
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Abstract: Real-world objects are usually defined in terms of their own relationships or connections.
A graph (or network) naturally expresses this model though nodes and edges. In biology, depending
on what the nodes and edges represent, we may classify several types of networks, gene–disease
associations (GDAs) included. In this paper, we presented a solution based on a graph neural network
(GNN) for the identification of candidate GDAs. We trained our model with an initial set of well-
known and curated inter- and intra-relationships between genes and diseases. It was based on graph
convolutions, making use of multiple convolutional layers and a point-wise non-linearity function
following each layer. The embeddings were computed for the input network built on a set of GDAs to
map each node into a vector of real numbers in a multidimensional space. Results showed an AUC of
95% for training, validation, and testing, that in the real case translated into a positive response for 93%
of the Top-15 (highest dot product) candidate GDAs identified by our solution. The experimentation
was conducted on the DisGeNET dataset, while the DiseaseGene Association Miner (DG-AssocMiner)
dataset by Stanford’s BioSNAP was also processed for performance evaluation only.

Keywords: graph neural network; gene disease associations; link prediction; neural network; deep
learning

1. Introduction

In recent years, a large amount of genomic and biological data has been studied in
clinical research trials to correlate human diseases with genomics data, e.g., to define
novel treatments. Disease profiling may include data from omics data (e.g., genomics,
transcriptomics, and metabolomics) that could be related to disease susceptibility, progress
and manifestation. The genes are crucial to understand the key factors involved in a
correlated disease (e.g., molecular basis and biological mechanisms), as well as to evaluate
the treatments and diagnosis. For instance, a phenotype may be caused by mechanisms
which can be divided into several groups, where each one is characterized by a set of
specific patterns and pathways that handle its activation. The knowledge related to this
one could be very limited or misleading when the molecular mechanisms are unknown.

In bioinformatics, this topic has widely been tackled through the development of
solutions for pattern recognition and data mining, besides data integration, in order to
gather gene–disease associations (GDAs). A GDA is an association between a genetic
variant with a disease or trait. The related branch of study focuses on investigating the
divergences for one or more genes that could predispose to disease onset as well as be
potentially responsible for the development of a specific disease phenotype. The GDAs
are studied to identify the biological meaning for a given association that goes beyond
pure randomness. To give an example, recent studies [1] proved the responsibility of
aberrant interactions between mutant proteins, transcription factors and transcriptional
co-activators that are the cause of the onset of Huntington’s disease. Authors based their
own study on processing large genomic regions in a coordinated fashion to also evaluate
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disease progression and altered chromosomal clusters, according to these. Results support
the notion of a common genome-wide mechanism of disruption of RNA transcription in
the brain and periphery of Huntington’s disease patients. Similarly, computational models
are also used to infer novel microRNA (miRNA)–disease associations by allowing the
identification of promising miRNA–disease pairs for experimental validation [2–5].

Based on a network build by taking into account an exhaustive set of GDAs, the
genotype of one or more polymorphisms will be seen more often in an individual carrying
the trait, in relation to the probability that the latter is due to chance [6]. In this context,
DisGeNET [7] integrates heterogeneous data sources to provide a set of curated and inferred
GDAs. It identifies the diseases and the genes by using the Unified Medical Language
System-Concept Unique Identifier (UMLS-CUI, or simply UMLS) and the Entrez Gene
unique integer (i.e., gene identifier, or GeneID), respectively [8]. DisGeNET uses multiple
data mining techniques on biological and literature data to build its own database [9].

The former was analyzed by integrating a set of existing databases (i.e., Universal
Protein, Psychiatric Disorders Gene Association Network, Orphanet, Cancer Genome Inter-
preter, Comparative Toxicogenomics Database for Human, ClinGen, and Genomics England
PanelApp), while the latter by performing the named entity recognition (NER) [10] of ge-
netic variants on natural language texts retrieved both from the Single Nucleotide Polymor-
phism (SNP) database (i.e., dbSNP) [11] and the Universal Protein (UniProt) database [12].
Similarly, Stanford’s BioSNAP [13] provides a network-based dataset (Disease–Gene Asso-
ciation Miner, or DG-AssocMiner), containing a set of human GDAs. However, the latter
contains much less information and GDAs than DisGeNET.

The real-world objects are usually defined in terms of their relationships or connections,
which can be naturally expressed by using a graph (or network) model. In this paper, we
will use the terms “graph” and “network” interchangeably.

In biology, depending on what the nodes and edges represent, we may classify several
types of networks [14], such as gene regulatory networks, signaling networks, human
disease networks, or protein interaction network. A network is also used to model gene–
disease networks consisting of GDAs. In the last decade, the application of novel end-to-end
deep learning (DL) paradigms boosted the research on pattern recognition and data mining
in many domains [15–17]. For instance, the graph neural network (GNN) allows the
modeling of graph data via NN, basing the computation on techniques originally designed
for imaging. Briefly, an image can be represented by a matrix that can be transported into
a Euclidean space to extract latent representation; therefore, the connections between the
adjacent pixels can be treated as a graph. This approach may be considered biunivocal by
adapting well-known paradigms from imaging to graph (or network) analysis [18]. We
propose the following non-exhaustive example. Assuming G = (V, E) an undirected and
unweighted graph, with V and E, two sets of n nodes and m edges, respectively. We can
calculate a weight for each edge so that it is representative of the node’s neighborhood
information. The resulting weighted graph G′ can be used to compute a fixed length vector
representation for each entity (i.e., embedding) based on the edge weights. Similarly to
imaging, we could analyze a graph consisting of the nodes of interest (e.g., genes), instead
of pixels.

As discussed, DL approaches for imaging base their own analysis on the Euclidean
data obtained from the image data source. Therefore, we could apply the principle at the
basis of a convolutional NN (CNN) for feature extraction, connectivity evaluation, as well
as to exploit the pattern recognition [19,20].

Ultimately, a graph convolution can be generalized from a 2-dimensional (2D) convo-
lution, and if an image is analyzed as a special case of a graph, then the latter may also be
analyzed by taking into account its adjacent matrix; the only detail is to be able to relate the
nodes of the graph through a system of weights that are representative of the characteristics
of each node.

According to this statement, we modeled a GNN based on graph convolutions making
use of multiple convolutional layers, and a point-wise non-linearity function following each
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layer; in detail, we used the rectified linear unit (ReLU) activation function. Fitting the input
data source to the model required a preprocessing step to learn the weight matrix from its
topology. The embeddings were computed for the input network built on a set of GDAs in
order to map each node into a vector of real numbers in a multidimensional space, as well
as to train our model. Subsequently, we used it to identify the existence of candidate links
(i.e., GDAs) among the entities of the original network. The experimentation was conducted
by using data in the DisGeNET database, while the DiseaseGene Association Miner (DG-
AssocMiner) dataset by Stanford’s BioSNAP was also processed for performance evaluation
only. Briefly, our contribution can be summarized as follows:

• Designing a GNN able to infer candidate GDAs by training an initial set of well-known
and curated relationships between genes and diseases, modeled as a network;

• Embedding a biological network consisting of GDAs, based on its own topological
features;

• Identifying candidate GDAs by exploiting link prediction via GNN.

The rest of the paper is organized as follows. Section 3 presents the design and imple-
mentation of our solution. Section 4 describes the model evaluation, and the explanatory
tests for link prediction related to GDAs. Section 5 discusses the results. Finally, Section 6
concludes the paper.

2. Related Works

In this section, we report a set of solutions (i.e., methodologies, models, software tools
and prototypes) based on GNNs. As introduced, GNNs represent a significant approach
for graph-based studies. These may be applied to predict biological objects and/or their
interaction in several fields, such as protein–protein interaction (PPI), gene interaction,
drug–target interaction (DTI), and chemical stability prediction, as well as to exploit the
topological structures in biological networks [21–23].

Wan et al. [24] proposed an inductive graph aggregator-based framework able to
predict potential compound–protein interactions. The authors built a homogeneous graph
starting from a compound–protein heterogeneous graph by integrating the ligand-based
protein representations and overall similarity associations. They based the training process
on low-dimensional node embeddings.

Similarly, Li et al. [25] developed a GNN model for diagnosis prediction. Authors
retrieved the information for training on a graph built on temporal electronic health record
data. A graph convolutional network (GCN) was used for the mentioned solutions.

In the past few years, GCNs have been widely used to develop several variants of
GNNs [26]. They compute the input neurons with a set of weights (i.e., filters or kernels)
that are exploited by using a sliding window to learn the features of interest for any
neighboring nodes. This approach was originally designed for image analysis, in which a
window slides across an image to acquire subsamples for object detection [27,28].

For instance, Li et al. [29] proposed a GCN for COVID-19 drug design. Authors
based their own model on a multi-physical molecular graph representation by embedding
various atom interactions in element-specific graph representations. They computed the
embedding by only taking into account the distance-related node features, in order to
overcome the issues related to feature extraction or generation. The model was trained by
using data from several versions of the protein data bank binding (PDBbind) database.

A similar drug–side effects prediction was performed by Yu et al. [30] via a hybrid
embedding GNN model, which integrates both graph-embedding and node-embedding
modules. Therefore, the model was trained on a dual set of features, simultaneously.

Always resorting to using a GCN as a basis for their own model, Zhang et al. [31]
proposed a signed GNN to predict deregulation types of miRNA–disease associations. The
latter were processed as a signed bipartite network by taking into account both miRNA and
disease nodes, as well as two types of edges representatives for a miRNA–disease associa-
tion, in which the former was up- or down- regulated. The authors built their own model
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by learning the topological features of the input graph, through a node labeling computed
on miRNA–miRNA functional similarity and disease–disease semantic similarity.

This issue has also been studied by Gao et al. [32]. Also in this case, the similarity was
computed via node embeddings; however, the authors implemented a link prediction task
to overcome the insufficient number of labeled similar disease pairs.

Kang et al. [33] applied a link prediction task to four biological network data (i.e.,
lncRNA–disease association, miRNA–disease association, protein–protein interaction, and
drug–drug interaction), by including a GCN–encoder layer to improve the multi-link
discrimination capabilities.

Finally, we investigated several issues addressed through the use of GNN in biological
networks. One detail that is immediately apparent is that the mentioned solutions are
based on GCNs. According to Zhang et al. [34], the reason could lie in the fact that GCN
is the simplest model with fewer instructions and floating-point operations per second
(FLOPS), which makes it the most commonly used architecture in real-life applications.

3. Materials and Methods

We designed a solution based on a GNN in order to identify candidate GDAs by
training our model on the basis of an initial set of well-known and curated relationships
among genes and diseases modeled as a network (i.e., DisGeNET). The model was built
making use of convolutional layers, and an activation function based on ReLU; the latter is
a point-wise non-linearity function following each layer. Furthermore, we mapped each
node into a vector of real numbers in a multidimensional space by performing the node em-
beddings of the input network built on a set of GDAs. Each embedding is symptomatic for
the features of the related node, obtained by evaluating the connections with its neighbors.

Node embeddings are used to train our model, and subsequently to predict the
existence of candidate links (i.e., GDAs). In addition, fitting the original data source to
the model requires a preprocessing step to learn the weight matrix based on the original
graph topology.

Summarizing, we mapped the input graph into a lower-dimensional space (i.e., em-
bedding) by using the model’s encoder, and a decoder to reconstruct the input graph from
the embeddings via a dot product operator. Let us denote with A the adjacency matrix
computed from the input graph, and with A′ as the reconstructed adjacency matrix from
the embedding. Our solution works by minimizing the loss function calculated on the
difference between A and A′.

3.1. Datasets

We briefly describe the specifications related to the datasets used by our solution for
the testing and the performance evaluation. Their own data sources (i.e., DisGeNET and
Stanford’s BioSNAP) are already presented in Section 1.

3.1.1. DisGeNET (v7.0, Update 2020)

The last release of DisGeNET (v7.0, https://www.disgenet.org/dbinfo, accessed on
19 May 2023) contains 1,135,045 GDAs. It is provided as a SQLite database, which also
includes variant–disease associations (VDAs) and disease–disease associations, as well as
additional information about the biological objects involved within the associations (i.e.,
genes, diseases and variants).

The data are grouped into several sets (or versions), of which we used the “Curated”
and “All” versions; the former refers to well-known GDAs related to humans (Homo
sapiens), while the latter also includes inferred associations computed by integrating data
derived from the text mining of the scientific literature and no-human repositories (e.g.,
MGI-Mouse Genome Informatics Database, and Rat Genome Database).

We report below the statistics for the two graphs modeled starting from the DisGeNET
database.

All-version:

https://www.disgenet.org/dbinfo


Entropy 2023, 25, 909 5 of 15

• Total nodes: 37,444;
• Gene nodes: 17,074;
• Disease nodes: 20,370;
• Edges: 1,122,238.

Curated-version:

• Total nodes: 20,924;
• Gene nodes: 9738;
• Disease nodes: 11,186;
• Edges: 168,992.

3.1.2. DG-AssocMiner

In addition, we used a secondary dataset to evaluate our model on a different source.
The latter is also related to the context concerning the GDAs. In detail, we retrieved the
DG-AssocMiner provided by Stanford’s BioSNAP; this is available at https://snap.stanford.
edu/biodata/datasets/10012/10012-DG-AssocMiner.html, accessed on 19 May 2023).

• Total nodes: 7813;
• Gene nodes: 7294;
• Disease nodes: 519;
• Edges: 21,357.

In this work, we strictly focused on DisGeNET, being composed of a larger dataset;
we used DG-AssocMiner to provide a secondary feedback on the performance evaluated
on the former. Results are reported in Section 4.

3.2. Preprocessing

We extracted all GDAs from DisGeNET by excluding additional information (e.g.,
aliases for genes and diseases, source used to identify an association, and other identifiers
for external databases); the latter will be able to be integrated in post-processing, eventually.

Furthermore, we encoded the gene and disease identifiers in 32-bit floating point,
according to the requirements of tensors (i.e., data structures used in linear algebra).
Subsequently, we modeled an undirected, bipartite graph, where the nodes represent both
genes and diseases, while the edges represent the GDAs. We repeated this step both for the
“Curated” and “All” versions, in order to produce two independent graphs. The former
was used for model training, validation and testing, while the latter as a reference for the
identified GDAs.

We treated the GDAs as pairs (gene, disease). Let G be a set of genes and D be a
set of diseases, such that G = [g1, g2, . . . , gn] and D = [d1, d2, . . . , dm], with n and m,
respectively, the size of G and D. Formally, the cross-referencing may be computed to build
the following domain:

∀g ∈ G ∃d ∈ D : f (g, d)→ GDA

In the proposed solution, the pre-processing is performed automatically by a dedicated
module which receives the following inputs: an edge list (i.e., GDAs), and two sets, from
which to extract node information for gene and disease, respectively.

3.3. Graph Neural Network Architecture

We designed a GNN architecture based on graph convolution. The latter is a well-
studied mathematical operator behind most GNN architectures [35]. As discussed before
in Sections 1 and 2, this approach considers the graph similar to an image, taking into
account a generalization of this one, where each node is evaluated in reference to a set of
adjacent neighbors, such as the pixels in an image. Therefore, the nodes in a specific layer
are evaluated based on the neighbors’ features computed in the previous one, and these
are transformed in a set of embedding vectors representing the related latent space.

https://snap.stanford.edu/biodata/datasets/10012/10012-DG-AssocMiner.html
https://snap.stanford.edu/biodata/datasets/10012/10012-DG-AssocMiner.html
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We applied our model to link classification. Let us denote with G = (V, E) a
given undirected graph, where V = [v1, v2, v..., vn] is the set of nodes of size n, and
E = [e1, e2, e..., em] the set of edges of size m. For a node vi (with 0 ≤ i ≤ n), we can
denote its features in the latent space as the vector hi such that the latter is computed by a
function f ; formally:

f : vi → hi

Therefore, the whole set of neighbor’s features for vi can be represented through
a tensor, where each row is the vector resulting from the adjacent neighbor’s feature.
Formally, we can describe the function g for the evaluation of a link between two nodes vi
and vj (with 0 ≤ j ≤ n) as follows:

hi = f (vi)
hj = f (vj)

sij = f e(hi, hj, wij)

where wij is the weight (normalized to [0− 1] range) on the link between vi and vj; note
that wij will be 1 for all edges, if the graph is unweighted.

We used ReLU as the activation function following each layer, and Adam [36] for the
first-order gradient-based optimization of the stochastic objective function. Formally, ReLU
can be defined as follows:

ReLU(x) = max(0, x)

Furthermore, we integrated an encoder within our model (i.e., auto-encoder), in order to
compute the node embeddings by processing the input graph via multiple convolutional
layers, based on the graph convolutional operator proposed by Kipf et al. [37].

We report the main specifications of the proposed model as follows:

• Layers: 2 convolutional layers;
• Activation function: ReLU;
• Dropout: p = 0.5;
• Feature Size: 50;
• Decoder: inner product decoder.

Briefly, dropout refers to a simple way to prevent a NN from overfitting [38], by
dropping out the nodes, both in the input and hidden layers; p is the probability of an
element to be zeroed. The dropout randomly zeroes a set of elements within the input tensor;
in detail, during the training step, it scales the outputs by a factor 1/(1− p), computing
the identity function. According to Srivastava et al. [39], dropping a neuron with p = 0.5
obtains the highest variance for the probability distribution of a NN architecture, for a wide
variety of use cases (including ours).

3.4. Link (GDA) Prediction

The proposed solution uses a Decoder, to perform the link predictions via binary
classification. It needs a set of negative links that are randomly included into the validation
and testing sets; these are excluded from the training set to evaluate only the original
graph structure.

The link prediction is performed by computing the dot product (or scalar product)
of the node embeddings for all pair of nodes, and by evaluating the probability of edge
existence as the resulting score from the aggregation of all embeddings for each pair of
nodes. Therefore, a candidate link between a pair of nodes (vi, vj) is evaluated in reference
to the calculated dot product between their respective embeddings. We calculated the dot
products via the Einstein summation convention on the operands, for tensor contractions.

Resulting candidate links can be discriminated by applying a threshold, or by extract-
ing a defined number among those with the highest value. Since a threshold is not defined
in the literature, we opted for an empirical evaluation.
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Figure 1 shows a non-exhaustive workflow of the proposed solution.

GNN MODEL

+
ENCODER

Embeddings

DECODER

Embeddings

aggregator

Dot-Product

calculator

vi vj dp

Input Graph

Input Graph with negative edges (red)

Input

Data

PRE PROCESSING

Start

End

Figure 1. A non-exhaustive workflow of the proposed solution is reported.

3.5. Evaluation Criteria

We assessed the overall effectiveness of the proposed model, by employing two well-
known key performance indicators (KPI): average precision (AP), and area under the
receiver operating characteristic (ROC) curve (i.e., AUC or AUROC) [40].

The AP represents a precision–recall curve through a weighted average value of
precision. It is defined as follows:

AP = ∑n(Recalln − Recalln−1)× Precisionn

Precision = True Positives
True Positives + False Positives , and

Recall = True Positives
True Positives + False Negatives

The ROC curve shows the relationship between sensitivity and specificity, for every
possible cut-off. It takes into account the true positive rate (TPR) and false positive rate
(FPR). It is possible to detect a unique threshold value for each local maximum in the
difference curve. It will be the sensitivity parameter useful to measure how many flat
points we should expect before producing a knee/elbow, into the plot [41–43]. A larger
sensitivity value will detect a more conservative threshold. We evaluated the best threshold
(or Best, in the figures) via Youden’s index (or J). It will be the maximum value of J, among
all ones calculated for each point of the ROC curve [44]. Formally, J is defined as follows:

J = sensitivity + speci f icity− 1

with sensitivity = true positives/(true positives + f alse negatives), and speci f icity =
true negatives/(true negatives + f alse positives).

Of significant interest is the evaluation of the AUC computed on the ROC curve. It is
a performance measurement used to evaluate classification models with different settings.
Therefore, we used it to evaluate the model in terms of accuracy. Formerly, it is defined
as follows:
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AUC = ∑ TPR∆FPR; where

TPR = |True Positives|
|True Positives ∪ False Negatives| , and

FPR = |False Positives|
|False Positives ∪ True Negatives|

3.6. Implementation and Deployment

We implemented the proposed solution in Python (version 3), by using the Graph
Auto-Encoder (GAE), belonging to the PyTorch framework [45]. GAE is an end-to-end
trainable neural network model for unsupervised learning on graph-structured data.

Table 1 reports a list of the main PyTorch’s modules used in the implementation of the
proposed solution.

Table 1. Main PyTorch’s modules used in the implementation of the proposed solution.

Name Description Documentation

PyTorch Geometric
(PyG) It consists of several methods for geometric deep learning. https://pytorch-geometric.readthedocs.io (accessed on 19 May 2023)

Sparse It allows optimized sparse matrix operations on tensor. https://pytorch.org/docs/stable/sparse.html (accessed on 19 May 2023)

NN It provides several NN layers (e.g., convolutional layers). https://pytorch.org/docs/stable/nn.html (accessed on 19 May 2023)

Tensor It allows handling tensors. https://pytorch.org/docs/stable/tensors.html (accessed on 19 May 2023)

Note that our implementation is optimized to be executed on a graphics processing
unit (GPU).

We deployed our solution on Google Colaboratory (Colab; https://colab.research.
google.com, accessed on 19 May 2023). To date, Colab (free plan) allows connecting to a
session with the following specifications:

• CPU: Intel Xeon CPU @2.20 GHz;
• Memory: 12 GB;
• GPU: Tesla K80.

Note that Colab (free plan) could limit the session according to both the time of use
and the workload of the server hosting it.

4. Results

We tested our solution by using the DisGeNET database as source, using both the
Curated- and All-versions. The former was used to train and to evaluate the model in terms
of AUC and AP, as well as to identify a set of candidate GDAs in a real use case (i.e., link
prediction). The latter was used to evaluate our predictions by using no-human resources.
We removed from the All-version the GDAs included in the Curated-version, in order to
eliminate redundancy. Furthermore, we investigated scientific literature to evaluate a
probable truthfulness (or hypothetical match) from recent studies, for the candidate GDAs
not available in the All-version of DisGeNET.

Finally, we applied the proposed solution on a secondary dataset, to evaluate the
model performance on a different data source as well as to corroborate the results obtained
by processing the DisGeNET datasets.

4.1. Model Performance

We trained the proposed model throughout 100, 200, and 300 epochs, by showing the
results in Figures 2–4, respectively. In addition, we evaluated empirically the optimal num-
ber of features by performing the training, validation and testing throughout 100 epochs
(see Table 2); as shown, it obtained the best result in terms of AUC.

https://pytorch-geometric.readthedocs.io
https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/tensors.html
https://colab.research.google.com
https://colab.research.google.com
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(b)
Figure 2. Dataset: DisGeNET. Training, validation and testing throughout 100 epochs; dataset:
Curated-version. (a) Loss curve across the training process over the epochs. In addition, TPR
(Sensitivity) and FPR (1− Speci f icity) were related through the ROC curve in (b) by also reporting
the related AUC and best threshold (i.e., “Best”).
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Figure 3. Dataset: DisGeNET. Training, validation and testing throughout 200 epochs; dataset:
Curated-version. (a) Loss curve across the training process over the epochs. In addition, TPR and FPR
were related through the ROC curve in (b), by also reporting the related AUC and best threshold
(i.e., “Best”).
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Figure 4. Dataset: DisGeNET. Training, validation and testing throughout 300 epochs; dataset:
Curated-version. (a) shows the loss curve across the training process over the epochs. In addition,
TPR and FPR were related through the ROC curve in (b), by also reporting the related AUC and best
threshold (i.e., “Best”).

Based on the same specification and configuration, we also tested our solution on
DG-AssocMiner to evaluate the performance in a different dataset and to corroborate our
results. The resulting AUC and best threshold is shown in Table 3.
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Table 2. Dataset: DisGeNET. Training, validation and testing throughout 100 epochs, by incremental
number of features. Bold font indicates the best result.

No. of Features AUC Best Threshold

25 0.95 0.62

50 0.95 0.63

75 0.95 0.62

100 0.95 0.61

Table 3. Dataset: DG-AssocMiner. Training, validation and testing throughout 100 epochs, by
incremental number of features. Bold font indicates the best result.

No. of Features AUC Best Threshold

25 0.95 0.60

50 0.95 0.62

75 0.95 0.60

100 0.95 0.61

We performed an independent samples t-test, to detect mean differences in “Best
Threshold” between the two presented datasets. The two-tailed p-value equals 0.0106; by
conventional criteria (i.e., p-value < 0.05) it can be considered statistically significant. The
AUC between the two datasets is the same for all experiments; therefore, we cannot analyze
perfect data with a t-test, and the statistical test on this parameter was omitted.

4.2. Identification of Candidate GDAs

Firstly, we studied the Curated-version of DisGeNET by performing a node-level
descriptive statistics of the resulting network; Table 4 shows the 10 genes and 10 diseases
with the highest degree. These should be among the most recurring in the next test.

Table 4. Node-level descriptive statistics for the network built from DisGeNET (Curated-version). We
reported the 10 genes and 10 diseases with the highest degree.

Gene Name Node Degree Disease UMLS Disease Description Node’s Degree

TNF 340 C0006142 Malignant neoplasm of breast 1074

SOD2 285 C0036341 Schizophrenia 1031

IL6 270 C0023893 Liver Cirrhosis, Experimental 774

POMC 241 C0009402 Colorectal Carcinoma 702

PTGS2 239 C0376358 Malignant neoplasm of prostate 616

TP53 232 C0033578 Prostatic Neoplasms 616

IL1B 231 C0678222 Breast Carcinoma 538

MTHFR 192 C0005586 Bipolar Disorder 536

NOS2 184 C1458155 Mammary Neoplasms 527

PTEN 182 C4704874 Mammary Carcinoma, Human 525

Subsequently, we applied our solution to the described network, to identify a set
of candidate GDAs. The top-15 ones (highest dot product) are reported in Table 5. In
addition, we correlated these with the GDAs inferred by DisGeNET in its own All-version,
by integrating no-human datasets. We removed from the All-version the GDAs included in
the Curated-version in order to eliminate redundancy.
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Where a match with DisGeNET All-version was not found, we reported the PubMed
IDentifier (PMID) of the articles, which may corroborate the candidate GDA of interest. In
other words, for each predicted GDA not present in DisGeNET, we manually investigated
the literature to find a scientific article that reports biological evidence of that GDA.

Table 5. Top-15 candidate GDAs (highest dot product) predicted by our solution, of which 47% (7/15)
matched DisGeNET (All-version). Where a match with DisGeNET All-version was not found, the
PMID of an article highlighting a possible match was found; we marked a GDA as untraceable when
no match was found.

Gene
Disease

Reference
UML Description

TNF C0040517 Gilles de la Tourette syndrome PMID: 25256363

TNF C0006413 Burkitt Lymphoma DisGeNET (All)

TNF C0079588 Ichthyosis, X-Linked DisGeNET (All)

SOD2 C0040517 Gilles de la Tourette syndrome PMID: 31468582 (SOD, enzyme)

SOD2 C0006413 Burkitt Lymphoma PMID: 28483518

SOD2 C0079588 Ichthyosis, X-Linked PMID: 28540003 (*SOD1)

TNF C0009404 Colorectal Neoplasms DisGeNET (All)

POMC C0040517 Gilles de la Tourette syndrome untraceable

POMC C0006413 Burkitt Lymphoma PMID: 29296973

SOD2 C0009404 Colorectal Neoplasms DisGeNET (All)

IL6 C0040517 Gilles de la Tourette syndrome PMID: 35087475

IL6 C0006413 Burkitt Lymphoma DisGeNET (All)

TP53 C0040517 Gilles de la Tourette syndrome DisGeNET (All)

POMC C0079588 Ichthyosis, X-Linked PMID: 22289416

TP53 C0006413 Burkitt Lymphoma DisGeNET (All)

5. Discussion

The model related to the proposed solution reported very satisfactory performance.
According to the loss curves (training loss, train AUC, train AP, test AUC, and test AP) as
reported in Figures 2a, 3a, and 4a, the proposed model was able to identify positive links
with high sensibility, without interference from the negative links and by reporting a low
number of false positives. The related values of AUC are reported in Figures 2b, 3b, and 4b.

In our tests, AUC values demonstrate what was observed. The average value of AUC
is 0.93, and it refers to a number of correct predictions equal to 93% of the total ones. In
addition, the results report an AUC of 0.95 for the number of epochs (100) our model
was ultimately trained on; the same experiments replicated on the DS-AssocMiner dataset
produced a performance evaluation of 0.95 in terms of AUC. Therefore, 95% of predictions
can be considered correct for the final model, being that the ones obtained for 200 and
300 epochs were discarded.

Summarizing, the proposed solution reported an excellent value of AUC in all tests.
According to Nahm et al. [46], the interpretation of AUC may be addressed as follows:

• AUC ≥ 0.9 : Excellent;
• 0.8 ≤ AUC < 0.9 : Good;
• 0.7 ≤ AUC < 0.8 : Fair;
• 0.6 ≤ AUC < 0.7 : Poor;
• 0.5 ≤ AUC < 0.6 : Fail;
• AUC < 0.5 : Incorrect.
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It is possible to note that once the 100 epochs are exceeded, the model begins to show
overfitting. Furthermore, the empirical evaluation of the optimal number of features reports
50 as the optimal value to obtain the best results in terms of AUC and best threshold. As
discussed, in the final model, we defined 100 and 50 as values for the number of epochs
and features, respectively.

In addition, we tested a real use case, proceeding to identify the Top-15 candidate
GDAs (highest dot product) inferred by the proposed solution (Table 5). We evaluated an
existing or probable relationship between these and what was inferred by the DisGeNET
(All-version purged of redundancies with the Curated- one). We also investigated the
scientific literature by using the Pubmed search engine (https://pubmed.ncbi.nlm.nih.gov/,
accessed on 19 May 2023), provided by the National Center for Biotechnology Information
(NCBI), by reporting in Table 5 the Pubmed ID (PMID) of the articles that corroborate the
possible correlations. Note that the PMID is reported only where a match with DisGeNET
All-version was not found since the latter is already validated.

According to Table 5, we found a 47% (7/15) match between the GDAs already
validated by the DisGeNET All-version, and the candidate ones predicted by our solution.
Of the remaining 8 candidate GDAs, an existing or probable relationship was found for
7/8 of these by studying the scientific literature. Definitely, 14/15 candidate GDAs, 93.3%
(14/15), had a positive match.

Deepening the study of our Top-15 candidate GDAs, we can see that the associations
are referable to the following genes and diseases:

• Genes: TNF, SOD2, POMC, IL6, and TP53.
• Diseases UMLS (and Description): COO40517 (Gilles de la Tourette syndrome),

C0006413 (Burkitt Lymphoma), C0079588 (Ichthyosis, X-Linked), and C0009404 (Col-
orectal Neoplasms).

For instance, TNF is a protein coding gene, which encodes a multifunctional proin-
flammatory cytokine, belonging to the tumor necrosis factor (i.e., TNF) super-family. The
DisGeNET All-version reports 2/3 associations inferred by our solution; in detail, it reports
an explicit association with C0006413 and C0009404. Furthermore, the association with
C0009404 could be inferred from PMID:25256363 [47], where Keszler et al. investigated two
TNF promoter polymorphisms on the genetic susceptibility to Tourette syndrome (TS); the
authors concluded by reporting: “Based on these findings, the TNF -308 G-allele can be
associated with Tourette syndrome”. Similarly, the mentioned genes have been studied in
the literature to evaluate the candidate associations inferred by our solution, but have not
yet been included in DisGeNET.

Furthermore, we showed a greater recurrence of the nodes having a high-level degree
(Table 4) among our candidate GDAs. This result was expected, in that the GCNs, as
well as the GNNs making use of convolutional layers, express the accuracy by also taking
into account the node’s degree. Indeed, from empirical observations, a GNN embeds the
features with more accuracy during the training and testing, for nodes with the highest
degree, even if these are under-represented [48].

Summarizing, the results showed an AUC of 95% for training, validation and testing
throughout 100 epochs, which, in the real case, translated into a positive response for 93%
of the candidate GDAs predicted by our solution.

6. Conclusions

GNN allows using a NN for graph data modeling, with relevant advantages in the
context of node classification, link prediction and graph classification. In this paper, we
presented a solution for GDAs prediction based on GNN. Our model was based on graph
convolutions and node embeddings. The latter were computed for the input network
built on a set of GDAs, in order to map each node into a vector of real numbers in a
multidimensional space. Our tests were conducted by using the DisGeNET Curated-version
for model training, while we used the All-version in conjunction with the literature to
evaluate the candidate GDAs identified in a real use case. Results show an excellent AUC

https://pubmed.ncbi.nlm.nih.gov/
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(95% throughout 100 epochs) for training, validation and testing throughout 100 epochs,
which in the real case translated into a positive response for 93% of the Top-15 (highest
dot product) candidate GDAs identified by our solution. Briefly, our results may be
summarized as follows: we found a 47% match (7/15) between the GDAs already reported
in the literature by the DisGeNET All-version, and the candidate ones identified by our
solution; of the remaining 8, an existing or probable relationship was found for 7/8 of these
by studying the scientific literature.

Future directions related to GDA are mainly focused on inferring novel associations,
as well as how to handle (e.g., store and visualize) the relevant data both in terms of
accessibility and scalability. The study of GDAs has an important impact on investigating
novel associations between genes (or variants) and diseases. It provides a relevant effort
for improving the knowledge for disease etiology [49], being an area of active research,
for which in-depth studies are essential, particularly focused on the validation of the
predictions made by bioinformatics methodologies, e.g., based on machine learning and
deep learning.
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