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The present Special Issue of Entropy, entitled "Causal Inference for Heterogeneous
Data and Information Theory", covers various aspects of causal inference. The issue
presents thirteen original contributions that span various topics, namely the role of instru-
mental variables in causal inference, the estimation of average treatment effects and the
temporal causal models. Four papers are devoted to the design of novel causal models
using interventions. The contributions use approaches of information theory, probability,
algebraic structures, neural networks and with them related machine learning tools. The
papers range from the theoretical ones, the paper applying the models, to the papers pro-
viding software tools for causal inference. All papers were peer-reviewed and accepted for
publication due to their highest quality contribution. Here, we shortly preview the topics
of the contributions.

Instrumental variable in causal inference. Papers [1–3] investigate models using
instrumental variable in causal inference. Paper [1] deals with the challenge to reconcile
the approaches to causal inference based on independence of cause and mechanism, and
approaches based on conditional independence. It is shown that methods based on the
independence of cause and mechanism indirectly contain traces of the existence of hidden
instrumental variables (IV). Paper [2] investigates the problem of selecting instrumental
variables relative to a target causal influence X → Y from observational data generated by
linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. A
necessary condition for detecting variables that cannot serve as instrumental variables is
proposed. Paper [3] used the piecewise linear model to fit the relationship between the
continuous instrumental variable and the continuous explanatory variable, as well as the
relationship between the continuous explanatory variable and the outcome variable, which
generalizes the traditional linear instrumental variable models.

Estimating average treatment effect. Papers [4–7] deal with the estimation of the
Average Treatment Effect (ATE). Papers [4,5] approach the estimation of ATE using neural
networks. The estimation of ATE as a causal parameter is carried out in two steps [4].
In the first step, the treatment and outcome are modeled to incorporate the potential
confounders, and in the second step, the predictions are inserted into the ATE estimators
such as the Augmented Inverse Probability Weighting (AIPW) estimator, based on neural
networks (NN). Paper [4] proposed the normalization of AIPW (referred to as nAIPW) to
overcome the drawbacks of AIPW. Paper [5] builds on [4] and uses architectures with an
L1-regularization on specific NN parameters and investigates how certain hyperparameters
should be tuned in the presence of confounders and IVs to achieve a low bias-variance
tradeoff for AIPW estimator.

Paper [6] contributes with the novel econometric software to the community dealing
with causal inference and heterogeneous treatment effects estimation. The mcf package
is an open-source Python package implementing Modified Causal Forest (MCF), a causal
machine learner. For all resolutions of treatment effects estimation, which can be identified,
the mcf package provides inference and novel insights on causal effect heterogeneity.
The mcf constitutes a practical and extensive tool for a modern causal heterogeneous
effects analysis.
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Paper [7] investigates causal inference for heterogeneous treatment effects. The estima-
tion of both overall and heterogeneous treatment effects can be hampered when data are
structured within groups if one fails to correctly model the dependence between observa-
tions. Most machine learning (ML) methods do not readily accommodate such structures.
Paper [7] introduces a new algorithm, stan4bart, that combines the flexibility of Bayesian
Additive Regression Trees (BART) for fitting nonlinear response surfaces with the com-
putational and statistical efficiencies of using Stan for the parametric components of the
model. It is demonstrated how stan4bart can be used to estimate average, subgroup, and
individual-level treatment effects with stronger performance than other flexible approaches.

Temporal causal models. Papers [8,9] consider causal models using time. Paper [8]
investigates causal discovery in high-dimensional point process networks with hidden
nodes. A big challenge in the multivariate causal discovery is the confounding problem.
Paper [8] proposes a deconfounding procedure to estimate high-dimensional point process
networks with only a subset of the nodes being observed. The method allows flexible
connections between the observed and unobserved processes.

Paper [9] deals with the paradox of time in dynamic causal systems. It investigates the
role of time in dynamic systems, where causes take continuous values and also continually
influence their effects. A question is posed whether interacting with systems that unfold
more slowly might reduce the systematic errors that result from these strategies. It is found
that slowing the task indeed reduced the frequency of one type of error, albeit at the cost of
increasing the overall error rate.

Causal models and modeling under interventions. Paper [10] examines the so-called
interventional fairness with indirect knowledge of unobserved protected attributes. Often,
the protected attribute is absent from the training dataset for legal reasons. However,
datasets still contain proxy attributes that capture protected information and can inject
unfairness in the ML model. Paper [10] examines systems flagging individual samples and
considers a feedback-based framework where the protected attribute is unavailable and
the flagged samples are indirect knowledge. The reported samples are used as guidance
to identify the proxy attributes that are causally dependent on the (unknown) protected
attribute. The work is done under the causal interventional fairness paradigm. Without
requiring the underlying structural causal model a priori, an approach is proposed that
performs conditional independence tests on observed data to identify such proxy attributes.

Paper [11] studies causal algebras on Chain Event Graphs (CEG). One popular causal
analysis following Pearl [12] and Spirtes et al. [13] to study causal relationships embedded
in a system is to use a Bayesian Network (BN). However, certain causal constructions that
are particularly pertinent to the study of reliability are difficult to express fully through
a BN. The previous work of the authors of [11] demonstrated that an event tree rather
than a BN could provide an alternative framework that could capture most of the causal
concepts needed within this domain. A causal calculus for a specific type of intervention,
called a remedial intervention, was devised on this tree-like graph. Paper [11] builds on
their previous work and shows that remedial maintenance interventions but as well as
interventions associated with routine maintenance can be well-defined using this alternative
class of graphical model.

Universal Causality is a mathematical framework introduced in [14]. This work is
based on higher-order category theory, which generalizes previous approaches based on
directed graphs and regular categories. The paper presents a hierarchical framework called
Universal Causality Layered Architecture (UCLA), where at the top-most level, causal
interventions are modeled as a higher-order category over simplicial sets and objects.
Causal inference between layers is defined as a lifting problem, a commutative diagram
whose objects are categories, and whose morphisms are functors that are characterized
as different types of fibrations. UCLA is illustrated using a variety of representations,
including causal relational models and other models.

Paper [15] develops a probabilistic theory of causation using measure-theoretical con-
cepts and information-theoretic functionals and suggests practical routines for conducting
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causal inference. The theory is applicable to both linear and high-dimensional nonlinear
models. It is shown that the suggested measure-theoretic approaches do not only lead to
better predictive models, but also to more plausible parsimonious descriptions of possible
causal flows.

We are convinced that this heterogeneous collection of outstanding papers on causal
inference extends the knowledge of the community working in causal inference both in
theory and practical applications. We wish the readers a lot of joy by reading.
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