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Abstract: Quantum adiabatic shortcut technology provides a technique to accelerate the quantum
adiabatic process and has been widely used in various fields of quantum information processing. In
this work, we proposed a two-level quantum shortcut adiabatic passage model. Then, exploiting
the nuclear magnetic resonance, we experimentally simulated the dynamics of quantum shortcut
adiabatic passage using the water molecules.
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1. Introduction

The concept of a quantum shortcut adiabatic (QSTA) passage was first proposed by
Chen et al. [1]. It describes a non-adiabatic way to accelerate the quantum adiabatic process,
which can produce the same population distribution and target state as the adiabatic
process. “Shortcut” means that the adiabatic process can be completed in a relatively short
time. The Lewis–Riesenfeld invariant-based inverse engineering method is defined as
an effective approach to QSTA that expresses the eigenstates of a Hamiltonian from the
specified initial to the final configurations and then constructs, from the invariant, the
transient Hamiltonian that connects these boundary configurations [2,3]. In recent decades,
the shortcut adiabatic passage has been widely applied in atomic physics and optics. For
example, QSTA has been used to generate spin-squeezed states in superconductors [4] and
the population inversion in two-level quantum systems [5].

The key technique of QSTA is that the time-dependent interactions that are externally
applied to the system usually change slowly to maintain the adiabaticity and control the
final state of a quantum system robustly compared to the parameter fluctuations. There are
several studies that focus on the implementations and techniques of QSTA. For example,
in Ref. [6], Berry presented an approach to quantum driving without transition. Later,
in [7], Masuda and Nakamura proposed a quantum system that could exhibit fast-forward
adiabatic dynamics. Moreover, QSTA techniques have been used in the state engineering
of matter waves [8], and also in the spin manipulation of quantum dots [9].

Nuclear magnetic resonance (NMR) occurs when nuclei in a static magnetic field are
disturbed by an oscillating magnetic field; then, the nuclei generate an electromagnetic
signal with a frequency depending on the applied magnetic field. NMR is a multifaceted
technique that enables the analysis of liquid state and solid matter using high-resolution
spectrums. The applications of NMR technology in quantum computing and quantum
information have developed rapidly. In 1996, Chuang first demonstrated that the nuclear
magnetic resonance of the spins could be used in quantum computation [10]. Later, exten-
sive studies were conducted on NMR quantum computing [11–14], and it has also been
used in various branches of quantum information sciences, such as the manipulation of
quantum gates [15], and the design of the Hamiltonian [16,17]. The specific steps of quan-
tum computing using NMR include the following steps: the initialization, the realization of
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quantum gates, the reading of the final states, and quantum control techniques commonly
used in NMR [18–20].

Here, in this study, we propose a theoretical model of QSTA using a two-level atomic
system. Further, based on the NMR system, the dynamics of the QSTA were experimentally
simulated using the water molecules. We found that the experimental results agree with the
theory, and we believe the method is useful and could be further applied in the simulation
of quantum computation and quantum dynamics using NMR.

2. Basic Model of Quantum Shortcut Adiabatic Passage

To present the basic theory of QSTA, we chose a two-level atom as a fundamental
example. As the speedup versions of adiabatic passage (RAP), the two-level atomic system
is useful in the dynamics of chemical reactions, laser cooling [21], and quantum information
processing [22,23]. For the two-level atom, the eigenvectors in the Hilbert space could
be described by the vectors |0〉 = (1, 0)T , |1〉 = (0, 1)T . By applying the rotating wave
approximation, the time-dependent Hamiltonian in the laser-adapted interaction picture
could be expressed as

H(t) =
h̄
2

(
4 ΩReiϕ

ΩRe−iϕ −4

)
, (1)

where4 = 4(t) and ΩR = ΩR(t) are the time-dependent detuning and the Rabi oscillation
frequency of the atom, respectively. ϕ = ϕ(t) denotes the time-dependent phase shift. For
simplicity, we assumed ϕ = 0 and only considered the Hamiltonian in the expression as:

H(t) =
h̄
2

(
4 ΩR
ΩR −4

)
. (2)

Suppose the invariant operator I(t) could be expressed as

I(t) =
h̄
2

Ω0

(
cos γ sin γeiβ

sin γe−iβ − cos γ

)
, (3)

where Ω0 is an arbitrary constant, β = β(t) and γ = γ(t) are auxiliary time-dependent
angles. The dynamical invariant I(t) satisfies the equation

ih̄
∂I(t)

∂t
− [H(t), I(t)] = 0. (4)

By substituting the expressions of I(t) and H(t) into Equation (4), we could obtain the
relations of the angles and the parameters of the system as(

−iγ̇ sin γ iγ̇ cos γeiβ − β̇ sin γeiβ

iγ̇ cos γe−iβ + β̇ sin γe−iβ iγ̇ sin γ

)
(5)

=

(
−iΩR sin γ sin β 4 sin γeiβ −ΩR cos γ

ΩR cos γ−4 sin γe−iβ iΩR sin γ sin β

)
The relationship between the variables can be extracted from the above equation as

γ̇ sin γ = ΩR sin γ sin β, (6)

4 sin γeiβ −ΩR cos γ = iγ̇ cos γeiβ − β̇ sin γeiβ. (7)

We could simplify the first condition as γ̇ = ΩR sin β with sin γ 6= 0. The detuning could
be solved as4 = ΩR cot γ cos β− β̇ with sin γ 6= 0. Since sin γ 6= 0 is always required in
the open range

(
0, t f

)
, at two ending times, we will choose γ = νπ in the following.

In order to guarantee that the final state is in the instant eigenstate of H(t) at the
ending time t f , the conditions that [H(0), I(0)] = 0 and

[
H
(

t f

)
, I
(

t f

)]
= 0 should be

satisfied. Based on these constraints, the boundary conditions at t = 0 could be described
as follows:
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ΩR(0) sin γ(0) sin β(0) = 0,

4(0) sin γ(0)eiβ(0) −ΩR(0) cos γ(0) = 0,

ΩR(0) cos γ(0)−4(0) sin γ(0)e−iβ(0) = 0,

and the condition t = t f could similarly be expressed as:

ΩR

(
t f

)
sin γ

(
t f

)
sin β

(
t f

)
= 0,

4
(

t f

)
sin γ

(
t f

)
eiβ(t f ) −ΩR

(
t f

)
cos γ

(
t f

)
= 0,

ΩR

(
t f

)
cos γ

(
t f

)
−4

(
t f

)
sin γ

(
t f

)
e−iβ(t f ) = 0.

By choosing the relations ΩR(0) = 0, γ(0) = π and ΩR

(
t f

)
= 0, γ

(
t f

)
= 0, where β(0)

and β
(

t f

)
can be chosen arbitrarily, we can obtain

γ̇(0) = γ̇
(

t f

)
= 0. (8)

As mentioned before, we can choose the proper values of β(0) and β
(

t f

)
. According to

the above relations derived from Equation (5), we can estimate the optimization parameters
in advance. Firstly, β should be kept close to (n + 1/2)π, as only the results of trigonometric
functions affect the solution. To minimize ΩR along the path, the derivatives would fix
the initial and final detunings, which should have opposite signs here. Moreover, the
parameter should not be too large to keep β close to the chosen reference value and to
avoid β = 0 at some intermediate time. Considering all these constraints, we imposed the
following relations

β(0) = −π/2, β̇(0) = 3π/
(

2t f

)
, (9)

β
(

t f

)
= −π/2, β̇

(
t f

)
= −3π/

(
2t f

)
, (10)

where the negative sign of β keeps ΩR positive.
Here, we assumed a polynomial ansatz as γ(t) = ∑3

j=0 ajtj and β(t) = ∑3
j=0 bjtj,

where the coefficients could be found by solving the equation set according to the boundary
conditions. Analytically, the two parameters γ and β could be solved and expressed as

γ(t) = π − 3πt2 + 2πt3. (11)

and
β(t) = −π/2 + (3π/2)t− (3π/2)t2. (12)

Then, the corresponding functions of ΩR and ∆ could be expressed as:

ΩR = γ̇/sinβ = (−6πt + 6πt2)/sinβ (13)

and
∆ = ΩRcotγcosβ− β̇ = (−6πt + 6πt2)cotγcosβ− (3π/2− 3πt) (14)

Here, we numerically simulated the evolution of the parameters β, γ, ΩR,∆ in Figure 1a,b,
and the population probabilities of the level-states in Figure 1c. Figure 1a denotes the evo-
lution of γ and β along with the time [24]. In Figure 1c, P1 and P2 represent the probabilities
of the two levels, respectively. Pad denotes the probability numerically calculated using the
adiabatic method. We can conclude that there is no large difference between this and the
previous adiabatic method. The designed protocol is an adiabatic passage for the specified
final time t f .
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Figure 1. (Color online) (a) The evolution of polynomial ansatzes for γ(t) and β(t). (b) The evolution
of the corresponding functions of ΩR and ∆. (c) Time evolution of the populations of levels 1 and 2.
Here, P1(2) denotes the probability of the level-1 (2) during evolution using the shortcut method, and
Pad

1(2) represents the results using the traditional adiabatic method.

Moreover, we imposed some additional conditions at an intermediate time as:

β(0) = −π/2, β
(

t f

)
= −π/2, β

(
t f /2

)
= −π/2, (15)

β̇(0) = π/
(

2t f

)
, β̇
(

t f

)
= −π/

(
2t f

)
, (16)

to keep β closer to −π/2, where we also diminished the detuning. This new set of condi-
tions requires a higher-order polynomial as β(t) = ∑4

j=0 bjtj. γ was also chosen as the same
value as before. The results are presented in Figure 2.

For Figure 2a,b, the evolution of the parameters β and ∆ is different from Figure 1. We
also found the final results show a relative difference for the adiabatic method, which means
that the method can be further complemented by optimizing the trajectory concerning the
different physical cost functions or constraints.
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Figure 2. (Color online) (a) The evolution of the polynomial ansatzes for γ(t) and β(t).
(b) The evolution of the corresponding functions of ΩR and ∆. (c) Time evolution of the popu-
lations of levels 1 and 2. Here, P1(2) denotes the probability of the level-1(2) during evolution using
shortcut method, and Pad

1(2) represents the traditional adiabatic method.

3. The Quantum Simulation of Shortcut to the Adiabatic Passage Using Nuclear
Magnetic Resonance

As mentioned in the above section, we used the nuclear magnetic resonance (NMR)
system to simulate the QSTA process. The sample was water with 90% H2O and 10%
D2O, and the signal of H2O was of interest. The two 1H spins in the H2O molecule were
identical, with the same chemical environment, so it was a single qubit sample, which is
what the experiment needed. All experiments were carried out on a Bruker ADVANCE III
400 MHz spectrometer.

The experimental process of the single qubit can be simplified compared with those
with more qubits. To begin with, the internal Hamiltonian is zero in the resonant rotating
frame. The thermal equilibrium state is the pseudo-pure state (PPS) from which we started
our experiment. This can be seen from Equation

σz = 200− I, (17)

where σz is the Pauli Z operator proportional to the thermal equilibrium state and I
represents the 2× 2 identity operator.
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Then, we added the radio-frequency (RF) signals on the X-Y plane. Here, the Hamil-
tonian could be decomposed into a sequence of RF pulses. As the Hamiltonian to be
simulated is time-dependent, we used a piecewise constant Hamiltonian with small jumps
between steps instead. We set the evolution time to 10 ms and divided the total procedure
into 1000 steps (each step is 10 µs), as follows:

U = Π1000
i Ui = U1000 . . . Ui . . . U2U1. (18)

Ui = e−iH(ti)∆t. (19)

where ∆t =10 µs, ti = i∆t and H(ti) = ∆(ti)σz + Ω(ti)σx as introduced in Equation (2).
Moreover, as shown in Figure 3, the RF pulses in the NMR system were applied in the

x- and y-direction, respectively. Thus, we could experimentally realize the Hamiltonian
as follows:

H′(ti) = ∆(ti)σy + Ω(ti)σx. (20)

In addition, it is obvious that

e−iH(ti)∆t = Xe−iH′(ti)∆tX†, (21)

where X denotes a 90-degree rotation around the x direction. Therefore, we have

U = XU′X†. (22)

U′ = Π1000
i U′i . (23)

where U′i = e−iH′(ti)∆t, which can be realized practically by x- and y-direction RF pulses, as
shown in Figure 3.

Figure 3. (Color online) RF pulses used in the experiment. The left and right figures are the RF fields
applied in the x and y directions. The x-axis represents evolution time, and the y-axis denotes the
amplitude of RF pulses.

By fitting the spectrum, we measured the population of |0 > in the final state. Then,
by performing the experiment after 50 steps, the results were obtained and are shown in
Figure 4. Here, P1 and P2 represent the population of the two levels, respectively. The red
circles denote the experiment result of the |0 > state population, and the blue rhombus
represents the experiment result of the |1 > state population. These results are fitted by the
red dotted line and the blue dashed line, respectively. Then, we compared the theoretical
results with the experimental results of both P1 and P2; it is obvious that the experiment
results show a good agreement with the theory. In this figure, the horizontal coordinate
represents the evolution time of the population, and the vertical coordinate represents the
population of the final state. It should be noted that the time evolution of the Hamiltonian
is simulated by the RF pulses, so the evolution process simulated is not strictly along the
time scale as only a unit of time with quasi-time parameter.

Meanwhile, we noticed that the loss of the experiment signals would reduce the fidelity
of the experiment. The loss of experimental signal is mainly due to the decoherence and
inhomogeneity of the radio-frequency (RF) field and pulse imperfection. For the second
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effect, we considered the external RF pulse signal applied to the sample. Here, the pulses
were added to the x-axes and y-axes, respectively. The in-homogeneous pulses will induce
noise on both the amplitude and the phase of the pulses. We theoretically simulated the
noise by changing the amplitude and phase values of the pulses by flipping the signs and
comparing the density matrix with the theoretical value of the final state. We found that the
fidelity of the theoretical simulation results was greater than 0.99, which means the current
scheme is robust to RF signal in-homogeneity. These will affect the state of nuclear spin in
NMR experiments. According to the theoretical simulation, the fidelity of the state could
be kept larger than 0.99, which means that the experimental results are robust to the loss
and decoherence effect. We believe the method developed in this experiment for quantum
computation using the NMR system can also be extended to a multi-qubit system.

0 2 4 6 8 10

Time 

0

0.2

0.4

0.6

0.8

1

P

Exp. P2

Exp. P1

Theo. P1

Theo. P2

Figure 4. (Color online) The experimenta; results of the simulation. Here, the red dotted line and the
blue dashed line represent the theoretical population of 0 and 1, respectively. The red circles and blue
rhombus are the experimental populations of 0 and 1 at each step, respectively.

4. Summary

In summary, we present a theoretical model that was used to study the dynamics of
QSTA and experimentally simulate the process using NMR systems. The experimental
results show a similar effect to the theory. The NMR quantum computing platform has
several advantages, such as the long coherence time, robustness, and ease of reading
the results. This makes it a promising platform for quantum computing and quantum
simulation. Although the formulation of the method is general, explicit constructions of
the Hamiltonian are restricted to simple systems such as two- and three-systems, harmonic
oscillators, and scale-invariant systems. We believe that the current study could provide a
new approach to further investigate NMR systems in quantum information sciences.
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