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Abstract: In this paper, a kernel-free quadratic surface support vector regression with non-negative
constraints (NQSSVR) is proposed for the regression problem. The task of the NQSSVR is to find a
quadratic function as a regression function. By utilizing the quadratic surface kernel-free technique,
the model avoids the difficulty of choosing the kernel function and corresponding parameters,
and has interpretability to a certain extent. In fact, data may have a priori information that the
value of the response variable will increase as the explanatory variable grows in a non-negative
interval. Moreover, in order to ensure that the regression function is monotonically increasing on
the non-negative interval, the non-negative constraints with respect to the regression coefficients are
introduced to construct the optimization problem of NQSSVR. And the regression function obtained
by NQSSVR matches this a priori information, which has been proven in the theoretical analysis. In
addition, the existence and uniqueness of the solution to the primal problem and dual problem of
NQSSVR, and the relationship between them are addressed. Experimental results on two artificial
datasets and seven benchmark datasets validate the feasibility and effectiveness of our approach.
Finally, the effectiveness of our method is verified by real examples in air quality.

Keywords: regression problem; quadratic surface; kernel-free; non-negative constraints; air quality
composite index dataset

1. Introduction

For regression problems, sometimes there is a priori information, such as the response
variable increasing as the explanatory variable increases. It is more natural to expect that the
the air quality will decrease when the pollution gas concentration increases. However, the
model sometimes obtains regression coefficients that do not match this a priori information,
which can reduce the credibility and prediction accuracy of the model. Therefore, to solve
this problem, we restrict the range of values of the regression coefficients to ensure the
soundness of the model.

At present, several types of constraints have been utilized, including non-negative
constraints [1–4], monotonicity constraints [5–8], smoothing constraints [9–11], etc. Powell
et al. [12] proposed a Bayesian hierarchical model for estimating constraints conditional
random fields to analyze the relationship between air pollution and health. Moreover, non-
negative constraints have been applied to various problems. The non-negative least squares
problem (NNLS) was introduced by Lawson [13]. Chen et al. [14] presented non-negative
distributed regression as an effective method specifically designed for analyzing data in
wireless sensor networks. Shekkizhar et al. [15,16] proposed non-negative kernel regression
to handle graph construction from data and dictionary learning. Additionally, Chapel
et al. [17] proposed non-negative penalized linear regression to address the challenge of
unbalanced optimal transport.

Due to its excellent generalization ability, support vector regression (SVR) [18] has
been widely used in various fields, such as the financial industry [19,20] and construction
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industry [21,22]. However, the selection of appropriate kernel functions and their corre-
sponding parameters can be time-consuming during experiments, prompting researchers
to explore kernel-free regression models. Su proposed the non-negative constraints SVR
(NNSVR) for analyzing air quality data, which is only suitable for regression problems
since it cannot use kernel functions. Based on the idea of quadratic kernel-free support
vector machine (QSSVC) [23], Gao et al. [24] proposed a kernel-free fuzzy reduced
quadratic surface ν-support vector machine for Alzheimer’s disease classification. Zhou
et al. [25] proposed a kernel-free QSSVC . For the regression problem, Ye et al. [26,27]
proposed two kernel-free nonlinear regression models, quadratic surface kernel-free least
squares SVR (QLSSVR) and ε-kernel-free soft QSSVR (ε-SQSSVR), respectively. Zhai
et al. [28] proposed a linear twin quadratic surface support vector regression. Zheng
et al. [29] developed a hybrid QSSVR and applied it to stock indices and price forecasting.
These advancements have attracted significant attention from the research community seek-
ing more efficient approaches in regression analysis without relying on kernel functions.

In this paper, a kernel-free quadratic surface support vector regression with non-
negative constraints (NQSSVR) is proposed, which incorporates the idea of a kernel-free
technique and non-negative constraints. The main contributions are summarized as follows.

1. NQSSVR is proposed by utilizing the kernel-free technique, which avoids the com-
plexity of choosing the kernel functions and their parameters, and has interpretability
to some extent. In fact, the task of NQSSVR is to find a quadratic regression function to
fit the data, so it can achieve better generalization ability than other linear regression
methods.

2. The non-negative constraints with respect to the regression coefficients are added to
construct the optimization problem of NQSSVR, which can obtain a monotonically
increasing regression function with explanatory variables on a non-negative interval.
In some cases, the value of the response variable grows as the explanatory variable
grows. For example, when exploring the air quality examples, the air quality index
will increase as the concentration of gases in the air increases.

3. Both the primal and dual problems can be solved, since our method does not involve
kernel functions. In the theoretical analysis, the existence and uniqueness of solutions
to the primal and dual problems, as well as their interconnections, are analyzed. In
addition, the properties of regression function on the domain of definition are given.

4. Numerical experiments on artificial datasets demonstrate the visualization results of
the regression function obtained by our NQSSVR. The results on benchmark datasets
show that the comprehensive performance of the method is relatively better than that
of linear-SVR and NNSVR. In addition, more importantly, by exploring the practical
application of air quality, it can be shown that our method is more applicable than
QLSSVR and ε-SQSSVR.

The paper is structured as follows. Section 2 introduces a brief introduction to the
ε-SQSSVR model, and some definitions and notations. In Section 3, we construct the primal
and dual problems for NQSSVR and analyze the corresponding properties. Section 4
presents the results of numerical experiments conducted on datasets. Finally, Section 5
provides conclusions from this study.

2. Background

In this section, we give the related definitions and notations, and review the ε-SQSSVR
model.

2.1. Definition and Notations

The following mathematical notations are utilized in this paper. Lowercase bold and
uppercase bold represent vectors and matrices, respectively. I is the identity matrix of
any size, Sm is the set of m-dimensional symmetric matrices, Rn×m is the set of n × m
dimensional matrices. Next, define the operators as follows.
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Definition 1. For any symmetry matrix U = (ukl)m×m ∈ Sm, its half-vectorization operator can
be defined as follows:

hvec(U) = (u11, · · · , u1m, u22, · · · , u2m, · · · , umm)
T ∈ R

m(m+1)
2 . (1)

Definition 2. For any vector u = (u1, u2, · · · , um)T ∈ Rm, define the following quadratic operator:

lvec(u) = (
1
2

u1u1, · · · , u1um,
1
2

u2u2, · · · , u2um, · · · ,
1
2

umum)
T ∈ R

m(m+1)
2 . (2)

Definition 3. For a vector u = (u1, u2, · · · , um)T ∈ Rm, define the vector-to-matrix operator as follows:

mat(u) ,


u1 u2 · · · um 0 · · · 0 · · · · · · 0
0 u1 · · · 0 u2 · · · um · · · · · · 0

0 0
. . .

...
...

. . .
...

. . .
...

0 0 · · · u1 0 · · · u2 · · · · · · um

 ∈ Rm×m(m+1)
2 . (3)

2.2. ε-SQSSVR

Given the training set

T = {(x1, y1), (x2, y2), · · · , (xn, yn)}, (4)

where xi ∈ Rm, yi ∈ R, i = 1, 2, · · · , n. The task of ε-SQSSVR is to seek the quadratic
regression function

g(x) =
1
2

xTWx + bTx + c, (5)

where W ∈ Sm, b ∈ Rm, and c ∈ R. To obtain the regression function (5), the optimization
problem is established as follows:

min
W ,b,c,ξ(∗)

1
2

n

∑
i=1
‖Wxi + b ‖2 +C

n

∑
i=1

(ξi + ξ∗i ), (6)

s.t. (
1
2

xT
i Wxi + bTxi + c)− yi 6 ε + ξi, i = 1, · · · , n, (7)

yi − (
1
2

xT
i Wxi + bTxi + c) 6 ε + ξ∗i , i = 1, · · · , n, (8)

ξi > 0, ξ∗i > 0, i = 1, 2, · · · , n, (9)

where C > 0 is a penalty parameter, and ξ(∗) = (ξ1, ξ∗1 , · · · , ξn, ξ∗n)
T is the slack vector. The

optimization problem (6)–(9) is a quadratic programming problem, so it can be solved
directly. In addition, this model uses the quadratic surface kernel-free technique, which
avoids the difficulty of choosing the kernel function and the corresponding parameters.

3. Kernel-Free QSSVR with Non-Negative Constraints (NQSSVR)

In this section, we establish the primal and dual problems of the kernel-free QSSVR
with the non-negative constraints (NQSSVR). The properties of primal and dual problems
are discussed, and the properties of the regression function with non-negative constraints
are proved.
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3.1. Primal Problem

Given the training set T (4), to find the regression function (5), the following optimiza-
tion problem is formulated

min
W ,b,c,ξ(∗)

1
2

n

∑
i=1
‖Wxi + b ‖2 +C

n

∑
i=1

(ξi + ξ∗i ), (10)

s.t. (
1
2

xT
i Wxi + bTxi + c)− yi 6 ε + ξi, i = 1, 2, · · · , n, (11)

yi − (
1
2

xT
i Wxi + bTxi + c) 6 ε + ξ∗i , i = 1, 2, · · · , n, (12)

wkl > 0, bk > 0, k, l = 1, · · · , m, (13)

ξi > 0, ξ∗i > 0, i = 1 · · · , n, (14)

where W = (wkl)m×m ∈ Sm, b = (b1, · · · , bm) ∈ Rm, c ∈ R. wkl > 0, bk > 0, k, l = 1, · · · , m
mean that each component of W and b is greater than or equal to zero. C > 0 is the penalty
parameter, and ξ(∗) = (ξ1, ξ∗2 , · · · , ξn, ξ∗n)

T is a slack vector.
In the above optimization problem (10)–(14), we impose constraints on the regression

coefficients, namely wkl > 0, bk > 0, k, l = 1, · · · , m. Restricting the range of values of
regression coefficients can help us to obtain regression functions that are more consistent
with a priori information. In addition, the optimization problem does not involve kernel
functions, which can avoid the complicated process of kernel functions, and its parameters
selection further reduced computation time.

According to Definitions 1–3, the primal optimization problem (10)–(14) is simplified
to the following form:

min
z,c,ξ(∗)

1
2

zTGz + C
n

∑
i=1

(ξi + ξ∗i ), (15)

s.t. (zTsi + c)− yi 6 ε + ξi, i = 1 . . . , n, (16)

yi − (zTsi + c) 6 ε + ξ∗i , i = 1 . . . , n, (17)

z > 0, (18)

ξi > 0, ξ∗i > 0, i = 1 . . . , n, (19)

where z = [w, b] ∈ R
m(m+3)

2 , w , hvec(W), G = ∑n
i=1(V

i)TV i, Vi , [mat(xi), I] ∈
Rm×(m(m+3)

2 ), c ∈ R, I ∈ Sm , si , lvec(xi). z ≥ 0 means that each component of z
is greater than or equal to to zero. The matrix G is positive semidefinite matrix, since
G = ∑n

i=1(V
i)TV i ≥ 0.

3.2. Dual Model

Next, the Lagrange multiplier vectors α(∗) = (α1, α∗1 , · · · , αn, α∗n)
T, η(∗) =

(η1, η∗1 , · · · , ηn, η∗n)
T, and β ∈ R

m(m+3)
2 are introduced to the optimization problem (15)–(19).

The Lagrange function can be expressed as follows:

L(z, c, ξ(∗), α(∗), η(∗), β) =
1
2

zTGz + C
n

∑
i=1

(ξi + ξ∗i )− βTz

−
n

∑
i=1

αi(yi + ε + ξi − (zTsi + c))−
n

∑
i=1

ηiξi

−
n

∑
i=1

α∗i (ε + ξi + (zTsi + c)− yi)−
n

∑
i=1

η∗i ξ∗i .

(20)
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The Karush–Kuhn–Tuchker (KKT) conditions for problems (15)–(19) are given as follows:

∇zL = Gz−
n

∑
i=1

(αi − α∗i )si − β = 0, (21)

∇cL =
n

∑
i=1

(αi − α∗i ) = 0, (22)

∇ξi L = C− αi − ηi = 0, i = 1 . . . , n, (23)

∇ξ∗i
L = C− α∗i − η∗i = 0, i = 1 . . . , n, (24)

ε + ξi − (zTsi + c) + yi > 0, ξi > 0, i = 1, . . . , n, (25)

ε + ξ∗i − yi + (zTsi + c) > 0, ξ∗i > 0, i = 1, . . . , n, (26)

αi(yi + ε + ξi − sT
i z− c) = 0, αi > 0, i = 1, . . . , n, (27)

α∗i (−yi + ε + ξi + sT
i z + c) = 0, α∗i > 0, i = 1, . . . , n, (28)

η∗i ξ∗i = 0, ηiξi = 0, η∗i > 0, ηi > 0, i = 1 . . . , n, (29)

βz = 0, β > 0. (30)

According to the Equation (21),

z = G−1(
n

∑
i=1

(αi − α∗i )si + β). (31)

By substituting (21)–(30) into (20), the dual problem of the optimization problem (15)–(19)
is formulated as

min
α(∗),β

1
2
(

n

∑
i=1

(αi − α∗i )si + β)TG−1(
n

∑
i=1

(αi − α∗i )si + β)

+
n

∑
i=1

(αi + α∗i )ε−
n

∑
i=1

(αi − α∗i )yi, (32)

s.t.
n

∑
i=1

(αi − α∗i ) = 0, (33)

0 6 αi, α∗i 6 C, i = 1 . . . , n, (34)

β j > 0, j = 1, . . . ,
m(m + 3)

2
, (35)

where α(∗) = (α1, α∗1 , · · · , αn, α∗n)
T and β = (β1, · · · , β m(m+3)

2
)T are vectors, and C > 0 is the

penalty parameter. Since the proposed model does not involve kernel functions, both the
primal and dual problems can be solved directly. Solving the primal problem saves the cost
of computing the inverse matrix. In particular, when the input dimension is large, solving
the dual problem is more convenient.

3.3. Some Theoretical Analysis

In this subsection, the theoretical properties of the primal and dual problems, as
well as the regression function after adding the non-negative constraints, are analyzed
into properties.

Theorem 1. Given the training set T (4) and C > 0, if G is a positive definite matrix and
(z∗, c∗, ξ∗, ξ∗∗) is the optimal solution to the primal problem (15)–(19), then z∗ is unique.

Proof. Suppose (z, c, ξ, xi∗) and (ẑ, ĉ, ξ̂, ξ̂∗) are the two optimal solutions of the primal
problem. There exists µ ∈ (0, 1) such that the following equation holds:

(z, c, ξ, ξ∗) = µ(z, c, ξ, ξ
∗
) + (1− µ)(ẑ, ĉ, ξ̂, ξ̂∗). (36)
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Clearly, (z, c, ξ, ξ∗) is also an optimal solution to the optimization problem (15)–(19), so the
following inequalities hold:

1
2

zTGz + C
n

∑
i=1

(ξi + ξ∗i ) >
1
2

zTGz + C
n

∑
i=1

(ξi + ξi
∗
), (37)

1
2

zTGz + C
n

∑
i=1

(ξi + ξ∗i ) >
1
2

ẑTGẑ + C
n

∑
i=1

(ξ̂i + ξ̂i
∗
). (38)

Multiplying inequality (37) by µ and inequality (38) by (1 − µ), then summing them
up yields

1
2

zTGz + C
n

∑
i=1

(ξi + ξ∗i ) >
µ

2
ẑTGẑ +

1− µ

2
zTGz + C

n

∑
i=1

(µξ̂i + (1− µ)ξi + µξi
∗
+ (1− µ)ξ̂i

∗
). (39)

By simplifying the Formula (39), we obtain

1
2
(µz + (1− µ)ẑ)TG(µz + (1− µ)ẑ) >

µ

2
ẑTGẑ +

1− µ

2
zTGz. (40)

Then, we have
µ(1− µ)(z− ẑ)TG(z− ẑ) 6 0. (41)

Since the matrix G is a positive definite matrix and µ ∈ (0, 1), inequality (41) holds if and
only if z = ẑ.

Theorem 2. For the training set T (4) and C > 0, if the matrix G is positive definite, the optimal
solution α(∗)=(α1, α∗1 , · · · , αn, α∗n)

T of the dual problem (32)–(35) exists and is unique, and the
optimal solution of the primal problem (15)–(19) can be expressed as

z = G−1(
n

∑
i=1

(αi − α∗i )si + β) (42)

c = yj + ε− (
n

∑
i=1

(αi − α∗i )si + β)G−1sj, f or some αj ∈ (0, C), (43)

or

c = yk − ε− (
n

∑
i=1

(αi − α∗i )si + β)G−1sk, f or some α∗k ∈ (0, C). (44)

Proof. By the (21) equation in the KKT condition, we have

z = G−1(
n

∑
i=1

(αi − α∗i )si + β). (45)

If α(∗) there exists components, αj and α∗k . such that αj ∈ (0, C) or α∗j = 0, αk = 0 or
α∗k ∈ (0, C), by the complementary slackness conditions, ξ j = ξ∗k = 0, we have

c = yj + ε− (
n

∑
i=1

(αi − α∗i )si + β)G−1sj, αj ∈ (0, C), (46)

or

c = yk − ε− (
n

∑
i=1

(αi − α∗i )si + β)G−1sk, α∗k ∈ (0, C). (47)
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Next, the properties of the regression function (5) after adding non-negative constraints
with respect to the regression coefficients are analyzed. The domain D is defined as follows:

D = {x = ([x]1, . . . , [x]m)T | [x]1 > 0, · · · , [x]m > 0}. (48)

Theorem 3. On the domain D (48), the regression function g(x) (5) is monotonically non-
decreasing respect to each component of x if and only if the regression coefficients have the fol-
lowing restrictions:

wkl > 0, , k, l = 1, · · · , m,

bk > 0, , k = 1, · · · , m,
(49)

where wkl > 0, and bk > 0, k, l = 1, · · · , m mean that each component of W and b is greater than
or equal to zero.

Proof. The function g(x) can be written as

g(x) =
1
2

m

∑
k,l=1

[x]kwkl [x]l +
m

∑
k=1

bk[x]k + c. (50)

It only remains to justification that this holds for the k-th component of x, the quadratic
function containing [x]k can be expressed as

g([x]k) =
1
2
[x]kwkk[x]k + [x]k

m

∑
l 6=k

wkl [x]l + bk[x]k + c. (51)

Taking the derivative of the above equation yields

∂g([x]k)
∂[x]k

=
m

∑
l=1

wkl [x]l + bk. (52)

On the domain D, the function g([x]k) monotonically non-decreasing is equivalent to
being non-negative at the right end of the above equation, so it is a necessary and sufficient
condition to prove that the latter holds as follows:

wkl = wlk > 0, l = 1, · · · , m,

bk > 0, k = 1, · · · , m.
(53)

Sufficiency is obvious, and we only need to prove necessity. Supposing bk < 0 and
taking x = ([x]1, . . . . . . , [x]m)T = 0, then we obtain the following:

∂g([x]k)
∂[x]k

=
m

∑
l=1

wkl [x]l + bk = bk < 0. (54)

The above relation is contrary to the known conditions. Supposing the existence of
wkl < 0 with all other components being zero. Obviously, when the [x]l is sufficiently large,
the following formula holds:

∂g([x]k)
∂[x]k

=
m

∑
l=1

wkl [x]l + bk = wkl [x]l + bk < 0. (55)

This is a contradict. Similarly, it can be shown that Theorem 3 holds.
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4. Numerical Experiments

To verify the validity of our proposed NQSSVR model, we compare it with other
methods, including linear SVR (lin-SVR), SVR with Gaussian kernel (rbf-SVR), and poly-
nomial kernel (poly-SVR), and linear SVR with non-negative constraints (NNSVR), as well
as QLSSVR and ε-SQSSVR. The primal and dual problems of the NQSSVR method are
denoted as NQSSVR(p) and NQSSVR(d), respectively. The above experiments are tested
on 2 artificial datasets, 7 UCI [30] datasets, and AQCI datasets. All numerical experiments
in this section are conducted on a computer equipped with a 2.50GHz (i7-9700) CPU and
8G RAM using MatlabR2016(a).

To validate the fitting performances of various methods, the following four evaluation
criteria are introduced as shown in Table 1. Without loss of generality, let ŷi and yi be the pre-
dicted and mean values, respectively. The penalty parameters C and ε-insensitive parame-
ter, as well as the Gaussian kernel parameter σ, are selected from {2i | i = −6,−5, · · · , 5, 6},
while the polynomial kernel parameter p is selected from {1, 2}. All methods are selected
through 5-fold cross-validation to obtain the optimal parameters.

Table 1. Evaluation criteria.

Evaluation Criteria Formulas

R2 R2 = SSR
SST = ∑n

i=1(ŷi−yi)
2

∑n
i=1(yi−yi)

2

Mean Absolute Error(MAE) MAE = 1
n ∑n

i=1 | yi − ŷi |
Root Mean Squared Error (RMSE) RMSE =

√
1
n ∑n

i=1(yi − ŷi)2

T1 Average test time
T2 Time to select parameters

4.1. Artificial Datasets

The 2 artificial datasets are conducted to validate the performance of the NQSSVR model.

Example 1.

yi = xi + 0.3 + ζ, xi ∈ [0, 1], ζ ∈ N(0, 0.12), i = 1, · · · , 100. (56)

The data points are indicated by magenta “o”, the red solid line indicates the target
function, and the blue dashed line indicates the regression function obtained by the kernel
function method. The green dashed line and the black solid line indicate NQSSVR(p), and
NQSSVR(d), respectively. The regression functions obtained by NQSSVR and different
kernel functions are shown in Figure 1. From Figure 1, it can be seen that NQSSVR yields an
approximately linear regression function as well as the other three methods. The regression
coefficients obtained by solving the primal and dual problems of our proposed method are
w = 0.0001, b = 1.0050, c = 0.2897 and w = 0.0001, b = 0.9946, c = 0.3097, respectively. So,
NQSSVR can handle linear regression problem.

Example 2.

zi = x2
i + y2

i + 0.1 + ζ, xi, yi ∈ [0, 1], ζ ∈ N(0, 0.22), i = 1, · · · , 200. (57)

The fitting results of an artificial dataset are shown in Figure 2. The data points are
denoted by “·”. Figure 2a,b present the regression surfaces obtained from the primal and
dual problems, respectively. On this dataset, the regression coefficients obtained by our
method are W = [0.9982, 0.0000; 0.0000, 0.9956], b = [0.0000, 0.000]T, c = 0.1005, and
W = [0.9896, 0.0000; 0.0000, 0.9967], b = [0.0000, 0.0000]T, c = 0.1034. From Figure 2 and
the regression coefficients, the quadratic surface fitted by our method can be matched to
the actual distribution of the data.
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Figure 1. The visualization results on Example 1.

(a) NQSSVR(p) (b) NQSSVR(d)

Figure 2. The visualization results on Example 2.

Table 2 shows the results of the our proposed model and SVR with kernel functions
on the two datasets mentioned above. When considering the linear regression problems, it
is evident that the five models yield n similar outcomes. However, when addressing the
non-linear data, our method demonstrates superior performance compared to the other
three methods, as evidenced by the smaller average values of RMSE and MAE. Moreover,
the difference in R2 values between our method and the optimal result is minimal. Notably,
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the T2 values reveal that our method exhibits faster computation times than SVR with
kernel function. This advantage comes from the fact that it does not contain a kernel
function, thus eliminating the need for kernel parameter selection.

Table 2. Experimental results on artificial datasets.

Datasets Algorithms RMSE MAE R2 T1 T2

lin-SVR 0.0901 ± 0.0010 0.0716 ± 0.0011 0.9159 ± 0.0118 0.2085 ± 0.0188 31.2781
poly-SVR 0.0894 ± 0.0015 0.0716 ± 0.0012 0.9502 ± 0.0134 0.1412 ± 0.0096 36.9959

Example 1 rbf-SVR 0.0865 ± 0.0010 0.0658 ± 0.0014 0.9680 ± 0.0153 0.1554 ± 0.0055 62.9346
NQSSVR(p) 0.0885 ± 0.0012 0.0714 ± 0.0018 0.9066 ± 0.0260 0.0612 ± 0.0094 16.2336
NQSSVR(d) 0.0889 ± 0.0007 0.0716 ± 0.0004 0.8829 ± 0.0022 0.1278 ± 0.0019 24.2926
lin-SVR 1.4762 ± 0.0085 1.2420 ± 0.0074 0.5141 ± 0.0021 0.4143 ± 0.0204 133.6888
poly-SVR 0.1983 ± 0.0015 0.1567 ± 0.0018 0.9941 ± 0.0017 0.3464 ± 0.0413 130.0461

Example 2 rbf-SVR 0.2057 ± 0.0066 0.1615 ± 0.0047 0.9899 ± 0.0014 0.4600 ± 0.0282 573.8611
NQSSVR(p) 0.1969 ± 0.0016 0.1544 ± 0.0014 0.9930 ± 0.0014 0.1850 ± 0.0139 28.3872
NQSSVR(d) 0.1982 ± 0.0017 0.1552 ± 0.0017 0.9896 ± 0.0012 0.2056 ± 0.0234 32.7823

For example 2, the influence of the parameter on the accuracy of our proposed method
is analyzed. As can be seen by Figure 3, the penalty parameters C and insensitive loss
parameter ε have a greater impact on the accuracy of the NQSSVR model. So, reasonable
parameters can improve the accuracy of the model. In the next experiments, we choose the
optimal parameters for the model within the defined parameter range.
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Figure 3. Effect of parameters on method performance NQSSVR.

Next, the average test time is compared for NQSSVR(p), NQSSVR(d), rbf-SVR, and
poly-SVR. Since lin-SVR is only applicable to linear regression, no comparison is made here.
The CPU running time of the above four methods in different dimensions and data points
is shown in Table 3. Where the input dimensions m of data point are 2, 4, 8, and 16 and the
number n of data points is 200, 400, 600, 800, and 1000, respectively. It is noteworthy that the
time variation of NQSSVR(p) remains small as the number of data points increases for the
same input dimension, outperforming both the rbf-SVR and poly-SVR methods. Moreover,
when the number of data points is consistent, NQSSVR(p) exhibits shorter average test
time costs compared to rbf-SVR and poly-SVR. Furthermore, as the input dimension of
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data points increases, the average test time for the dual problem is found to be shorter than
that for the primal problem.

Table 3. Experimental results on the benchmark datasets.

Data Points\Dimensions Methods m = 2 m = 4 m = 8 m = 16

n = 200 poly-SVR 3.9670 ± 0.1183 3.3426 ± 0.0813 3.6770 ± 0.0596 3.8512 ± 0.0430
rbf-SVR 1.1682 ± 0.0318 1.0756 ± 0.0575 1.0694 ± 0.0437 1.1634 ± 0.0173
NQSSVR(p) 0.1592 ± 0.0146 0.2542 ± 0.0066 0.4346 ± 0.0193 1.0058 ± 0.0608
NQSSVR(d) 0.7322 ± 0.0557 0.8390 ± 0.0219 0.9502 ± 0.0449 1.1458 ± 0.0404

n = 400 poly-SVR 22.1766 ± 0.6565 21.0828 ± 0.6835 20.7110 ± 0.4407 23.2322 ± 07712
rbf-SVR 4.1252 ± 0.1725 4.2152 ± 0.1546 4.2804 ± 0.1735 4.4358 ± 0.1441
NQSSVR 0.3942 ± 0.0199 0.5334 ± 0.0219 0.9442 ± 0.0281 3.2328 ± 0.1464
NQSSVR(d) 3.2784 ± 0.1339 3.8628 ± 0.0954 4.2040 ± 0.3310 4.1320 ± 0.1463

n = 600 poly-SVR 64.8220 ± 1.0185 64.9902 ± 1.6431 63.5246 ± 1.3031 69.9104 ± 2.0957
rbf-SVR 9.6822 ± 0.4247 9.5922 ± 0.4015 10.0280 ± 0.6436 10.7400 ± 0.5887
NQSSVR 0.6522 ± 0.0114 0.8818 ± 0.0064 1.4464 ± 0.0016 4.4658 ± 0.0995
NQSSVR(d) 8.8504 ± 0.4567 9.4208 ± 0.3310 10.9936 ± 0.4588 12.3712 ± 1.3552

n = 800 poly-SVR 157.6060 ± 5.8607 139.2794 ± 7.3092 161.7490 ± 2.2436 163.0944 ± 4.0222
rbf-SVR 19.5872 ± 1.2377 17.9632 ± 1.2597 18.5810 ± 0.3514 19.8404 ± 1.4977
NQSSVR 0.9408 ± 0.0407 1.2254 ± 0.0537 1.9072 ± 0.0832 6.2810 ± 0.2554
NQSSVR(d) 16.5370 ± 0.5350 19.1804 ± 0.8508 23.1990 ± 1.2128 26.5350 ± 0.9734

n = 1000 poly-SVR 284.1451 ± 14.6313 288.7770 ± 11.1508 272.6956 ± 10.7412 141.2644 ± 8.5463
rbf-SVR 30.3622 ± 2.0704 32.5590 ± 2.4960 29.5694 ± 2.4395 30.9340 ± 9.9135
NQSSVR(p) 1.4494 ± 0.1954 1.7290 ± 0.0310 2.2676 ± 0.0452 5.3260 ± .01937
NQSSVR(d) 24.7908 ± 1.2614 28.3166 ± 1.4892 33.8146 ± 2.2722 44.1248 ± 1.5144

4.2. Benchmark Datasets

In this section, to further validate the reliability of the proposed method, the NQSSVR
model is compared with the lin-SVR, poly-SVR, rbf-SVR, NNSVR, QLSSVR, and ε-SQSSVR
models on seven benchmark datasets. Details of all datasets are listed in Table 4. All datasets
are normalized before conducting data experiments, and are divided into training datasets,
test datasets and a validation datasets in a ratio of 3:1:1. All methods are compared on
evaluation criteria: MAE, RMSE, T1, T2. The top two relatively better results are highlighted
in bold. All results were repeated 5 times and their mean values are calculated.

Table 4. Details of the benchmark datasets.

Datasets Abbreviations Sample Points Attributes

Concrete Slump Test Concrete 103 7
Computer Hardware Computer 209 9
Yacht Hydrodynamics Yacht 308 7
Forest Fires Forest 517 13
Energy efficiency (Heating) Energy(H) 768 8
Energy efficiency (Cooling) Energy(C) 768 8
Air quality Air 1067 6

Table 5 lists the regression results of the eight methods on the seven datasets. In terms
of the evaluation criteria RMSE and MAE, it can be seen that NQSSVR is significantly
better than lin-SVR and NNSVR. For most of the datasets, the NQSSVR model outperforms
QLSSVR and ε-SQSSVR, and is not significantly different from rbf-SVR and poly-SVR. In
terms of time, our method is second only to QLSSVR and outperforms other methods.
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Table 5. Experimental results on the datasets.

Datasets Algorithms RMSE MAE T1 T2

lin-SVR 0.0703 ± 0.0032 0.0499 ± 0.0027 0.1618 ± 0.0122 24.2926
poly-SVR 0.0476 ± 0.0016 0.0301 ± 0.0011 0.1708 ± 0.0130 49.2486
rbf-SVR 0.0406 ± 0.0023 0.0275 ± 0.0015 0.1544 ± 0.0116 170.5862
NNSVR 0.0752 ± 0.0021 0.0597 ± 0.0020 0.0572 ± 0.0057 7.6194

Concrete QLSSVR 0.0571 ± 0.0022 0.0453 ± 0.0017 0.0300 ± 0.0020 5.0718
ε-SQSSVR 0.0378 ± 0.0011 0.0242 ± 0.0014 0.3366 ± 0.0184 44.0096
NQSSVR(p) 0.0381 ± 0.0016 0.0296 ± 0.0011 0.1608 ± 0.0051 24.0741
NQSSVR(d) 0.0317 ± 0.0300 0.0267 ± 0.0016 0.1432 ± 0.0020 18.5869
lin-SVR 0.0393 ± 0.0014 0.0199 ± 0.0003 0.5438 ± 0.0303 64.1097
poly-SVR 0.0216 ± 0.0006 0.0084 ± 0.0002 0.5014 ± 0.0272 161.7245
rbf-SVR 0.0179 ± 0.0011 0.0093 ± 0.0005 0.4554 ± 0.0193 507.4994
NNSVR 0.0376 ± 0.0026 0.0217 ± 0.0009 0.0874 ± 0.0063 11.1911

Computer QLSSVR 0.0194 ± 0.0015 0.0099 ± 0.0004 0.0324 ± 0.0006 5.2495
ε-SQSSVR 0.0139 ± 0.0007 0.0118 ± 0.0003 0.6674 ± 0.0230 74.2415
NQSSVR(p) 0.0119 ± 0.0017 0.0077 ± 0.0007 0.2132 ± 0.0115 41.8217
NQSSVR(d) 0.0098 ± 0.0012 0.0063 ± 0.0005 0.3018 ± 0.0131 26.7490
lin-SVR 0.1428 ± 0.0010 0.1129 ± 0.0007 3.2864 ± 0.0893 360.9378
poly-SVR 0.0676 ± 0.0204 0.0559 ± 0.0105 3.4052 ± 0.0965 798.5638
rbf-SVR 0.0287 ± 0.0036 0.0204 ± 0.0011 1.6488 ± 0.0835 307.3457
NNSVR 0.1547 ± 0.0008 0.1012 ± 0.0003 0.1876 ± 0.0182 27.4442

Yacht QLSSVR 0.1056 ± 0.0005 0.0817 ± 0.0006 0.0620 ± 0.0110 8.7560
ε-SQSSVR 0.0711 ± 0.0009 0.0551 ± 0.0007 1.8485 ± 0.1059 56.9315
NQSSVR(p) 0.0965 ± 0.0006 0.0741 ± 0.0002 0.5432 ± 0.0105 67.1763
NQSSVR(d) 0.0708 ± 0.0013 0.0533 ± 0.0010 1.8038 ± 0.0704 167.1142
lin-SVR 0.0528 ± 0.0010 0.0196 ± 0.0001 17.3862 ± 0.7161 1561.1308
poly-SVR 0.0486 ± 0.0014 0.0179 ± 0.0001 6.8746 ± 0.0634 1603.4728
rbf-SVR 0.0465 ± 0.0013 0.0170 ± 0.0000 3.2826 ± 0.1706 812.7531
NNSVR 0.0498 ± 0.0010 0.0198 ± 0.0001 0.2688 ± 0.0151 45.1113

Fores QLSSVR 0.0500 ± 0.0009 0.0186 ± 0.0001 0.1756 ± 0.0170 29.1384
ε-SQSSVR 0.0484 ± 0.0011 0.0196 ± 0.0001 0.7936 ± 0.1830 696.7686
NQSSVR(p) 0.0475 ± 0.0031 0.0183 ± 0.0001 0.7360 ± 0.0168 120.5714
NQSSVR(d) 0.0470 ± 0.0024 0.0175 ± 0.0001 9.1456 ± 0.4374 540.1738
lin-SVR 0.0801 ± 0.0001 0.0556 ± 0.0001 15.0628 ± 0.6460 1559.3228
poly-SVR 0.0298 ± 0.0001 0.0218 ± 0.0001 12.9536 ± 0.3113 3408.8491
rbf-SVR 0.0237 ± 0.0004 0.0208 ± 0.0003 5.7626 ± 0.3335 10,338.7745
NNSVR 0.0826 ± 0.0006 0.0572 ± 0.0001 0.3374 ± 0.0115 52.2095

Energy(H) QLSSVR 0.0704 ± 0.0003 0.0499 ± 0.0002 0.1482 ± 0.0081 24.4898
ε-SQSSVR 0.0685 ± 0.0010 0.0464 ± 0.0004 9.8748 ± 0.1596 1065.6020
NQSSVR(p) 0.0516 ± 0.0002 0.0405 ± 0.0002 0.8624 ± 0.0274 105.5643
NQSSVR(d) 0.0587 ± 0.0003 0.0423 ± 0.0001 16.8058 ± 0.6380 679.5034
lin-SVR 0.0855 ± 0.0009 0.0592 ± 0.0014 21.4692 ± 0.5119 2708.5711
poly-SVR 0.0623 ± 0.0001 0.0408 ± 0.0002 28.3624 ± 0.8986 6579.0492
rbf-SVR 0.0398 ± 0.0018 0.0276 ± 0.0008 9.2944 ± 0.0669 13,515.7641
NNSVR 0.0922 ± 0.0006 0.0583 ± 0.0004 0.5539 ± 0.0259 88.6845

Energy(C) QLSSVR 0.0820 ± 0.0004 0.0572 ± 0.0003 0.2338 ± 0.0409 39.7269
ε-SQSSVR 0.0795 ± 0.0008 0.0512 ± 0.0005 14.7644 ± 0.1254 1782.9128
NQSSVR(p) 0.0681 ± 0.0002 0.0476 ± 0.0001 1.4326 ± 0.0303 175.3763
NQSSVR(d) 0.0702 ± 0.0005 0.0463 ± 0.0002 10.3206 ± 0.2744 1161.6354
lin-SVR 0.1965 ± 0.0004 0.1637 ± 0.0002 18.5452 ± 0.9660 3563.6484
poly-SVR 0.1197 ± 0.0018 0.0884 ± 0.0001 32.7722 ± 0.7051 7896.3575
rbf-SVR 0.1246 ± 0.0003 0.0727 ± 0.0002 12.2458 ± 0.3911 16,768.0504
NNSVR 0.1963 ± 0.0002 0.1038 ± 0.0002 0.4592 ± 0.0041 77.6678

Air QLSSVR 0.1346 ± 0.0002 0.0958 ± 0.0001 0.1078 ± 0.0077 17.8609
ε-SQSSVR 0.1265 ± 0.0003 0.1033 ± 0.0003 20.6978 ± 0.1596 2066.3358
NQSSVR(p) 0.1385 ± 0.0001 0.0936 ± 0.0002 0.6869 ± 0.0241 122.4225
NQSSVR(d) 0.1458 ± 0.0007 0.0965 ± 0.0006 16.4676 ± 0.7046 677.5034
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To compare the performances of our proposed method and other six methods, the
Friedman test and post hoc test are employed. Initially, the Friedman test is conducted
with the null hypothesis states that all methods have the same performances. Further-
more, we can calculate the Friedman statistics for each evaluation criterion using the
following formula.

τχ2 =
12N

K(K + 1)
(

K

∑
i=1

R2
i −

K(K + 1)2

4
), (58)

τF =
(N − 1)τχ2

N(K− 1)− τχ2
, (59)

where N and K are, respectively, the numbers of datasets and methods, Ri is the average
rank of the i-th method.

According to the Formula (59), the Friedman statistics corresponding to the three cri-
teria are 12.2124, 13.8361 and 35.1600, respectively. Next, for α = 0.05, the critical value of
Friedman statistic is calculated to be Fα = 2.2371. Since the Friedman statistic on each re-
gression criteria is greater than Fα, so we reject the null hypothesis. That is, these 8 methods
have significantly different performances on the 3 evaluation criteria. To further compare
the difference of each method, we proceed with a post hoc test. Specifically, if the difference
of average ranks for two methods is larger than the critical difference (CD), then their
performances are considered to be significantly different. Where the CD value can be
calculated by the Formula (60)

CD = qα

√
K(K + 1)

6N
. (60)

For α = 0.05, we know qα = 3.0308. Thus, we obtain CD = 3.9685 by the Formula (60).
Figure 4 visually displays the results of Friedman test and Nemenyi post hoc test on

three regression evaluation criteria, respectively. Where the average ranks of each method
for three criteria are marked along an axis. The axis is turned so that the lowest (best)
ranks is to the right of each criterion. Groups of methods that are not significantly different
are linked by a red line. Statistically, the performance of NQSSVR (p) is not significantly
different from rbf-SVR and poly-SVR in terms of RMSE, MAE. And our method ranks
better than both the kernel-free quadratic surface and lin-SVR models on RMSE, MAE.
In terms of time, our model ranks third and fourth, outperforming the SVR with kernel
functions and ε-SQSSVR. In general, the comprehensive performance of our method is
similar to rbf-SVR and poly-SVR, and completely superior to lin-SVR and NNSVR.
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Figure 4. The results of Friedman test and Nemenyi post hoc test.

4.3. Air Quality Composite Index Dataset (AQCI)

This section uses two AQCI datasets, the monthly AQCI dataset and the daily AQCI
dataset. These two datasets containing 18 data points and 841 data points, respectively.
Each data point has six input features including nitrogen dioxide (NO2), sulfur dioxide
(SO2), PM2.5, ozone (O3), carbon monoxide (CO), PM10, respectively. And the output
response is AQCI. Our method is compared with QLSSVR, ε-SQSSVR and NNSVR.
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In Figure 5, the value of AQCI has a tendency to increase as the values of the remaining
five input features increase, except for the O3 feature. Therefore, the regression function we
obtain should be monotonically increasing on the monthly AQCI dataset.
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Figure 5. The relationship between six features and AQCI on monthly AQCI dataset.

Table 6 shows the experimental results of our NQSSVR and the other three methods on
these two datasets. The accuracy of our model is better than that of QLSSVR and ε-SQSSVR
on the datasets because our NQSSVR imposes non-negative constraints with respect to the
regression coefficients. In addition, our model has greater accuracy than the NNSVR model.
Because NNSVR can only obtain a linear regression function, but NQSSVR can obtain a
quadratic regression function.

Table 6. Results on the AQCI datasets.

Datasets Algorithms RMSE MAE R2 T1 T2

NNSVR 0.0274 ± 0.0001 0.0244 ± 0.0012 1.0058 ± 0.0635 0.0432 ± 0.0084 7.1174
QLSSVR 0.0783 ± 0.0011 0.0668 ± 0.0008 0.1027 ± 0.1052 0.0094 ± 0.0015 0.1103

monthly ε-SQSSVR 0.1202 ± 0.0055 0.0898 ± 0.0052 0.9865 ± 0.1071 0.1356 ± 0.0534 1.8532
NQSSVR(p) 0.0140 ± 0.0012 0.0115 ± 0.0011 1.0130 ± 0.0457 0.1600 ± 0.0156 2.3799
NQSSVR(d) 0.0185 ± 0.0015 0.0156 ± 0.0011 1.0241 ± 0.0672 0.0482 ± 0.0072 0.4796
NNSVR 0.0072 ± 0.0003 0.0060 ± 0.0001 1.0000 ± 0.0003 2.7365 ± 0.1292 37.1562
QLSSVR 0.0071 ± 0.0001 0.0056 ± 0.0004 1.0000 ± 0.0002 0.1714 ± 0.0188 2.1832

daily ε-SQSSVR 0.0071 ± 0.0002 0.0057 ± 0.0001 1.0001 ± 0.0001 32.4848 ± 0.5036 405.5820
NQSSVR(p) 0.0062 ± 0.0001 0.0054 ± 0.0001 1.0002 ± 0.0001 2.9516 ± 0.0389 43.7415
NQSSVR(d) 0.0067 ± 0.0001 0.0058 ± 0.0001 1.0000 ± 0.0001 2.3086 ± 0.2897 28.2437

To investigate the effect of adding non-negative constraints on the accuracy of the re-
gression function, we compare the regression coefficients W and b obtained by NQSSVR(p)
with those obtained using the other three methods. Since NNSVR is a linear model, it
has only linear term coefficients b and does not involve nonlinear term coefficients W .
The regression coefficients obtained by the four methods are small, and for comparison
purposes, we enlarge the W and b by a factor of 100 and 10, respectively, before drawing
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the figure. When the regression coefficient is negative, the color of the color block is closer
to blue.

We want to obtain a regression function that is monotonically increasing, by Theorem 3
it is equivalent to the non-negative constraints with respect to regression coefficients.
From the Figures 6 and 7, we can see that ε-SQSSVR and QLSSVR obtained W and b
contain negative numbers, so the regression functions obtained do not match the a priori
information. However, our model yields regression coefficients that all match the a priori
information. Therefore, adding non-negative constraints can improve the accuracy and
reasonableness of the model. Since our method can obtain a quadratic regression function,
it is therefore more accurate than the linear regression function obtained by NNSVR.

(a) NQSSVR (b) ε-SQSSVR (c) QLSSVR

Figure 6. W-matrices.

(a) NQSSVR (b) ε-SQSSVR (c) QLSSVR (d) NNSVR

Figure 7. b-vectors.

Figure 8 show the effect of the parameters on the performance of our model. Here
we have chosen three evaluation criteria, including RMSE, MAE, and R2. Figure 8a–c
displays the experimental results obtained for the dual problem, while Figure 8d–f presents
the experimental results for the primal problem. It can be observed that the effect of the
parameters on our proposed model remains significant. It is worth noting that our model
receives ε-insensitive parameter influence more and is not very sensitive to the change of
penalty parameter C.
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(a) RMSE (b) MAE (c) R2

(d) RMSE (e) MAE (f) R2

Figure 8. Effect of parameters on method performance NQSSVR.

5. Conclusions

For the regression problem, a novel kernel-free quadratic surface support vector
regression with non-negative constraints (NQSSVR) is proposed by utilizing the kernel-
free technique and introducing the non-negative constraints with respect to regression
coefficients. Specifically, by using a quadratic surface to fit the data, the regression function
is nonlinear and does not involve kernel functions, so the model is unnecessary to select
kernel functions and corresponding parameters, and the obtained regression function
has better interpretability. Moreover, adding non-negative constraints with respect to
regression coefficients to the model ensures that the obtained regression function conforms
to the monotonic non-decreasing characteristics on non-negative interval. In fact, when
exploring air quality examples, there is a prior information that air quality indicators will
increase with the increase in all gas concentrations in the atmosphere. Fortunately, we
have proven that the quadratic regression function obtained by NQSSVR is monotonically
non-decreasing on the non-negative interval if and only if the non-negative constraints with
respect to the regression coefficients hold true. The results of numerical experiments on the
two artificial datasets, seven benchmark datasets and air quality datasets demonstrate that
our method is feasible and effective.

In this paper, we impose a non-negative restriction on the regression coefficients based
on prior information. In the subsequent optimization problems, we can add different
restrictions to the values of the regression coefficients based on the prior information. For
example, part of the regression coefficients are restricted to non-negative intervals and part
of the regression coefficients are unrestricted.

Author Contributions: Methodology, D.W. and Z.Y.; Software, D.W.; Writing—original draft, D.W.;
Writing—review & editing, Z.Y. and J.Y.; Supervision, Z.Y., J.Y. and X.Y.; Funding acquisition, Z.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 12061071).

Data Availability Statement: All of the benchmark datasets used in our numerical experiments are
from the UCI Machine Learning Repository, which are available at https://archive.ics.uci.edu/ml/
351index.php (the above datasets accessed on 18 August 2021) .

Acknowledgments: The authors would like to thank the editor and referees for their valuable
comments and suggestions, which helped us to improve the results of this paper.

https://archive.ics.uci.edu/ml/ 351 index.php
https://archive.ics.uci.edu/ml/ 351 index.php


Entropy 2023, 25, 1030 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, L.; Harrach, B.; Seo, J.K. Monotonicity-based electrical impedance tomography for lung imaging. Inverse Probl. 2018,

34, 045005. [CrossRef]
2. Chatterjee, S.; Guntuboyina, A.; Sen, B. On matrix estimation under monotonicity constraints. Bernoulli 2018, 24, 1072–1100.

[CrossRef]
3. Wang, J.; Qian, Y.; Li, F.; Liang, J.; Ding, W. Fusing fuzzy monotonic Decision Trees. IEEE Trans. Fuzzy Syst. 2019, 28, 887–900.

[CrossRef]
4. Henderson, N.C.; Varadhan, R. Damped anderson acceleration with restarts and monotonicity control for accelerating em and

em-like algorithms. J. Comput. Graph. Stat. 2019, 28, 834–846. [CrossRef]
5. Bro, R.; Sidiropoulos, N.D. Least squares algorithms under unimodality and non-negativity constraints. J. Chemom. J. Chemom. Soc.

1998, 12, 223–247. [CrossRef]
6. Luo, X.; Zhou, M.C.; Li, S.; Hu, L.; Shang, M. Non-negativity constrained missing data estimation for high-dimensional and sparse

matrices from industrial applications. IEEE Trans. Cybern. 2019, 50, 1844–1855. [CrossRef]
7. Theodosiadou, O.; Tsaklidis, G. State space modeling with non-negativity constraints using quadratic forms. Mathematics 2019,

9, 1905. [CrossRef]
8. Haase, V.; Hahn, K.; Schndube, H.; Stierstorfer, K.; Maier, A.; Noo, F. Impact of the non-negativity constraint in model-based

iterative reconstruction from CT data. Med. Phys. 2019, 46, 835–854. [CrossRef] [PubMed]
9. Yamashita, S.; Yagi, Y.; Okuwaki, R.; Shimizu, K.; Agata, R.; Fukahata, Y. Potency density tensor inversion of complex body

waveforms with time-adaptive smoothing constraint. Geophys. J. Int. 2022, 231, 91–107. [CrossRef]
10. Wang, J.; Deng, Y.; Wang, R.; Ma, P.; Lin, H. A small-baseline InSAR inversion algorithm combining a smoothing constraint and

L1-norm minimization. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1061–1065. [CrossRef]
11. Mammen, E.; Marron, J.S.; Turlach, B.A.; Wand, M.P. A general projection framework for constraints smoothing. Stat. Sci. 2001, 16,

232–248. [CrossRef]
12. Powell, H.; Lee, D.; Bowman, A. Estimating constraints concentration–response functions between air pollution and health.

Environmetrics 2012, 23, 228–237. [CrossRef]
13. Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 1995.
14. Chen, J.; Richard, C.; Honeine, P.; Bermudez, J.C.M. Non-negative distributed regression for data inference in wireless sensor

networks. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 451–455.

15. Shekkizhar, S.; Ortega, A. Graph construction from data by non-negative kernel regression. In Proceedings of the ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020;
pp. 3892–3896.

16. Shekkizhar, S.; Ortega, A. NNK-Means: dictionary learning using non-negative kernel regression. arXiv 2021, arXiv:2110.08212.
17. Chapel, L.; Flamary, R.; Wu, H.; Févotte, C.; Gasso, G. Unbalanced optimal transport through non-negative penalized linear

regression. Adv. Neural Inf. Process. Syst. 2021, 34, 23270–23282.
18. Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst.

1996, 9, 779–784.
19. Fauzi, A. Stock price prediction using support vector machine in the second Wave of COVID-19 pandemic. Insearch Inf. Syst. Res. J.

2021, 1, 58–62. [CrossRef]
20. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in cancer

genomics. Cancer Genom. Proteom. 2018, 15, 41–51.
21. Zhong, H.; Wang, J.; Jia, H.; Mu, Y.; Lv, S. Vector field-based support vector regression for building energy consumption prediction.

Appl. Energy 2019, 242, 403–414. [CrossRef]
22. Guo, H.; Nguyen, H.; Bui, X.N.; Armaghani, D.J. A new technique to predict fly-rock in bench blasting based on an ensemble of

support vector regression and GLMNET. Eng. Comput. 2021, 37, 421–435. [CrossRef]
23. Dagher, I. Quadratic kernel-free non-linear support vector machine. J. Glob. Optim. 2008, 41, 15–30. [CrossRef]
24. Gao, Z.; Wang, Y.; Huang, M.; Luo, J.; Tang, S. A kernel-free fuzzy reduced quadratic surface ν-support vector machine with

applications. Appl. Soft Comput. 2022, 127, 109390. [CrossRef]
25. Zhou, J.; Tian, Y.; Luo, J.; Zhai, Q. Novel non-Kernel quadratic surface support vector machines based on optimal margin

distribution. Soft Comput. 2022 , 26, 9215–9227. [CrossRef]
26. Ye, J.Y.; Yang, Z.X.; Li, Z.L. Quadratic hyper-surface kernel-free least squares support vector regression. Intell. Data Anal. 2021, 25,

265–281. [CrossRef]
27. Ye, J.Y.; Yang, Z.X.; Ma, M.P.; Wang, Y.L.; Yang, X.M. ε-Kernel-free soft quadratic surface support vector regression. Inf. Sci. 2022,

594, 177–199. [CrossRef]
28. Zhai, Q.; Tian, Y.; Zhou, J. Linear twin quadratic surface support vector regression. Math. Probl. Eng. 2020, 2020, 3238129.

[CrossRef]

http://doi.org/10.1088/1361-6420/aaaf84
http://dx.doi.org/10.3150/16-BEJ865
http://dx.doi.org/10.1109/TFUZZ.2019.2953024
http://dx.doi.org/10.1080/10618600.2019.1594835
http://dx.doi.org/10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2
http://dx.doi.org/10.1109/TCYB.2019.2894283
http://dx.doi.org/10.3390/math9161908
http://dx.doi.org/10.1002/mp.13702
http://www.ncbi.nlm.nih.gov/pubmed/31811793
http://dx.doi.org/10.1093/gji/ggac181
http://dx.doi.org/10.1109/LGRS.2019.2893422
http://dx.doi.org/10.1214/ss/1009213727
http://dx.doi.org/10.1002/env.1150
http://dx.doi.org/10.15548/isrj.v1i02.3185
http://dx.doi.org/10.1016/j.apenergy.2019.03.078
http://dx.doi.org/10.1007/s00366-019-00833-x
http://dx.doi.org/10.1007/s10898-007-9162-0
http://dx.doi.org/10.1016/j.asoc.2022.109390
http://dx.doi.org/10.1007/s00500-022-07354-8
http://dx.doi.org/10.3233/IDA-205094
http://dx.doi.org/10.1016/j.ins.2022.02.012
http://dx.doi.org/10.1155/2020/3238129


Entropy 2023, 25, 1030 18 of 18

29. Zheng, L.J.; Tian, Y.; Luo, J.; Hong, T. A novel hybrid method based on kernel-free support vector regression for stock indices and
price forecasting. J. Oper. Res. Soc. 2023, 74, 690–702. [CrossRef]

30. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/index.php (accessed
on 18 August 2021 ) .

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01605682.2022.2128908
https://archive.ics.uci.edu/ml/index.php

	Introduction
	Background
	Definition and Notations
	-SQSSVR

	Kernel-Free QSSVR with Non-Negative Constraints (NQSSVR)
	Primal Problem
	Dual Model
	Some Theoretical Analysis

	Numerical Experiments
	Artificial Datasets
	Benchmark Datasets
	Air Quality Composite Index Dataset (AQCI)

	Conclusions
	References

