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Abstract: The efficient generation of high-quality random numbers is essential in the operation of
cryptographic modules. The quality of a random number generator is evaluated by the min-entropy
of its entropy source. The typical method used to achieve high min-entropy of the output sequence is
an entropy accumulation based on a hash function. This is grounded in the famous Leftover Hash
Lemma, which guarantees a lower bound on the min-entropy of the output sequence. However, the
hash function-based entropy accumulation has slow speed in general. For a practical perspective,
we need a new efficient entropy accumulation with the theoretical background for the min-entropy
of the output sequence. In this work, we obtain the theoretical bound for the min-entropy of the
output random sequence through the very efficient entropy accumulation using only bitwise XOR
operations, where the input sequences from the entropy source are independent. Moreover, we
examine our theoretical results by applying them to the quantum random number generator that
uses dark shot noise arising from image sensor pixels as its entropy source.

Keywords: entropy accumulation; random number generator; quantum random noises

1. Introduction

A random number generator (RNG) is an important component of cryptographic
systems used by cryptographic modules to generate random numbers. Random numbers
are used for various purposes including the generation of cryptographic keys, and their
significance has been increasingly highlighted, particularly with the recent emergence of
quantum key distribution [1].

An RNG can be divided into three main processes: digitization, entropy accumulation,
and pseudo random number generation (PRNG). Digitization is the process of converting
entropy sources into binary data. We call the converted binary data the “input sequence”.
Typically, the input sequence has a low min-entropy. Entropy accumulation is the process
of transforming input sequences into data with high min-entropy. We denote the input
sequence that has undergone the entropy accumulation process as the “output sequence”.
PRNG is composed of deterministic algorithms, such as block ciphers or hash functions,
and it assumes the output sequence as input and then outputs the final “random number”.
The operation of the RNG is illustrated in Figure 1.

Although unpredictable random numbers can be generated using a digitized entropy
source, this is impractical in cryptographic systems because of the significant amount of
time required. The PRNG was used to address this limitation. A PRNG produces the same
output with the same input. This implies that the generated random numbers are not
unpredictable. However, the PRNG can generate multiple random numbers in a short time
because the length of the output is longer than the length of the input. Therefore, if the
length of the input of the PRNG is small but random, the output of the PRNG provides
good random numbers. Consequently, the high min-entropy of the input sequence can be
observed as an important factor in constructing an RNG.

Entropy 2023, 25, 1056. https://doi.org/10.3390/e25071056 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25071056
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071056?type=check_update&version=1


Entropy 2023, 25, 1056 2 of 24

Figure 1. Operation of an RNG.

In the process of entropy accumulation, an accumulation function H is a transforma-
tion from an input sequence to an output sequence. Let X be an input sequence and X′ be
the corresponding output sequence, then the entropy accumulation can be expressed as
X′ = H(X).

On the other hand, Dodis et al. [2] have proposed that the entropy accumulation is
divided into two types depending on the characteristics of the accumulation function H.
The first type is called “Slow-Refresh”, which is characterized by a high computational
complexity of H leading to slower accumulation speed but results in a long output sequence.
The second type, so called “Fast-Refresh”, features a lower computational complexity of H
leading to faster accumulation speed but results in a short output sequence.

Traditional hash function-based entropy accumulation is categorized as Slow-Refresh
due to its relatively slow accumulation speed. However, this method is widely utilized
because of the theoretical foundation provided by the Leftover Hash Lemma [3]. The Left-
over Hash Lemma ensures the lower bound of min-entropy for the output sequence, where
a low min-entropy input sequence passes through a hash function H randomly selected
from a universal hash family.

There are two major considerations in the Slow-Refresh process, which are the con-
struction of a universal hash family and the random selection of a hash function from the
uniformly distributed universal hash family. However, constructing a universal hash family
is not a trivial task. One example satisfying an appropriate property is the family of the
Hankel matrix [4]. If a Hankel matrix is randomly selected from the uniformly distributed
family, and an n-bit input sequence is processed through this selected matrix, then the
resulting m-bit output sequence will have a sufficient min-entropy. Similarly, a universal
hash family can also be constructed by using Toeplitz matrices [5,6].

In such a matrix-based universal hash family, the matrices typically used have input
bit-lengths larger than the output bit-lengths, and the ratio m/n approaches 1 as n increases.
Thus, the size of the matrix must be sufficiently large in order to minimize the lost bits.
However, this leads to a high computational complexity, that is, this method falls under the
Slow-Refresh category, and Slow-Refresh may not always be suitable in practical situations
that require rapid entropy accumulation. Therefore, in this work, we focus on Fast-Refresh,
which is clearly described in the next subsection.
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1.1. Related Works

One of the typical examples of Fast-Refresh without a hash function is Microsoft Win-
dows RNG [7]. Windows RNG uses only the bitwise XOR operation and bit permutation
rot(α,n) for the entropy accumulation. In particular, if we employ the following notation,
the entropy accumulation operation of Windows RNG can be depicted as shown in Figure 2.

• Y1, Y2, · · · , Yl : n-bit input sequences.
• π : {0, 1, · · · , n− 1} → {0, 1, · · · , n− 1}, π is one-to-one.
• Aπ : {0, 1}n → {0, 1}n, Aπ(b0, b1, · · · , bn−1) := Aπ(bπ(0), bπ(1), · · · , bπ(n−1)).
• rot(α,n) : {0, 1, · · · , n− 1} → {0, 1, · · · , n− 1}, rot(α,n)(i) := i− α(mod n).

Figure 2. Windows RNG entropy accumulation.

Figure 3 is an example of the rot(3,8) operation on an 8-bit input sequence.

Figure 3. Example of the rot permutation when n = 8 and α = 3.

• Λ(l)
π : {0, 1}n → {0, 1}n, Λ(l)

π :=

{
Y1 if l = 1

Aπ(Λ
(l−1)
π )⊕Yl if l ≥ 2
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Windows RNG accumulates output sequences relatively quickly in an entropy pool
because it uses bit permutations and bitwise XOR operations without employing hash
functions. Despite these advantages, it has not been proven whether the entropy accu-
mulation of Windows RNG guarantees a lower bound for the min-entropy of the output
sequence, as does the Leftover Hash Lemma when using a hash function. Therefore, it has
been challenging to consider this method of secure entropy accumulation. However, recent
research presented at Crypto 2021 analyzed Microsoft Windows RNG. In [2], the security
of Windows RNG was analyzed by providing the number of iterations of bit permuta-
tion and bitwise XOR to surpass an arbitrary min-entropy under three conditions. First,
the input sequences must be independent. Second, the probability distribution of input
sequences must follow the “2-monotone distribution”. Third, the “covering number” of
the bit permutation must be finite. In [2], it was claimed that the three conditions just
mentioned are easy to satisfy. However, satisfying these conditions may be challenging
for hardware entropy sources rather than software entropy sources, particularly when
managing multiple entropy sources. The first and third conditions are easily satisfied,
as in the case of Windows RNG. The second condition may seem easy to achieve, but it
is challenging. Therefore, to handle entropy sources other than Windows, a more relaxed
condition is required than that presented in [2].

1.2. Our Contributions

The contributions of this paper can be summarized into three main aspects. First,
we provide Fast-Refresh that does not require hash functions and uses only bitwise XOR
operations to generate output sequences. In particular, if we employ the following notation,
the proposed entropy accumulation can be depicted as shown in Figure 4.

• Y1, Y2, · · · , Yl : n-bit input sequences.
• Γ(l) = ∑l

j=1 Yj.

Figure 4. Entropy accumulation using only bitwise XOR operations.

This method requires only two conditions for the input sequences, making it relatively
easier to satisfy than Windows RNG entropy accumulation.
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Second, we establish a min-entropy lower bound for a secure random number gen-
erator and demonstrate that our entropy accumulation successfully surpasses this lower
bound when applied to our RNG. We used quantum random number generators (QRNGs)
as an entropy source. QRNGs utilize several quantum phenomena to generate high-quality
random numbers [8–10].

The first published QRNG was based on radioactive decay. This emerged as the
need for random number generators increased alongside the rise of computer simulations
in the late 20th century. QRNGs with radioactive decay utilize the random behavior of
particles emitted from radioactive materials. This method is still in use today, and, along
with methods using the photon, it is one of the most common QRNG [8]. There are
various quantum phenomena used for quantum random number generation. For example,
the study in [9] uses the interference of photons to generate random numbers. Another
example from [11] involves the use of tunneling signals in silicon diodes for random number
generation. Furthermore, the work in [12] employs short laser pulses with quantum random
phases to generate random numbers.

In this paper, we use the image sensor-based QRNG of [13]. The image sensor-
based QRNG generates random numbers using dark shot noise. Dark shot noise is a
fluctuation of small current that flows through the pixels of the image sensor even when
they do not receive light. It is known that the number of electrons follows the Poisson
distribution [14,15]. For this reason, we utilize optical black pixels (OBP) of the image
sensor, which do not receive light, as the entropy source. Furthermore, because each
pixel outputs dark shot noise independently, all the entropy sources can be considered
independent of each other.

Third, we conduct a comparative analysis of our proposed entropy accumulation with
other entropy accumulations. The examples chosen for comparison are the Slow-Refresh
used in IDQ QRNG and the Fast-Refresh of Windows RNG. When comparing with the
Slow-Refresh, we focus on the theoretical differences in the accumulation mechanisms
between ours and the IDQ QRNG. Under the view point of Fast-Refresh, we compare
efficiency of ours with Windows RNG by evaluating the iteration number of operations.

The remainder of this paper is organized as follows. In Section 2 , we describe the
theoretical background and propose our main theorem, which guarantees the lower bound
of min-entropy of the output sequence. In Section 3, we describe the process of applying the
theory outlined in Section 2 to an image sensor-based QRNG. We establish a min-entropy
lower bound based on three standards and provide experimental results demonstrating
that the output sequences generated by applying our theory to the input sequences have
a min-entropy higher than the established lower bound. In Section 4, we compare our
entropy accumulation with other entropy accumulations. The first comparison is with
Slow-Refresh of IDQ QRNG. We describe the theoretical background of Slow-Refresh and
the Leftover Hash Lemma and explain the operation of IDQ QRNG. Then, we present two
limitations of IDQ QRNG and describe the differences between IDQ QRNG and our entropy
accumulation. The second comparison is with Fast-Refresh of Windows RNG. We compare
the iteration number l, which is obtained when applying each entropy accumulation.
The iteration number of Windows RNG is calculated using the theory in [2]. Note that
without some additional components, the theory in [2] cannot be directly applied. Section 5
is the conclusion.

2. Theoretical Background and Main Theorem

In this section, we describe the theoretical background of entropy accumulation using
only the XOR operation. In particular, we use the following notation:

• Zn
m : Direct product of n copies of the group Zm. Note that the bitwise XOR operation

corresponds to the + operation over Zn
2 .

• F (Zn
m) : the space of all complex valued functions on Zn

m.
• Γ(l) = ∑l

j=1 Yj, where Yj ∈ Zn
2 is the n-bit random variable that represents the input

sequence.
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• ‖ f ‖min = min{| f (x)| : x ∈ Zn
m}, f ∈ F (Zn

m).
• ‖ f ‖∞ = max{| f (x)| : x ∈ Zn

m}, f ∈ F (Zn
m).

• ‖ f ‖1 = ∑x∈Zn
m
| f (x)|, f ∈ F (Zn

m).
• DX : probability distribution of the random variable X.
• Hmin(DX) = − log2‖DX‖∞. Hmin(DX) implies the min-entropy of DX .

We show that as the number of input sequences required to generate one output
sequence, represented by l, approaches infinity, Hmin(DΓ(l)) converges to n. Furthermore,
we provide the optimal value of l necessary to surpass the specified min-entropy α(< n).
First, we provide a solution for the case n = 1 and explain why this solution is inappropriate
for the general n-bit case. Thereafter, we provide a general solution using a Discrete Fourier
Transform and Convolution.

First, we show why the problem we are trying to solve is challenging. The difficult
point of our problem is that in order to determine the value of DΓ(l) , complex linear
operations must be performed on the function values of DYj . For example, suppose
n = 2, Y1, Y2, Y3 are independent and DY1 , DY2 , DY3 are identical to the distribution D.

The distribution D is determined as D(0, 0) =
1
8

, D(0, 1) =
1
4

, D(1, 0) =
3
8

, D(1, 1) =
1
4

.
Let us calculate DΓ(3) , which suffices to show the complexity of computation.

DΓ(3)(0, 0) = ∑
x⊕y⊕z=(0,0)

DY1(x)DY2(y)DY3(z) = D(0, 0)D(0, 0)D(0, 0)+

D(0, 0)D(0, 1)D(0, 1) + · · ·+ D(1, 1)D(1, 1)D(0, 0) =
124
512
≈ 0.242.

DΓ(3)(0, 1) = ∑
x⊕y⊕z=(0,1)

DY1(x)DY2(y)DY3(z) = D(0, 0)D(0, 0)D(0, 1)+

D(0, 0)D(0, 1)D(0, 0) + · · ·+ D(1, 1)D(1, 1)D(0, 1) =
128
512

= 0.25.

DΓ(3)(1, 0) = ∑
x⊕y⊕z=(1,0)

DY1(x)DY2(y)DY3(z) = D(0, 0)D(0, 0)D(1, 0)+

D(0, 0)D(0, 1)D(1, 1) + · · ·+ D(1, 1)D(1, 1)D(1, 0) =
132
512
≈ 0.258.

DΓ(3)(1, 1) = ∑
x⊕y⊕z=(1,1)

DY1(x)DY2(y)DY3(z) = D(0, 0)D(0, 0)D(1, 1)+

D(0, 0)D(0, 1)D(1, 0) + · · ·+ D(1, 1)D(1, 1)D(1, 1) =
128
512

= 0.25.

From the above calculations, we derive two features. First, to calculate one function
value of DΓ(l) , we must sum 2(l−1)n terms. That is, to calculate

DΓ(l)(x) = ∑
x1⊕x2⊕···⊕xl=x

DY1(x1)DY2(x2) · · ·DYl (xl), (1)

the first l − 1 terms x1, x2, · · · xl−1 could be any value and the last term xl is automatically
determined by equation x1 ⊕ x2 ⊕ · · · ⊕ xl = x. Because there is 2n choices respectively,
the total terms would be 2(l−1)n; however, it is difficult to calculate. Second, as l grows,
DΓ(l) tends to uniform distribution. The distance between the original distribution D and

the uniform distribution I with respect to infinite norm ‖D− I‖∞ of above example is
1
8

.

However, we can observe that ‖DΓ(3) − I‖∞ is
1

128
. As l grows, the terms that should be

computed to calculate the function value grow rapidly; consequently, the impact of one
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function value will decrease. Although this phenomenon seems natural, still, the following
questions remain: Under what conditions does this convergence happen? How about the
convergence rate? How can we prove the related results?

2.1. Entropy Accumulation with n = 1

Let us consider the relatively simple case of n = 1 and Yj following an independent
and identical distribution (IID). In this case, all Yj follow the same distribution D(= DYj)

and a recursive relationship Γ(j+1) = Γ(j) ⊕ Yj+1 is established. Thus, we can express
DΓ(j+1)(1) based on the following relationship:

DΓ(j+1)(1) = DΓ(j)(1)[1− DYj+1(1)] + [1− DΓ(j)(1)]DYj+1(1). (2)

(2) is derived based on the property that the sum of two bits resulting in 1 can be obtained
by adding 1 and 0, or 0 and 1. Moreover, DΓ(j+1)(1) in (2) can be interpreted as a point where
DΓ(j)(1) and 1−DΓ(j)(1) are internalized into 1−DYj+1(1) : DYj+1(1). Because DΓ(j)(1) and

1−DΓ(j)(1) are symmetric about x =
1
2

, the condition 0 < D(1) < 1 causes the convergence

of DΓ(j)(1) to
1
2

(i.e., the maximum possible entropy) as j increases. Figure 5 illustrates
the scenario.

Figure 5. Our entropy accumulation with n = 1.

A more specific formula exists to accurately illustrate this situation. The following
lemma, often referred to as the “Piling Up Lemma,” further details this [16].

Fact 1 (Piling Up Lemma [16]). Let Y1, Y2, · · · , Yl be independent one-bit random variables,
and let Γ(l) := ∑l

j=1 Yj. Then,

DΓ(l)(0) =
1
2
+ 2l−1

l

∏
j=1

[
DYj(0)−

1
2

]
.

Because 0 < |DYj(0)−
1
2 | <

1
2 for each j, 2l−1 ∏l

j=1

[
DYj(0)−

1
2

]
converges to 0 and

DΓ(l)(0) converges to 1/2 as l approaches infinity.
This equation cannot be applied when n is greater than 2. When n = 2 or more,

the probability that each bit produces 0 or 1 converges to 1/2; however, we cannot sum up
the min-entropies of each position to calculate the total min-entropy because it is allowed
only when all bits are independent of each other. Therefore, a new method is required for
addressing these problems.
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2.2. Convolution and Discrete Fourier Transform

In this subsection, we describe techniques applicable in the special case where n equals
1, as well as in more general cases. First, we reformulated the problem using the concept of
convolution.

Definition 1 (Convolution). The Convolution of f , g ∈ F (Zn
m) is defined as

f ∗ g(x) := ∑
y∈Zn

m

f (x− y)g(y).

For the entropy accumulation problem of interest, m = 2. Using the language of con-
volution, (1) becomes DΓ(l) = DY1 ∗ DY2 ∗ · · · ∗ DYl . The entropy accumulation problem is
reduced to a problem of handling this convolution. Fortunately, there exists a mathematical
concept, the “Fourier Transform”, that harmonizes well with convolution.

Definition 2 (Discrete Fourier Transform). The Discrete Fourier Transform of f ∈ F (Zn
m) is

defined as
f̂ (t) := ∑

x∈Zn
m

f (x)e−
2πi
m x·t.

A Discrete Fourier Transform is the mapping from F (Zn
m) to F (Zn

m). In fact, this
transform is one-to-one mapping. Proposition 1 supports this.

Lemma 1. If t 6= 0, ∑x∈Zn
m

e−
2πi
m x·t = 0.

Proof. First, note that

∑
x∈Zn

m

e−
2πi
m x·t = ∑

x∈Zn
m

e−
2πi
m x·t(modm).

We define φ t : Zn
m → Zm as:

φ t(x) := x · t(modm).

Then, φ t is a homomorphism :

φ t(x + y) = (x + y) · t(modm) = x · t(modm) + y · t(modm) = φ t(x) + φ t(y).

As t 6= 0, φ−1
t (0) 6= Zn

m. Therefore, for every s ∈ Zm, φ−1
t (s) contains the same number of

elements. Let the number of elements be N, then

∑
x∈Zn

m

e−
2πi
m x·t = ∑

x∈Zn
m

e−
2πi
m φ t(x) = N ∑

s∈Zm

e−
2πi
m s = 0.

The last equality holds because each e−
2πi
m s is the root of the complex equation zm − 1 =

0.

Lemma 2. Let f be the element in F (Zn
m) and f̂ be the Fourier Transform function. Then,

1
mn ∑

t∈Zn
m

f̂ (t)e
2πi
m x·t = f (x).
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Proof. By Lemma 1, ∑t∈Zn
m

f (s)e−
2πi
m (x−s)·t = 0 if s 6= x. Therefore,

1
mn ∑

s∈Zn
m

∑
t∈Zn

m

f (s)e−
2πi
m (x−s)·t =

1
mn ∑

t∈Zn
m

f (x)e−
2πi
m (x−x)·t =

1
mn ∑

t∈Zn
m

f (x) = f (x).

Proposition 1. Let f and g be the elements of F (Zn
m). If f̂ = ĝ, f = g.

Proof. We assume that f̂ = ĝ. Then,

f (x) =
1

mn ∑
t∈Zn

m

f̂ (t)e
2πi
m x·t =

1
mn ∑

t∈Zn
m

ĝ(t)e
2πi
m x·t = g(x)

holds for every x ∈ Zn
m from Lemma 2.

The following theorem asserts that the convolution product of functions is represented
as a multiplication in the transformed space. This plays a significant role in proving our
main theorem.

Proposition 2. Let f and g be the elements of F (Zn
m). Then, f̂ ∗ g = f̂ ĝ.

Proof. By the definitions of convolution and Discrete Fourier Transform,

f̂ ∗ g(t) = ∑
x∈Zn

m

∑
y∈Zn

m

f (x− y)g(y)e−
2πi
m x·t

= ∑
x∈Zn

m

∑
y∈Zn

m

f (x− y)e−
2πi
m (x−y)·tg(y)e−

2πi
m y·t

= ∑
x∈Zn

m

f (x− y)e−
2πi
m (x−y)·t ∑

y∈Zn
m

g(y)e−
2πi
m y·t

= ∑
x∈Zn

m

f (x)e−
2πi
m x·t ∑

y∈Zn
m

g(y)e−
2πi
m y·t

= f̂ (t)ĝ(t).

To intuitively determine why Γ(l) converges to a uniform distribution, we must under-
stand both the properties of the Discrete Fourier Transform applied to the distribution and
the Discrete Fourier Transform of a uniform distribution.

Proposition 3. Let D be an arbitrary probability distribution and I be a uniform distribution of
Zn

m. Then,

(i) For all t ∈ Zn
m, |D̂(t)| ≤ 1.

(ii) D̂(0) = 1.
(iii) For all t ∈ Zn

m, Î(t) = δ t,0.

The symbols δ t,0 denote the Kronecker delta. The Kronecker delta is defined as 1 when t is zero
vector and 0 for all other t.

Proof. Proof of (a) :

|D̂(t)| = | ∑
x∈Zn

m

D(x)e−
2πi
m x·t| ≤ ∑

x∈Zn
m

|D(x)e−
2πi
m x·t| = ∑

x∈Zn
m

D(x) = 1.

Proof of (b) :

D̂(0) = ∑
x∈Zn

m

D(x)e−
2πi
m x·0 = ∑

x∈Zn
m

D(x) = 1.
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Proof of (c): We know from part (a) that Î(0) = 1. For the remaining t 6= 0,

Î(t) = ∑
x∈Zn

m

I(x)e−
2πi
m x·t =

1
mn ∑

x∈Zn
m

e−
2πi
m x·t = 0.

The last equality is based on Lemma 1.

From Proposition 2, we have D̂Γ(l) = D̂Y1 D̂Y2 · · · D̂Yl . By Proposition 3, D̂Γ(l)(0) = 1,

whereas for t 6= 0, the value of D̂Γ(l)(t) approaches 0 as l increases. Specifically, D̂Γ(l)

converges to δ,t,0 as l increases. Since the Discrete Fourier Transform is a one-to-one
function by Proposition 1, we can infer that DΓ(l) converges to I as l increases.

2.3. Main Theorem

In the previous subsection, we confirmed that DΓ(l) converges to a uniform distribution
I as l increases. In this subsection, we present a solution to the entropy accumulation
problem based on this approach. Specifically, we aim to find a condition for the random
variable Yj and a value for l such that DΓ(l) achieves a specific min-entropy. The following
theorem is one of the main results of our study:

Theorem 1. Let Y1, Y2, · · ·Yl be independent n-bit random variables, and Γ(l) := Y1 ⊕ Y2 ⊕
· · · ⊕Yl . We define ω := min{‖DY1‖min, ‖DY2‖min, · · · , ‖DYl‖min}. Then,

Hmin(DΓ(l)) ≥ n− log2

[
1 + (2n − 1)(1− 2nω)l

]
≈ n− 1

ln 2
(2n − 1)(1− 2nω)l .

Note that the condition for n-bit random variables Y1, Y2, · · ·Yl is not an IID. Be-
cause the above theorem only requires the independence of random variables without the
condition of identical distribution, it can be effectively applied when using parallel entropy
sources. We provide the proof of Theorem 1.

Proof. For any function f ∈ L(Zn
2 ), we have

f̂ (t) = ∑
x∈Zn

2

f (x)eπi(x·t) = ∑
x∈Zn

2

f (x)(−1)x·t, (3)

1
2n ∑

t∈Zn
m

f̂ (t)eπi(x·t) =
1
2n ∑

t∈Zn
m

f̂ (t)(−1)x·t = f (x). (4)

This is obtained from Lemma 2 with m = 2. Using the function φ t of Lemma 2, (3) and (4)
can be written as

f̂ (t) = ∑
x∈Zn

2

f (x)eπi(x·t) = ∑
x∈Zn

2

f (x)(−1)x·t = ∑
x∈φ−1

t (0)

f (x)− ∑
x∈φ−1

t (1)

f (x), (5)

1
2n ∑

t∈Zn
2

f̂ (t)eπi(x·t) =
1
2n ∑

t∈Zn
2

f̂ (t)(−1)x·t =
1
2n

 ∑
t∈φ−1

x (0)

f̂ (t)− ∑
t∈φ−1

x (1)

f̂ (t)

 = f (x). (6)
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We apply (5) to each DYj with t 6= 0. Because ∑x∈Zn
2

DYj(x) = 1 and DYj(x) > ω > 0,

∣∣∣D̂Yj(t)
∣∣∣ =

∣∣∣∣∣∣ ∑
x∈φ−1

t (0)

DYj(x)− ∑
x∈φ−1

t (1)

DYj(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
x∈φ−1

t (0)

[
DYj(x)−ω

]
− ∑

x∈φ−1
t (1)

[
DYj(x)−ω

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∑
x∈Zn

2

[
DYj(x)−ω

]∣∣∣∣∣∣ = 1− 2nω.

(7)

From Theorems (2) and (7),

∣∣DΓ(l)(t)
∣∣ = 1

2n

∣∣∣∣∣∣ ∑
t∈φ−1

x (0)

D̂Γ(l)(t)− ∑
t∈φ−1

x (1)

D̂Γ(l)(t)

∣∣∣∣∣∣
≤ 1

2n ∑
t∈Zn

2

∣∣∣D̂Γ(l)(t)
∣∣∣ = 1

2n ∑
t∈Zn

2

l

∏
j=1

∣∣∣D̂Yj(t)
∣∣∣

=
1
2n

 l

∏
j=1

∣∣∣D̂Yj(0)
∣∣∣+ ∑

t∈Zn
2 /{0}

l

∏
j=1

∣∣∣D̂Yj(t)
∣∣∣


≤ 1
2n

[
1 + (2n − 1)(1− 2nω)l

]
.

Therefore,
Hmin(DΓ(l)) = max{− log2

∣∣DΓ(l)(t)
∣∣ : t ∈ Zn

2}

≥ n− log2

[
1 + (2n − 1)(1− 2nω)l

]
≈ n− 1

ln 2
(2n − 1)(1− 2nω)l .

The final approximation is based on the Taylor theorem.

3. Applying Theorem 1 to Image Sensor-Based RNG

In this section, we describe the process of applying Theorem 1 to an image sensor-
based random number generator. First, we describe the process of generating the input
sequences from the entropy sources of the image sensor. Subsequently, we verify whether
the generated input sequences satisfy the assumptions of Theorem 1. Next, we establish
the lower bound for the min-entropy, which is considered secure based on three standards.
Then, we provide the theoretical number of iterations required to achieve a min-entropy
higher than the established lower bound. Furthermore, we validate our theory using
experimental results. Finally, we estimate the entropy accumulation speed based on frames
per second (FPS) of the image sensors used. Thereafter, we compare and analyze the random
number generation speed of our system with that of the ID Quantique’s QRNG chip.

3.1. Image Sensor-Based RNG

We use the ‘PV 4209K’ image sensor, which utilizes 11,520 optical black pixels (OBP)
as physical entropy sources. Each OBP of the image sensor transmits 2-bit data to a PC.
The PC sequentially stores the 2-bit data transmitted by the multiple OBPs. See Figure 6.
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Figure 6. Data transmission process of image sensor.

3.2. Experimentation Process for Entropy Accumulation

Before describing the entropy accumulation experiments, we use the following notation:

• Wi : A random variable corresponding to the 2-bit data of the i-th optical black pixel
(OBP). “If the value of i reaches the last pixel (11,520), the next value of i refers to the
first pixel.”

• Yj := W4j−3‖W4j−2‖W4j−1‖W4j. For example, if W1 = (0, 1), W2 = (1, 1), W3 = (0, 0),
W4 = (1, 0), Y1 becomes Y1 = (0, 1, 1, 1, 0, 0, 1, 0).

• Γ(l)
k := ∑kl

j=(kl−l+1) Yj. This refers to the k-th output sequence, which is generated by
adding (XOR) l input sequences.

To experimentally validate entropy accumulation, we utilized the verification method
outlined in [17]. Ref. [17] is a min-entropy estimation tool, which estimates the min-entropy
of output sequences by collecting 1,000,000 n-bit output sequences. However, there is a
requirement that the value of n must be at least 8. Therefore, to satisfy this condition, we
created new 8-bit data Yj by concatenating four 2-bit datasets W4j−3, W4j−2, W4j−1, W4j,
and Yj becomes an input sequence. This process is shown in Figure 7.

Figure 7. Concatenation of 2-bit data to form 8-bit input sequence.

After setting Yj, we select the XOR operation iteration number (l − 1) and accumulate

Γ(l)
k in the entropy pool. This process is illustrated in Figure 8.

The number l is determined using Theorem 1. After collecting Γ(l)
k (1 ≤ k ≤ 1,000,000)

in the entropy pool, we use [17] to verify the min-entropy.

3.3. Setting Lower Bound of Min-Entropy

We provide three evaluation criteria that can be used to determine the lower bound of
the min-entropy, which a true random number generator must exceed, acquired through
the entropy accumulation process.
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Figure 8. Accumulating entropy source using XOR operation.

3.3.1. Maximum Value of the Most Common Value Estimate

In [17], when the output sequences are determined to follow the IID, the Most Common
Value Estimate is assumed to be the min-entropy of the output sequences [17]. However,
there is an upper bound on the min-entropy value in the Most Common Value Estimate.
Regardless of the output sequences used for the test, this upper bound cannot be exceeded.
The Most Common Value Estimate estimates the min-entropy as described in Algorithm 1.

Algorithm 1 Most Common Value Estimate.
Input: S = (s1, . . . , sL), L : length of S, Si ∈ {0, 1}n (1 ≤ i ≤ L)
Output: min-entropy of dataset S : Hmin

1: Calculate the mode of S. We denote this value by MODE
2: p̂ = MODE

L

3: pu = min (1, p̂ + 2.576
√

p̂(1− p̂)
L−1 )

4: Hmin = − log2 pu

To compute the upper bound of the Most Common Value Estimate for an 8-bit dataset
S, where the length of S is 1,000,000, the mode of S should be one. That is, p̂ = 1/256.
Using p̂, we obtain Hmin = 7.94. Therefore, it is reasonable for the lower bound of the
min-entropy to not exceed 7.94.

3.3.2. True Random 8-Bit in [17]

Ref. [17] provides True Random Data in 1-bit, 4-bit, and 8-bit units as samples for
evaluating min-entropy. From Figure 9, it can be confirmed that the min-entropy of true
random 8-bit data in [17] is approximately 7.86.

Figure 9. Min-entropy of true random 8-bit.

3.3.3. Criterion of Min-Entropy by BSI AIS 20/31 [18]

The Federal Office for Information Security in Germany (Bundesamt für Sicherheit in
der Informationstechni, BSI) asserts in the AIS 20/31 document that the output sequences
of a cryptographic random number generator should have a min-entropy of 0.98 per bit.
In the case of 8-bit data, 7.84 becomes the lower bound of entropy.



Entropy 2023, 25, 1056 14 of 24

From the three criteria mentioned above, we have chosen 7.86 as the min-entropy
lower bound. This value, which is smaller than 7.94 and more stringent than 7.84, appears
to be a valid choice for the lower bound.

3.4. Applying Theorem 1 to Input Sequences

In this subsection, we use Theorem 1 and obtain l. Instead of directly applying
Theorem 1 to Yj, we employ a “divide and conquer” approach to compute the total min-
entropy. Before explaining this strategy, note that each Wi can be regarded as an indepen-
dent random variable. This assumption is reasonable because all pixels can be considered
independent entropy sources.

Because we conducted the experiment with eight bits, n must be eight when applying
Theorem 1. However, this results in the following problem: the required number l is
exceedingly large. To address this issue, we exploit the fact that Yj is constructed by

concatenating four independent entropy sources. Γ(l)
k is generated by considering the

XOR of l instances in Yj. Therefore, if we break down Γ(l)
k into two bits, then Γ(l)

k can be
considered as four concatenations of the XOR of l instances of Wi. This can be expressed by
the following formula:

Γ(l)
k =

kl

∑
j=(kl−l+1)

W4j−3‖W4j−2‖W4j−1‖W4j = kl

∑
j=(kl−l+1)

W4j−3

‖
 kl

∑
j=(kl−l+1)

W4j−2

‖
 kl

∑
j=(kl−l+1)

W4j−1

‖
 kl

∑
j=(kl−l+1)

W4j

.

The four parts of Γ(l)
k are independent of each other. Therefore, we calculated the

total min-entropy by individually determining the min-entropy for each of the four parts
and then summing them up. If the min-entropy of each 2-bit segment of Γ(l)

k is greater

than 1.965, Hmin(Γ
(l)
k ) will be greater than 7.86. Theorem 1 is applied to the four 2-bit

segments of Γ(l)
k . To apply Theorem 1, the following two conditions must be satisfied. The

first pertains to the independence of Wi. The second condition states that the value of ω
should exceed zero. For the first condition, we established that each Wi could be regarded
as an independent random variable. For the second condition, we can estimate the value
of ω by analyzing the probability distribution of the data transmitted by each OBP. We
constructed the probability distribution of each Wi using 2-bit data transmitted by each of
the 11,520 OBPs over 2000 transmissions. From the obtained distribution, we can confirm
that the value of ‖DWi‖min is greater than 0.075 for all i. Figure 10 illustrates the probability
distribution of four randomly selected OBPs. It can be observed that each number has
appeared at least 150 times.

Therefore, we estimate that ω is at least 0.075. From Theorem 1, the inequality

2− 1
ln 2

(22 − 1)(1− 22ω)l ≥ 1.965

provides the number l necessary for the min-entropy of each 2-bit segment of Γ(l)
k to

exceed 1.965.



Entropy 2023, 25, 1056 15 of 24

2− 1
ln 2

(22 − 1)(1− 22ω)l ≥ 1.965

⇒ 0.035 · ln 2
3

≥ (0.7)l

⇒
ln
(

0.035 · ln 2
3

)
ln(0.7)

≤ l

⇒ 15.845 ≤ l.

From the last inequality, we can conclude that if we use 15 XOR operations to create
Γ(l)

k , Hmin(Γ
(l)
k ) exceeds 7.86.

Figure 10. Probability distribution of each OBP.

3.5. Experimental Result

We describe the experimental validation of the results in Section 3.4. We predicted
that through 15 XOR operations for entropy accumulation, more than 7.86-bit of entropy
per 8-bit would be guaranteed. Upon conducting actual experiments, it was confirmed
that even with only four XOR operations, more than 7.86 min-entropy per 8-bit was
accomplished. Table 1 presents the experimental results.

Table 1. Min-entropy values corresponding to number of XOR operation repetitions.

l i j k Min-Entropy per 8-Bit

1 4,000,000 1,000,000 1,000,000 3.305

2 8,000,000 2,000,000 1,000,000 7.115

3 12,000,000 3,000,000 1,000,000 7.700

4 16,000,000 4,000,000 1,000,000 7.852

5 20,000,000 5,000,000 1,000,000 7.864

The experimental results are analyzed as follows. When l = 1, it refers to the case
where the XOR operation is not used, and the min-entropy per 8-bit is 3.305, which is lower
than the min-entropy calculated based on the probability distribution of the 2-bit from
the pixels.

Min-entropy depends on the maximum value of the probability distribution function.
By observing the 2-bit probability distribution, we confirmed that the maximum value of
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the probability distribution function was 0.425. This can also be confirmed from Figure 10,
where all the numbers (0, 1, 2, 3) in the four randomly selected distributions do not exceed
850. Therefore, when calculating the min-entropy of 2-bit, the lower bound of Hmin(DWi ) is
1.2344, and the lower bound of Hmin(DYj) created by concatenating the four DWi is 4.9378.

The min-entropy estimated through the probability distribution is lower than that
estimated by [17] because of the conservative measurement method of [17]. In [17], it
is determined whether the output sequence follows the IID track or the non-IID track
before measuring min-entropy. If the output sequence follows the IID track, the min-
entropy measured by the most common value estimation method becomes the final min-
entropy of the output sequence. However, if the output sequence follows the non-IID track,
the smallest value among the min-entropies measured by the other 10 methods, including
the Most Common Value Estimate, becomes the final min-entropy of the output sequence.
For l = 1, it was confirmed that the original output sequence followed a non-IID track.
Therefore, the min-entropy value estimated by [17] was smaller than that calculated based
on the probability distribution.

As the value of l increases, it can be observed that the increment of min-entropy
decreases. This is because the maximum possible min-entropy value is 7.94, and as it
approaches this number, the amount of min-entropy that can be increased by increasing the
number of XOR operations becomes small. The greatest change in the min-entropy value
occurs when l changes from l = 1 to l = 2. This is because the output sequence follows the
IID track if l ≥ 2.

4. Comparing with Other Entropy Accumulations

In this section, we compare and analyze the entropy accumulation we developed with
other entropy accumulations. The first comparison is with the Slow-Refresh used in IDQ
QRNG. The second comparison target is the Fast-Refresh of Windows RNG. In comparing
with the Slow-Refresh, we focus on the differences in the accumulation mechanism. In com-
paring with the Fast-Refresh, the analysis is carried out by calculating the iteration number
of operations of Fast-Refresh in our experimental environment.

4.1. Comparing with the Slow-Refresh of IDQ QRNG

IDQ QRNG uses matrix multiplication as the entropy accumulation function [19,20].
For the analysis of this method, we first explain the theoretical background of entropy
accumulation and the “Leftover Hash Lemma” and then explain the entropy accumulation
of IDQ QRNG. We also check whether the entropy accumulation of IDQ QRNG meets the
conditions of the Leftover Hash Lemma. Lastly, we summarize the differences between our
entropy accumulation and that of IDQ QRNG.

4.1.1. Leftover Hash Lemma [3,19]

The Leftover Hash Lemma is a theorem that ensures the conversion of a low min-
entropy input sequence into a high min-entropy output sequence. In order to state the
Leftover Hash Lemma, we need two key concepts: the 2-universal hash family and statisti-
cal distance.

Definition 3 (Statistical distance). Let X and X′ be random variables that take values in same
set. The statistical distance between two probability distributions DX and DX′ is defined as

∆DX ,DX′
=

1
2
‖DX − DX′‖1.

Definition 4 (2-universal hash family). Let Y be a random variable uniformly distributed over S.
A family { fs : T → V}s∈S of hash functions is called 2-universal if for any distinct inputs x 6= x′

Pr
[

fY(x) = fY(x′)
]
≤ 1
|V| .
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Based on these definitions, we can state the Leftover Hash Lemma.

Fact 2 (Leftover Hash Lemma). Let { fs : T → V}s∈S be the 2-universal hash family. Let X and
Y be independent random variables, where Y is uniformly distributed over S, and X takes values in
T. Let US×V be the uniform distribution on S × V. Then,

∆D(Y, fY (X)),US×V ≤ 2−
1
2 (Hmin(X)−log2|V|).

Corollary 1. Under the same assumptions, we obtain that

Hmin(D fY(X)) ≥ − log2

(
1
|V| + 2−

1
2 (Hmin(X)−log2|V|)+1

)
≈ log2|V| −

|V|
ln 2

2−
1
2 (Hmin(X)−log2|V|)+1

= log2|V| − ε.

Proof. Let UV be the uniform distribution on V. By triangle inequality and Leftover Hash
Lemma,

Hmin(D fY(X)) = − log2‖D fY(X)‖∞

≥ − log2

[
‖UV‖∞ + ‖D fY(X) −UV‖∞

]
≥ − log2

[
‖UV‖∞ + ‖D fY(X) −UV‖1

]
≥ − log2

[
‖UV‖∞ + ‖D(Y, fY(X)) −US×V‖1

]
= − log2

[
‖UV‖∞ + 2∆D(Y, fY (X)),US×V

]
≥ − log2

(
1
|V| + 2−

1
2 (Hmin(X)−log2|V|)+1

)
≈ log2|V| −

|V|
ln 2

2−
1
2 (Hmin(X)−log2|V|)+1.

The last approximation is due to Taylor expansion at x = 1
|V| .

The Leftover Hash Lemma is effective in generating high-quality output sequences in
the following situations:

(i) When Hmin(X) is smaller than |T|.
(ii) When Hmin(X) is significantly larger than |V|.
(iii) When |S| is substantially smaller than |V|.

The key point here is the last condition. To generate output sequences using the
Leftover Hash Lemma, a hash function must be uniformly selected from the 2-universal
hash family. This means that random numbers are required to generate random numbers.
If the size of the 2-universal hash family is small, a large amount of random numbers can be
generated using a small amount of random numbers. Therefore, constructing a 2-universal
hash family of small size is the key point in the use of the Leftover Hash Lemma.

Example 1. Suppose that T = {0, 1}900, V = {0, 1}100, |S| = 230, Hmin(X) = 550,
Hmin(Y) = 30, then by Corollary 1, Hmin(D fY(X)) ≥ 100− 1

ln 2 2−124. This implies that
if we have a low quality entropy source with a min-entropy of 550 out of 900, and a 2-
universal hash family of size 230, we can leverage a 30-bit random number generator to
produce nearly random 100-bit numbers.

4.1.2. Slow-Refresh of IDQ QRNG [19,20]

IDQ QRNG uses an m× n random matrix as the entropy accumulation function. This
function transforms an input sequence of length m into an output sequence of length n. It
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can also be readily proven that this collection of matrices forms a 2-universal hash family [4].
Using the notation from the Leftover Hash Lemma, this can be represented as

T = {0, 1}n, V = {0, 1}m, S = {0, 1}m×n.

The min-entropy per bit of the quantum entropy source (which corresponds to Hmin(X)
in our notation) is not disclosed. However, according to [19], the ε value is designed to
be set to 2−100. The random matrix is generated only once, and the mn elements that
make up this matrix are generated using a 1-bit random number generator mn times.
The 1-bit random number generator creates a single bit by collecting multiple bits from the
digitized entropy source and performing an XOR operation. The more bits that are XORed,
the higher the min-entropy of the generated 1-bit. This can be confirmed through the Piling
Up Lemma. Figure 11 illustrates the entropy accumulation of IDQ QRNG.

Figure 11. IDQ QRNG entropy accumulation model.

4.1.3. Limitations of IDQ QRNG Entropy Accumulation Model

At first glance, the entropy accumulation model of IDQ QRNG seems to generate
random numbers based on the Leftover Hash Lemma, but this model has two inherent lim-
itations.

The first point concerns the safety of the 1-bit random number generator used to
create the random matrix. This generator should output 0 and 1 with a probability of 1/2.
However, the min-entropy of the entropy source used in IDQ QRNG and the iteration
number of XOR operations are not specified, which makes it impossible to confirm whether
the random matrix was uniformly generated.

The second point is that the random matrix is generated just one time in IDQ QRNG,
but this implementation seems an incomplete application of the Leftover Hash Lemma.
If the random matrix is continuously used, the condition of independence between the
consecutive m-bit output sequences is compromised. Thus, in this case, it is impossi-
ble to obtain the overall entropy of long output sequence by the Leftover Hash Lemma.
For example, if we generate m-bit output sequences Xi’s (1 ≤ i ≤ 5) by using the entropy
accumulation of IDQ QRNG, then although for each 1 ≤ i ≤ 5, Hmin(Xi) = m− ε, it does
not always satisfy that Hmin(X1‖X2‖X3‖X4‖X5) = 5(m− ε). Therefore, the matrix should
be updated whenever a new output sequence is generated in order to properly apply the
Leftover Hash Lemma.
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4.1.4. Differences between IDQ QRNG and Our Entropy Accumulation

The simple characteristic distinguishing Fast-Refresh from Slow-Refresh is the length
of the input sequence. In our entropy accumulation, we generate the output sequence by
XORing five 8-bit input sequences, that is, the total length of the input sequence is 40-bit
with the 8-bit length output sequence. However, IDQ QRNG uses the input sequence
of 1024-bit or 2048-bit, and the output sequences of 768-bit or 1792-bit, respectively [19].
The reason for such a long length of the input sequence is to adjust the ε of the Leftover
Hash Lemma to about 2−100 [19].

The bit loss rate is another characteristic distinguishing Fast-Refresh from Slow-
Refresh. In our entropy accumulation process, 32-bit are discarded from 40-bit of input
sequence, resulting in a bit loss rate of 80%. On the other hand, in the IDQ QRNG entropy
accumulation process, 256-bit are discarded from 1024-bit or 2048-bit of input sequence,
resulting in bit loss rates of 25% or 12.5%, respectively. Through this, we can see that
the Slow-Refresh handles a large number of bits at once but has a relatively low loss rate.
However, a low bit loss rate results in a decrease in operation speed. The major differences
are shown in Table 2.

Table 2. Major differences between our entropy accumulation and that of IDQ QRNG.

Our Entropy Accumulation IDQ QRNG

Refresh Type Fast-Refresh Slow-Refresh

Theoretical Background Fourier Transform Leftover Hash Lemma

Implementation Aspect Simple XOR operations Difficulty of implementing
universal hash family

Input Sequence Length 40 1024 or 2048
Output Sequence Length 8 768 or 1792

Bit Loss Rate 80% 25% or 12.5%

4.2. Comparing with the Fast-Refresh of Windows RNG

We have already described how Fast-Refresh of Windows RNG works in the intro-
duction. Hence, we describe the entropy accumulation theory in [2] and calculate the
number of operations that must be iterated when applying it to the input sequence Yj. First,
we describe the 2-monotone distribution and the covering number, which are essential
concepts in [2]. Thereafter, we present Theorem 5.2 of [2] (which is the main result of [2])
with our notation.

Next, we explain why [2] cannot be directly applied to our entropy accumulation
model and suggest an additional S-box operation as a solution. With this additional
operation, we can apply Theorem 5.2 of [2] and overcome the limitations of the original
theory. Finally, we provide the theoretical number of operations necessary to guarantee a
min-entropy of 7.86 per 8-bit when Theorem 5.2 of [2] is applied to the RNG.

4.2.1. Main Results of [2]

The covering number is used to measure the efficiency of the permutations used in
entropy accumulation. The efficiency of entropy accumulation increased as the covering
number of permutations decreased.

Definition 5 (Covering number). For a permutation π : {0, 1, ..., n− 1} → {0, 1, ..., n− 1},
and an integer 1 ≤ k ≤ n, the covering number Cπ,k is the smallest natural number m such that

{πl(j) : 0 ≤ j < k, 0 ≤ l < m} = {0, 1, ..., n− 1}. (8)

If no such m exists, then Cπ,k = ∞;

Figure 12 shows the calculation of the number of coverings.
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Figure 12. Illustration of covering number when Cπ,2 = 3. The covering number is 3 because all bits
are covered using the permutation operation twice.

One special property of an entropy source in [2] is 2-monotone distribution. The defi-
nition is as follows:

Definition 6 (2-monotone distribution). The probability distribution DX of an n-bit random
variable X follows a 2-monotone distribution if its domain can be divided into two disjoint intervals,
where DX is a monotone function.

A 2-monotone distribution has at least one inflection point (peak), because it is divided
into two monotonic intervals.

Based on these definitions, we can state Theorem 5.2 of [2].

Theorem 2 (Theorem 5.2 of [2]). Suppose that for independent n-bit random variables Y1, Y2, ..., Yl ,
the probability distributions DY1 , DY2 , ..., DYl have a min-entropy of at least k(≥ 2) and follow
a 2-monotone distribution. Let π : {0, 1, ..., n− 1} → {0, 1, ..., n− 1} be a permutation and

m = Cπ,k′ be a covering number where k′ =
⌊

k
2

⌋
. Let Λ(l)

π = Al−1
π (Y1)⊕ Al−2

π (Y2)⊕ · · · ⊕Yl .

Then, for any l ≥ m,

Hmin(D
Λ(l)

π
) ≥ n−

(⌊ n
k′
⌋
+ 1
)
· log2

(
1 + 2k′−( k

2 )b l
m c
)
≈ n

(
1− 2

k
2−

kl
2m

)
.

One can easily observe that as n increased, Hmin(D
Λ(l)

π
) converged to n.

4.2.2. Windows RNG Entropy Accumulation without 2-Monotone Condition

Theorem 2 provides a min-entropy lower bound for Λ(l)
π with only three restrictions.

The conditions under which the input sequences are independent, and the covering number
of permutations is finite, are relatively easy to satisfy. However, it is challenging to satisfy
the condition that all input sequences follow a 2-monotone distribution. In particular,
for the image sensor entropy sources used, input sequences that follow a 2-monotone
distribution are unattainable.

We generated Yj by concatenating four 2-bit entropy sources: W4j−3, W4j−2, W4j−1, W4j.
We used this method only for experimental verification (SP-800-90b requires at least 8-bit
data), and Hmin(Γ(l)) was theoretically calculated by adding the four min-entropy values
of the 2-bit segment of Γ(l)(see Section 3.4). However, if we apply Theorem 2 to our input
sequences, we cannot use the divide-and-conquer approach. This is because while DWi
definitely satisfies a 2-monotone (as can be observed in Figure 10), Theorem 2 requires input
sequences with a min-entropy of two or more. Note that the 2-bit entropy sources Wi cannot
achieve this condition. For this reason, when applying Theorem 2 to our input sequences,
we must use the concatenation method for theoretical, rather than experimental, reasons.
However, if the input sequences are processed in a concatenated manner, it is impossible
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to satisfy the 2-monotone assumption. We explain this using a 4-bit example. Figure 13
represents the probability distribution of 2-bit entropy sources W1 and W2 that follow a
2-monotone distribution. The probability distribution of W1‖W2, created by concatenating
the two entropy sources, is shown in Figure 14.

Figure 13. Example of two distributions that follow a 2-monotone distribution.

Figure 14. Distribution of concatenated entropy sources.

If we consider {4i− 3, 4i− 2, 4i− 1, 4i} as one group, there are four groups and the
overall shape of DW1‖W2

is similar to that of DW1 . However, the shape of each group’s
graph is similar to DW2 . The shape of such a concatenated distribution tends to become
more complex as the entropy sources become more concatenated. Therefore, inevitably,
the distribution of the input sequences assumes a shape that is far from a 2-monotone.
However, if Yj passes through a “good” S-box, the data can be transformed to follow a
2-monotone distribution (in particular, a monotone distribution). For example, if W1‖W2
passes through an S-box S in Table 3, DS(W1‖W2)

follows a monotone distribution. This
is illustrated in Figure 15. The method for creating such S is simple. After obtaining the
distribution of concatenated data, arrange the distribution values in ascending order and
input the elements of the domain that provide the distribution values into the S-box in
order. For example, as shown in Figure 14, DW1‖W2

has a minimum value at x = 15 and the
second-smallest value at x = 3. If x values are arranged in this manner, they become 15, 3,
12, 7,· · · , 2, 6, and 10. Inputting these in sequence into the S-box creates S results in Table 3.

Table 3. 4-bit S-box, which is used with W1‖W2 to create monotone distribution.

x 15 3 12 7 13 11 0 1 4 14 8 5 9 2 6 10

S(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Although we provide an example of transforming 4-bit data created by concatenating
two 2-bit entropy sources, this method can be applied to arbitrary n-bit data. With this
method, even if the input sequences do not follow the 2-monotone distribution, Theorem 2
can be applied. However, memory is required to store the S-box, and the accumulation
speed can be reduced owing to additional operations. Additionally, significant amounts
of meaningful data may be required to estimate the distribution. Figure 16 illustrates the
Windows RNG entropy accumulation process using an additional S-box.

Figure 15. Distribution of S-boxed concatenated entropy sources.

Figure 16. Windows RNG entropy accumulation with additional S-box.

4.2.3. Applying Theorem 2

In this subsection, we determine the number l required for Λ(l)
π to exceed a min-

entropy of 7.86-bit per 8-bit by applying Theorem 2 to S(Yj). We did not conduct actual
experiments because of the numerous S-boxes that needed to be implemented and the vast
amount of data required to estimate DYj .

To apply Theorem 2, the first step is obtaining Hmin(DS(Yj)
); as the S-box does not

change the min-entropy, Hmin(DYj) is used instead. Using [17] to estimate Hmin(DYj) re-
quires 1,000,000 pieces of Yj, which is practically impossible. Therefore, we set k = 4.9378,
which is the lower bound of Hmin(DYj), estimated using 2000 pieces of Wi data, as men-
tioned in Section 3.5. Note that the estimated min-entropy at l = 1 in Table 1 of Section 3.5
and the previously estimated min-entropy have explicitly different estimation targets.
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With k = 4.9378, k′ =
⌊

k
2

⌋
= 2. If we set π = rot(2,8), the covering number m = Cπ,k′

becomes four, which is the minimum value of every possible π. Thus, we opted to use
rot(2,8) as a bit permutation for the entropy accumulation. Considering these considerations,
l can be calculated as follows:

n
(

1− 2
k
2−

kl
2m

)
≥ 7.86

⇒ n− 7.86
n

≥ 2
k
2 (1−

l
m )

⇒ ln (n− 7.86)− ln n
ln 2

≥ k
2

(
1− l

m

)
⇒ l ≥ m

[
1− 2

k

(
ln (n− 7.86)− ln n

ln 2

)]
⇒ l ≥ 4

[
1− 2

4.9378

(
ln (8− 7.86)− ln 8

ln 2

)]
= 13.4559.

That is, if we assume l = 14 to create Λ(l)
π , Hmin(D

Λ(l)
π
) will exceed the value 7.86.

In Section 3.4, we observed that our theory yields l = 16. Although Theorem 2
may yield slightly superior results, the difference is insignificant. Considering the time
consumed for the additional S-box and bit permutations and the storage space for S-boxes,
we can conclude that our entropy accumulation provides more practical results.

5. Conclusions

The contributions of our study can be summarized as follows. First, we have proposed
entropy accumulation of the Fast-Refresh type, which is composed of bitwise XOR alone
without hash functions, and have proved the theorem that requires only the independence
without identical distribution condition of input sequences.

Second, we have established 7.86 as the lower bound for the min-entropy per 8-bit,
which was considered secure based on the three benchmarks. To surpass this lower bound,
our proposed theory yielded iteration number l = 16.

We have implemented an actual RNG to verify the theory. Our experimental results
have indicated that if we use XOR operations just four times, the generated output se-
quences exceeded the lower bound. The entropy source used in this experiment is an image
sensor PV 4209 K. This entropy source is a QRNG that utilizes dark shot noise to generate
random numbers. The most important property of our entropy source is the independence
of pixels. Since each piece of 2-bit data from pixels is considered as an independent random
variable, we can apply the main theorem to obtain the lower bound of the min-entropy.

Finally, we have compared our entropy accumulation with two types of entropy
accumulations, which are Slow-Refresh of IDQ QRNG and Fast-Refresh of Windows RNG.

As a further study, we would like to consider various entropy accumulations that have
more general and practical applications than our proposed Fast-Refresh mechanism.
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