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Abstract: A recommender system (RS) is highly efficient in extracting valuable information from a
deluge of big data. The key issue of implementing an RS lies in uncovering users’ latent preferences on
different items. Latent Feature Analysis (LFA) and deep neural networks (DNNs) are two of the most
popular and successful approaches to addressing this issue. However, both the LFA-based and the
DNNs-based models have their own distinct advantages and disadvantages. Consequently, relying
solely on either the LFA or DNN-based models cannot ensure optimal recommendation performance
across diverse real-world application scenarios. To address this issue, this paper proposes a novel
hybrid recommendation model that combines Autoencoder and LFA techniques, termed AutoLFA.
The main idea of AutoLFA is two-fold: (1) It leverages an Autoencoder and an LFA model separately
to construct two distinct recommendation models, each residing in a unique metric representation
space with its own set of strengths; and (2) it integrates the Autoencoder and LFA model using a
customized self-adaptive weighting strategy, thereby capitalizing on the merits of both approaches. To
evaluate the proposed AutoLFA model, extensive experiments on five real recommendation datasets
are conducted. The results demonstrate that AutoLFA achieves significantly better recommendation
performance than the seven related state-of-the-art models.

Keywords: data science; deep neural network; Latent Feature Analysis; multi-metric recommender
system; matrix representation

1. Introduction

In the current era characterized by abundant information, individuals are confronted
with a deluge of extensive data [1–4]. Notable examples include the colossal amount of
data generated by Google, reaching the scale of petabytes, and Flickr, which produces
terabytes of data on a daily basis [5,6]. The challenge at hand is to devise an intelligent
system capable of extracting relevant information from these vast datasets [7–9]. One
practical approach to tackle this challenge is the utilization of a recommender system (RS).
RSs play crucial roles in enhancing online services, contributing to both business growth
and improved user experiences [10]. Typically, a user-item rating matrix is employed to
capture user preferences across various items such as news, short videos, music, movies,
and commodities [11]. In this matrix, each row represents a specific user, each column
corresponds to a specific item, and each entry signifies a user’s preference for a particular
item [3]. The key to implementing an RS lies in uncovering users’ latent preferences for
different items based on this user-item rating matrix [12,13].

Numerous approaches have been proposed for implementing an RS. Among them,
the Latent Feature Analysis (LFA) model has gained significant popularity in industrial
applications due to its efficiency and scalability [14]. When applied to a user-item rating
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matrix, the LFA model projects users and items onto a shared low-dimensional Latent
Feature space [15]. By training two low-dimensional matrices using the observed entries
only [16], the LFA model can estimate the missing entries by leveraging these trained
matrices [17–20]. As a result, the LFA model offers advantages in terms of efficiency and
scalability, particularly in industrial contexts. However, it should be noted that the LFA
model is a linear model and may not effectively address complex non-linear relationships
between users and items [21].

In recent times, the rapid advancement of deep learning has led to the widespread
adoption of deep neural networks (DNNs) [22–24] in RSs [25,26]. DNNs have emerged
as a promising approach for capturing complex non-linear relationships between users
and items [27,28]. In the pursuit of implementing RSs, various DNN-based models have
been proposed, with significant emphasis placed on devising sophisticated structures that
can better accommodate user behavior data [29]. However, a notable difference between
DNN-based models and the Latent Feature Analysis (LFA) model lies in their approaches
to handling data [30–34]. While DNN-based models often operate on complete data,
the observed entries within a user-item rating matrix, the reality is that RS-generated
user-item rating matrices tend to exhibit low rating density [35–38]. This means that a
significant portion of the matrix remains empty or contains missing ratings. Consequently,
DNN-based models face challenges in effectively addressing the prevalent data sparsity
issues in RSs [12,13,39,40].

Upon the aforementioned discussions, it becomes apparent that the LFA and DNN-
based models have distinct advantages and disadvantages. Consequently, relying solely on
either the LFA model or the DNN-based model cannot ensure optimal recommendation
performance across diverse real-world application scenarios. To tackle this challenge, this
study proposes a novel hybrid recommendation model called AutoLFA, which combines
Autoencoder [41] and LFA techniques. The main concept behind AutoLFA is two-fold:
(1) It leverages an Autoencoder and an LFA model separately to construct two distinct
recommendation models, each residing in a unique metric representation space with its own
set of strengths, and (2) it integrates the Autoencoder and LFA models using a customized
self-adaptive weighting strategy, thereby capitalizing on the merits of both approaches.
By incorporating elements from both the LFA model and DNN-based models, AutoLFA
can deliver superior recommendation performance across various real-world application
scenarios. This paper contributes to the field in the following ways:

1. It proposes an AutoLFA model that aggregates the merits of both the LFA model and
the DNN-based model by a customized self-adaptive weighting strategy;

2. Theoretical analyses and model designs are provided for the proposed AutoLFA model;
3. Extensive experiments on five real recommendation datasets are conducted to evaluate

the proposed AutoLFA model. The results demonstrate that AutoLFA achieves signif-
icantly better recommendation performance than the related state-of-the-art models.

2. Related Work

Collaborative Filtering (CF) stands as a popular and effective approach for imple-
menting an RS [2]. Its fundamental principle involves utilizing historical user behavior
data to uncover similarities between users and items, thereby predicting users’ potential
preferences for items. Matrix factorization serves as a prominent CF method, which typi-
cally maps the user-item rating matrix into two Latent matrices to explore the similarity
between users and items [12]. Subsequently, the development of the LFA model introduced
a notable distinction. Unlike matrix factorization, the LFA model exclusively trains the
Latent Feature model using observed entries within the user-item rating matrix. As a result,
LFA exhibits high efficiency and scalability, particularly in industrial applications [12,13].
Over time, several sophisticated LFA models have emerged, including those that consider
data characteristics [42], incorporate non-negativity constraints [43], adopt generalized and
fast-converging approaches [44], focus on smooth L1-norm regularization [12], employ prob-
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abilistic methods [45], apply dual loss [13], utilize prediction sampling [46,47], prioritize
confidence-driven techniques [48], incorporate posterior neighborhood regularization [49],
employ ensemble approaches involving multiple spaces and norms [50], explore graph
regularization [51], and embrace deep structured architectures [52]. However, it is essential
to note that the LFA model is inherently shallow and linear in nature. Consequently, it faces
challenges when attempting to capture the deep non-linear relationships between users
and items embedded within complex user-item rating matrices [21].

In recent times, Deep Neural Networks (DNN) have gained significant traction in the
development of Collaborative Filtering (CF)-based RSs due to their powerful non-linear
learning capabilities derived from deep learning structures [53]. DNN-based models
aim to reduce the user-item rating matrix into a low-dimensional space to capture the
similarities between users and items. A comprehensive review of DNN-based RSs was
conducted by Zhang et al. [29]. Various sophisticated DNN-based models have emerged,
including hybrid Autoencoder-based approaches [54], Autoencoder-based methods [41],
multi-task learning-oriented techniques [11], graph neural network (GNN)-based mod-
els [55], neural factorization-based approaches [56], Autoencoders combined with radial
basis function-based methods [57], attentional factorization-based models [58], hybrid deep
models [28], biased Autoencoder-based techniques [21], and convolutional matrix factoriza-
tion approaches [59]. However, it is worth noting that DNN-based models face challenges
in addressing data sparsity problems since they are trained on complete data rather than
solely relying on the observed entries within a user-item rating matrix [13]. Unfortunately,
user-item rating matrices generated by RSs often exhibit very low rating densities.

Notably, although many LFA-based and DNN-based models have been built to achieve
commendable recommendation performance, each approach has its own set of advantages
and disadvantages. In comparison, the proposed AutoLFA is a hybrid recommendation
model that combines the strengths of both Autoencoder and LFA techniques. This combina-
tion is controlled by a customized self-adaptive weighting strategy, ensuring that AutoLFA
leverages the merits of both the LFA and DNN-based models, ultimately leading to superior
recommendation performance across various real-world application scenarios.

3. Preliminaries

Definition 1 (user behavior data): Let M be a set of users, and N be a set of items. The matrix
X ∈ R with |M| rows and |N| columns records the interactions between different users and
items. Here, xmn represents the specific interaction specification of user m on item n. The vector
xm = {xm1, · · · xm|N|} denotes the behavioral data of user m across all items, while each item n can
be represented as a vector xn = {x1n, · · · x|M|n}. A binary matrix B ∈ R with |M| rows and |N|
columns distinguish the observed and unobserved interactions of X:

bmn =

{
1 if xmn observed
0 otherwise

(1)

where bmn denotes the specific entry on B.

Definition 2 (problem): In recommender systems, two primary tasks exist: rating prediction and
ranking prediction. Our proposed model is more suited to rating prediction, which aims to learn a
parametric model denoted as f(·) using observed ratings of X in order to predict the unobserved ones.
The prediction process can be represented as follows:

f (M, N; θ)→ X. (2)
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Here, θ represents the parameters of f(·). The objective function of f(·) is to minimize the
empirical risk, expressed as:

L( f ) = ∑
m∈M,n∈M

ε( f (m, n; θ), xmn). (3)

In this Equation, ε(·) denotes the error function that measures the distance between the
predicted output x̂mn from f(m, n; θ) and the true rating xmn.

4. The Proposed AutoLFA

As mentioned above, traditional approaches, such as Latent Feature Analysis (LFA),
offer efficiency and scalability but may not capture complex non-linear relationships. On
the other hand, deep neural networks (DNNs) show potential in capturing non-linear
relationships but face challenges in dealing with data sparsity issues. Inspired by this
finding, we propose AutoLFA with the aim of addressing both the challenge of LFA’s
inability to capture complex non-linear relationships and the difficulty faced by DNN-based
models in handling data sparsity issues. Figure 1 depicts the architecture of our proposed
model, which can be separated into three steps: (1) Feed the user behavior data into the
LFA-based and Autoencoder-based models separately; (2) obtain the predictions of the
unobserved value from these two models; (3) aggregate the predictions of two models with
a self-adaptive ensemble method to obtain final prediction X̂. To illustrate the principle of
Auto-LFA, we provide an example of predicting x22 in Figure 1. The predicted values from
the two predictors differ by 3.5 in the LFA-based model and 2 in the Autoencoder-based
model. These predictions are then weighted to derive the final prediction of 2.9. Next, we
will provide a detailed description of AutoLFA.
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4.1. The Latent Feature Analysis-Based (LFA-Based) Model

Given a user behavior matrix X, an LFA-based predictor aims to train two Latent
Feature matrices U of size |M| × d and V of size d × |N| to generate the rank-d ap-
proximation X̂ of X is based on the known entry of X, in which d is much smaller than
min{|M|, |N|}. In this context, the row vectors of U represent user characteristics, while
the column vectors of V represent item characteristics in the Latent Feature space.

We utilize the inner product space with an L2-norm
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where � denotes the Hadamard product. According to [12,13], regularization is crucial
in preventing overfitting. By incorporating Tikhonov regularization into Equation (4),
we obtain:

L(U, V) =
1
2
‖ B� (X−UV) ‖2

L2
+

λ1

2
(‖U‖2

L2
+ ‖V‖2

L2
). (5)

Here, λ1 is a hyperparameter that controls the intensity of its regularization penalty. It is
worth noting that since the user cannot fully access all items leading X to be sparse, it is
necessary to expand Equation (5) into a density-oriented form to improve efficiency, as
follows [12,13]:

L(U, V) =
1
2 ∑

xmn∈Xo

(xmn −
d

∑
k=1

umkvkn)

2

+
λ

2 ∑
xmn∈Xo

(
d

∑
k=1

u2
mk +

d

∑
k=1

v2
kn). (6)

Here, umk represents the entry at the u-th row and k-th column of U, and vkn represents the
entry at the k-th row, n-th column of V, and Xo is the observed entries of X. We train the
matrices U and V with the Adam optimizer [16] to obtain better prediction results.

4.2. The Autoencoder-Based Model

We chose the representative I-AutoRec [41] as the Autoencoder-based model. Formally,
when given a user behavior data matrix X, I-AutoRec aims to solve the same problem as
defined in Equation (3). The objective is to minimize the following loss function:

L( f ) = ∑
xn∈M

‖(xn − f (xn; θ))� bn‖2
L2
+

λ2

2
· (‖w1‖2

L2
+ · · ·+ ‖wK‖2

L2
), (7)

where λ2 > 0 represents the regularization factor to prevent I-AutoRec from overfitting. The
parameter set θ = {w1, . . . , wk, b1, . . . , bk} includes the weighted terms wk and the intercept
terms bk of the hidden layers, where k ∈ {1, 2, . . . , K}, bn represents the n-th column of the
index matrix B, and xn corresponds to the item vector xn = {x1n, . . . , x|M|n}.

4.3. Self-Adaptive Aggregation

Ensemble learning is a practical approach to combining multiple models. It is essen-
tial for the base models to exhibit diversity and accuracy [13]. To ensure diversity, we
employ different types of models. Additionally, the representative LFA-based model and
Autoencoder-based I-AutoRec ensure accuracy. As a result, the base models fulfil the two
requirements for ensemble learning. To aggregate the models, we adopt a self-adaptive
aggregation method based on their loss values on the validation set. The underlying
principle is to increase the weight of the t-th base model if its loss decreases in the i-th
training iteration or otherwise decreases. To comprehensively understand this idea, we
will introduce relevant definitions to facilitate theoretical analysis.

Definition 3 (Fractional Loss of Base Models): The fractional loss of the t-th base model at the
i-th iteration, denoted as Flt(i), is computed as follows:

Flt(i) =
√

∑
m∈M,n∈N,(M,N∈Γ)

((xmn − x̂t
mn)×mmn)2/‖T‖0

x̂t
mn =


d
∑

k=1
umkνkn if t= 1

f (m, n; θ) if t= 2

, (8)

where ||·||0 represents the L0-norm of a matrix which calculates the number of non-zero elements
of it, and Γ is the validation subset of X.
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Definition 4 (Cumulative Loss of Base Models): We let Clt(i) be the cumulative loss of Flt

until the i-th training iteration and calculate as follows:

Clt(i) =
i

∑
j=1

Slt(j). (9)

Definition 5 (Ensemble Weights): The ensemble weight Ewt for the t-th base model can be
computed using the following formula:

Ewt(i) =
e−δClt(i)

2
∑

l=1
e−δClt(i)

. (10)

Here, δ represents the equilibrium factor that controls the ensemble weights of the aggregation
during the training process. Considering Definitions 3 to 5, the final prediction of AutoLFA in the
i-th training iteration can be denoted as:

x̂mn =
2

∑
t=1

Elt(i) · x̂t
mn. (11)

4.4. Theoretical Analysis

The loss of the AutoLFA model at the i-th training iteration is represented as Fl(i) and
computed as follows:

Fl(n) =
√

∑
m∈M,n∈N,(M,N∈Γ)

((xmn − x̂mn)× bmn)2/ ‖ Γ ‖0, (12)

where x̂mn is calculated using align (11).

Definition 6 (Cumulative Loss of AutoLFA): The cumulative loss of the AutoLFA model is
represented as Cl(i) and can be expressed as:

Cl(i) =
i

∑
j=1

Fl(j). (13)

Theorem 1. For an AutoLFA model, assuming the Clt(i) of the base models lies between [0, 1], and
if Ewt(i) is set according to align (10) during training, the following alignment holds:

Cl(I) ≤ min
{

Clt(I) | t = 1, 2
}
+

ln 4
δ

+
δI
8

, (14)

where I is the maximum iteration.

By setting δ =
√

1/ ln I in Theorem 1, the upper bound becomes:

Cl(I) ≤ min{Clt(I)|t = 1, 2}+ ln 2
√

ln I +
I

8
√

ln I
, (15)

where ln 2
√

ln I + I
8
√

ln I
is bound by I linearly. This leads us to the following proposition.
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Proposition 1. With δ =
√

1/ ln I, the inequality holds:

Cl(I) ≤ min
{

Clt(I)
∣∣t = 1, 2

}
+ const, (16)

where the limit as I approaches infinity, const = 19.45.

Remark 1. Proposition 1 indicates that Cl(I) is constrained by min{Clt(I) | t = 1, 2} + const,
with δ =

√
1/ ln I. Remarkably, each base variant with a different foundation allows them to

exist in separate metric spaces. The ensemble weight in align (10) ensures that the AutoLFA
model’s loss is always lower than the base models and benefits from the capabilities derived from
the LFA and DNN-based models. Additionally, Proposition 1 is not intended to demonstrate the
accuracy improvement of AutoLFA on the test set but rather to establish that the model possesses the
advantages of the basic models. By showing that the proposed model achieves a smaller loss compared
to each basic model used separately, it indicates that the model retains the respective strengths of the
basic models without compromising its ability to fit the data.

5. Experiments

In this section, we aim to address the following research questions (RQs) through
subsequent experiments:

• RQ 1: Does the proposed AutoLFA model outperform state-of-the-art models in
accurately predicting user behavior data?

• RQ 2: How does the AutoLFA model self-adaptively control the ensemble weights of
its base models during the training process to ensure optimal performance?

• RQ 3: Are the base models of AutoLFA diversified in their ability to represent the
same user behavior data matrix, thereby enhancing the performance of AutoLFA?

• RQ 4: What is the impact of the number of Latent Features and hidden units in the
base models on the accuracy of AutoLFA?

5.1. General Settings

Datasets: For our experiments, we utilize five commonly used user-item datasets,
as summarized in Table 1 These datasets include MovieLens_1M, MovieLens_100k, and
MovieLens_HetRec from the MovieLens website, the Yahoo dataset from the Yahoo website,
and the Douban dataset obtained from an open-access code. Table 1 summarizes the details
of these datasets. The datasets are divided into train–validate–test sets using a ratio of
70%–10%–20%.

Table 1. Properties of all the datasets.

No. Name |M| |N| |HO| Density *

D1 MovieLens_1M 6040 3952 1,000,209 4.19%
D2 MovieLens_100k 943 1682 100,000 6.30%
D3 MovieLens_HetRec 2113 10,109 855,598 4.01%
D4 Yahoo 15,400 1000 365,704 2.37%
D5 Douban 3000 3000 136,891 1.52%

* Density denotes the percentage of observed entries in the user-item matrix.

Evaluation Metrics: The primary objective of representing the user-item matrix is to
predict missing ratings accurately. To assess the prediction accuracy of the tested models,
we employ two evaluation metrics: root mean square error (RMSE) and mean absolute
error (MAE), which are calculated according to [52].

Baselines: Our proposed MMA model is compared against seven state-of-the-art
models: AutoRec (an original model), MF, and FML (Latent Feature Analysis-based models),
and NRR, SparseFC, IGMC, and GLocal-K (deep-learning models). A brief description of
these competing models is provided in Table 2.
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Table 2. Descriptions of all the contrasting models.

Model Description

MF
[10]

A representative LFA-based model for factorizing user-item matrix data in recommender systems.
Computer 2009.

AutoRec
[41] A notable DNNs-based model for representing user-item data in recommender systems. WWW 2015.

NRR
[11]

A DNNs-based multi-task learning framework for rating prediction in recommender systems.
SIGIR 2017.

SparseFC
[27]

A DNNs-based model that reparametrizes weight matrices into low-dimensional vectors to capture
important features. ICML 2018.

IGMC
[55] A GNNs-based model for inductive matrix completion without using side information. ICLR 2019.

FML
[9]

An LFA-based model that combines metric learning (distance space) and collaborative filtering.
IEEE TII 2020.

GLocal-K
[57]

A DNNs-based model for generalizing and representing user-item data in a low-dimensional space with
important features. CIKM 2021.

Implementation Details: For all datasets, we set the learning rate to 0.001 for two
models. We set the number of hidden units for the Autoencoder to 500 and the number of
latent factors for the LFA model 30 to achieve better performance. The final testing results
are obtained from the best-performing model, which exhibits the lowest prediction error
on the validation set during training. The training process terminates when the preset
threshold for training iterations is reached. All experiments are conducted on a GPU server
with two 2.4 GHz Xeon Gold 6240 R CPUs, 376.40 GB RAM, and 4 Tesla V100 GPUs.

5.2. Performance Comparison (RQ. 1)
5.2.1. Comparison of Prediction Accuracy

Table 3 presents the prediction accuracies of all models from D1 to D5. Statistical
tests, including loss/tie/win analysis, the Wilcoxon signed-ranks test [60], and the Fried-
man test [21], are performed to analyze these results. The loss/tie/win analysis identifies
cases where AutoLFA’s RMSE/MAE is higher/same/lower than other competitors. The
Wilcoxon signed-ranks test is a non-parametric pairwise comparison method that deter-
mines if AutoLFA’s prediction accuracy is significantly higher than each comparison model
based on p-values. The Friedman test compares the performance of multiple models across
multiple datasets using F-rank values, with lower values indicating higher prediction
accuracy. The comparative experiment results are normalized for better interpretation
before conducting the Wilcoxon signed-ranks test and the Friedman test. The statistical
analysis results of loss/tie/win, the Wilcoxon signed-ranks test, and the Friedman test are
presented in the third-to-last, second-to-last, and last rows of Table 3. Key observations
from Table 3 are as follows:

• AutoLFA achieves the lowest RMSE/MAE in most cases, with only ten cases of loss
and one case of a tie in comparison. The total count of loss/tie/win cases is 7/1/62.

• All p-values are below the significance level of 0.1, indicating that AutoLFA outper-
forms all competitors in terms of prediction accuracy.

• AutoLFA obtains the lowest F-rank among all participants, confirming its highest
accuracy across all datasets.

These observations highlight that AutoLFA achieves the highest prediction accuracy
for predicting missing user data compared to other models.
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Table 3. Performance comparison of AutoLFA and its competitors.

Dataset Metric MF AutoRec NRR SparseFC IGMC FML Glocal-K AutoLFA

D1
RMSE 0.857 • 0.847 • 0.881 • 0.839 ◦ 0.867 • 0.849 • 0.839 ◦ 0.842
MAE 0.673 • 0.667 • 0.691 • 0.656 ◦ 0.681 • 0.667 • 0.655 ◦ 0.664

D2
RMSE 0.913 • 0.897 • 0.923 • 0.899 • 0.915 • 0.904 • 0.892 • 0.887
MAE 0.719 • 0.706 • 0.725 • 0.706 • 0.722 • 0.718 • 0.697 0.699

D3
RMSE 0.757 • 0.752 • 0.774 • 0.749 • 0.769 • 0.754 • 0.756 • 0.744
MAE 0.572 • 0.569 • 0.583 • 0.567 • 0.582 • 0.573 • 0.573 • 0.562

D4
RMSE 1.206 • 1.172 • 1.227 • 1.203 • 1.133 ◦ 1.176 • 1.204 • 1.167
MAE 0.937 • 0.900 • 0.949 • 0.915 • 0.848 ◦ 0.937 • 0.905 • 0.895

D5
RMSE 0.738 • 0.744 • 0.726 • 0.745 • 0.751 • 0.762 • 0.737 0.737
MAE 0.588 • 0.588 • 0.573 • 0.587 • 0.594 • 0.598 • 0.580 ◦ 0.584

Statistic
loss/tie/win 0/0/10 0/0/10 0/0/10 2/0/8 2/0/8 0/0/10 3/1/6 7/1/62 *

p-value 0.0039 0.0039 0.0039 0.039 0.0195 0.039 0.0977 -
F-rank 5.7 3.75 6.6 3.5 5.9 5.45 3.05 2.05

* The total loss/tie/win cases of AutoLFA. • The cases in which AutoLFA wins the other models in comparison.
◦ The cases in which AutoLFA loses the comparison.

5.2.2. Comparison of Computational Efficiency

Figure 2 depicts the total time required for all participating models to reach the optimal
RMSE on the validation dataset during training. The following observations can be made:

• LFA-based models generally exhibit higher computational efficiency compared to
DNN-based models, as they are trained on observed user behavior data, unlike DNN-
based models.

• Due to their complex data form and architecture, GNN-based models consume sig-
nificant computational resources and time. From Figure 2, it is evident that IGMC
surpasses 3000 s in time costs.

• Except for slightly longer time consumption on dataset D4, AutoLFA’s time con-
sumption falls between LFA-based and GNN-based models. It is slightly higher than
the original Autoencoder-based model but faster than other DNN-based models in
most cases.
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Figure 2. The histogram graph of the total time cost to reach the optimal accuracy of all the
participating models.

Based on these observations, we can conclude that the relatively simple structure of
the base models in AutoLFA allows for acceptable total time costs after ensembling two
base models.



Entropy 2023, 25, 1062 10 of 15

5.3. The Self-Ensembling of MMA (RQ. 2)

To discuss the self-adaptive control of AutoLFA in ensembling different variant models
and ensuring its performance, we monitor the variations of ensemble weights between its
base models.

Monitoring ensemble weight variations: Figure 3 illustrates the changes in ensemble
weights from D1 to D5, yielding the following observations:

• In most cases (e.g., Figure 3a–d), the ensemble weights of the Autoencoder-based
model gradually increase and surpass the LFA-based model as the training progresses
until the base models are fitted.

• In some instances, the LFA-based model’s weight may exceed that of the Autoencoder-
based model. For example, in Figure 3e, the ensemble weight of the LFA-based model
is greater than those of the Autoencoder-based model due to their faster convergence.
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Figure 3. The changes in ensemble weights during the training process.

In conclusion, based on the experimental results and observations above, we can infer
that AutoLFA effectively leverages different types of models. By aggregating these models
in the ensemble stage, AutoLFA surpasses other state-of-the-art models in predicting
missing ratings with only minor sacrifices in computational resources.

5.4. Distribution of Latent Features of Base Models (RQ. 3)

In order to investigate the diversity of the base models of AutoLFA and their abilities
to predict the user behavior data matrix, we visually analyze the encoder output of the
Autoencoder-based model, which represents the Latent Features of an Autoencoder model,
and the Latent Features of the LFA-based model. The distribution of these Latent Features
for the base models across all datasets is depicted in Figure 4. To analyze the distribution,
we employ a Gaussian function and examine factors such as expectation (µ) and standard
deviation (σ). The measurements of the full width at half maximum (FWHM) and the height
of the Gaussian curve are also presented. From Figure 4, the following observations emerge:

• The distribution of Latent Features in the Autoencoder-based model tends to have
more values concentrated at the extremes (i.e., 0 or 1), as shown in Figure 4f,h,i, while
in the LFA-based model, the distribution tends to follow a normal distribution.

• After encoding, the Autoencoder-based model’s Latent Features are more likely to
exhibit unusually high values within specific ranges. In contrast, in the LFA-based
model, there are no extreme values, as depicted in Figure 4a,c,d.
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• In some cases, the distribution of Latent Features in the Autoencoder-based model
appears to be slightly more uniform compared to the LFA-based model, as illustrated
in Figure 4e,j.
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Figure 4. The distribution histogram of LFs of LFA-based and Autoencoder-based models from
D1 to D5.

The observed information above indicates that the Autoencoder-based and LFA-based
models have distinct representation characteristics, allowing AutoLFA to benefit from their
different representation abilities. Consequently, AutoLFA ensures accurate prediction of
missing ratings.
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5.5. Influence of Numbers of Latent Features and Hidden Units to Base Models (RQ. 4)

We further investigate the impact of the number of Latent Features and hidden units
in the base models on AutoLFA. Figure 5 illustrates the RMSE and MAE of AutoLFA as the
number of Latent Features and hidden units varies simultaneously across D1 to D5. The
following observations can be made from Figure 5:

• Increasing the number of Latent Features/hidden units from 2/20 to 20/300 results
in a rapid improvement in the accuracy of AutoLFA. During this range, AutoLFA
substantially increases accuracy without incurring significant computational costs.

• Once the number of Latent Features/hidden units reaches 25/400, the rate of accuracy
improvement becomes less prominent in Figure 5b–d.
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Figure 5. The line graphs of RMSE and MAE of AutoLFA from D1 to D5 as the number of Hidden
Units and Latent Factors vary.

These observations suggest that setting the number of Latent Features/hidden units
as 30/500 allows AutoLFA to achieve optimal accuracy in most cases without imposing
significant computational resource demands. Although this setting may not yield the
highest accuracy in certain cases, it remains relatively close to the optimal value.

6. Conclusions

This paper proposes a novel hybrid recommendation model by combining Autoen-
coder and LFA models, termed AutoLFA. Its main idea is two-fold: (1) It leverages an
Autoencoder and a Latent Feature Analysis (LFA) model separately to construct two dis-
tinct recommendation models, each residing in a unique metric representation space with
its own set of strengths, and (2) it integrates the Autoencoder and LFA models using a cus-
tomized self-adaptive weighting strategy. As such, the merits of the LFA and DNN-based
models are combined into the AutoLFA model, making it achieve superior recommen-
dation performance under various real-world applications. The experiments investigate
four research questions on five real recommendation datasets. The results verify that the
proposed AutoLFA outperforms several state-of-the-art models. In the future, we plan to
aggregate more variants of LFA-based and deep neural networks (DNNs)-based models to
achieve better recommendation performance.
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