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Abstract: In machine learning and data analysis, dimensionality reduction and high-dimensional data
visualization can be accomplished by manifold learning using a t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm. We significantly improve this manifold learning scheme by introduc-
ing a preprocessing strategy for the t-SNE algorithm. In our preprocessing, we exploit Laplacian
eigenmaps to reduce the high-dimensional data first, which can aggregate each data cluster and
reduce the Kullback–Leibler divergence (KLD) remarkably. Moreover, the k-nearest-neighbor (KNN)
algorithm is also involved in our preprocessing to enhance the visualization performance and reduce
the computation and space complexity. We compare the performance of our strategy with that of
the standard t-SNE on the MNIST dataset. The experiment results show that our strategy exhibits a
stronger ability to separate different clusters as well as keep data of the same kind much closer to
each other. Moreover, the KLD can be reduced by about 30% at the cost of increasing the complexity
in terms of runtime by only 1–2%.

Keywords: manifold learning; t-SNE; dimensionality reducing; k-nearest neighbor

1. Introduction

In machine learning and other computer-related areas, the demands for dimensionality
reduction methods never vanish owing to the curse of dimensionality [1–3]. Generally,
the amount of calculation often grows exponentially with the increase in dimensionality,
hence the efficiency of machine learning algorithms will drop markedly if the dimension of
the input data is enormous [2,4]. On account of the limited computing power at present, it is
essential to devise dimensionality reduction methods to obtain a sound and reliable result.
On the other hand, in many realms, it is also of great interest to reduce high-dimensional
data to two or three dimensions for visualization purposes [5–9].

For decades, a large number of dimensionality reduction methods have been applied
to different tasks, among them are Principal Component Analysis (PCA) [10–12], Multi-
dimensional Scaling (MDS) [13,14], Sammon Mapping [15], Isomap [16], Locally Linear
Embedding (LLE) [17], Laplacian Eigenmaps (LE) [18–20], t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [21–24] and so on. It is well known that the first three algorithms
mentioned above are linear dimensionality reduction methods, which usually break the in-
ner data structure of real-world datasets, thus yielding a poor visualization map. The others
are non-linear and can be concluded to be manifold learning algorithms.

Manifold learning tends to outperform linear dimensionality reduction methods
in data visualization. Particularly, t-SNE is amongst the best-known manifold learning
algorithms, as it can not only capture much of the local structure of the high-dimensional
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data but also reveal the associated global structure, such as by presenting clusters at many
different scales [21].

As unprecedented as the performance of t-SNE is, however, several problems still
remain to be addressed. Firstly, owing to the assumption in t-SNE that the high-dimensional
data are in Gaussian distribution, the distribution of the mapped data in low dimensions is
always uniform and loose, and the Kullback–Leibler divergence (KLD) often converges
to a high value, which prevents the algorithm from generating a sound low-dimensional
map. Secondly, separations between different natural clusters still need to be improved
as some of the data are often inclined to be clustered into the wrong groups due to the
obscure boundary. Thirdly, both the computation and space complexity of t-SNE increase
quadratically with the number of data pairs, which severely limits the application of t-SNE
on large datasets in reality.

In this paper, we significantly improve the standard t-SNE scheme by developing a
preprocessing strategy for it. In our preprocessing strategy, Laplacian eigenmaps (LE) are
first employed on the high-dimensional data. Thus, before they are input into t-SNE, each
data cluster can be aggregated first and the data are no longer in Gaussian distribution.

In addition, aiming at magnifying the gaps between different clusters and enlarging
the difference between data of different kinds, the K-nearest-neighbor (KNN) algorithm
is also introduced into our preprocessing to shrink the Euclidean distance between each
neighboring data pair. Moreover, compared to the standard t-SNE, KNN is also expected
to reduce the computation and space complexity as only the neighboring data pairs are
considered in our strategy, which can offer a balance between performance and complexity.

We apply our method on the MNIST dataset, which contains 70,000 handwritten
numeric images that are 28 pixels by 28 pixels in size. The training set contains 60,000 im-
ages, while the test set 10,000 images. The experimental results show that our strategy
can significantly improve the performance of the standard t-SNE and the recoveries of
low-dimensional data structures are also reinforced, while the overall complexity only
increases by about 1–2%.

The outline of this paper is as follows: Section 2 gives a quick review of the basic idea
of the standard t-SNE. In Section 3, a preprocessing manifold learning strategy based on
t-SNE, LE and KNN is proposed. The numerical results on the MNIST dataset are presented
in Section 4. Finally, we draw some conclusions in Section 5.

2. Manifold Learning by Using a t-SNE

Generally speaking, dimensionality reduction methods convert the high-dimensional
dataset X = {x1, x2, · · · , xn} into two- or three-dimensional data Y = {y1, y2, · · · , yn} that
can be displayed in a scatterplot. It is argued in [25] that a set of similar data is neither
randomly nor uniformly distributed in this space, but instead lies on or near a submanifold
of much lower dimension. Manifold learning is a sort of non-linear technique that aims to
find a non-linear mapping to extract the intrinsic dimensionality of the original data and to
realize dimensionality reduction.

For traditional dimensionality reduction methods, such as the Locally Linear Embed-
ding algorithm, the similarity between data is typically modeled by Euclidean distance.
Thus, it is difficult for those traditional dimensionality reduction methods to unfold “many-
to-one” mappings, in which a single ambiguous object really belongs in several disparate
locations in the low-dimensional space [26]. To solve the problem, the t-SNE algorithm pro-
posed by Maaten and Hinton [21] employs a probabilistic model to visualize the structure
of complex datasets. Specifically, t-SNE converts high-dimensional Euclidean distances
between data points into joint probabilities to characterize the similarities between data.

In t-SNE, the conditional probabilities pj|i that a data point xi would pick xj as its
neighbor is given by [27]

pj|i =
exp(−||xi − xj||2/2σ2

i )

∑j 6=i exp(−||xi − xj||2/2σ2
i )

(1)
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with pi|i = 0. The variance σi in the Gaussians centered around xi is determined by a binary
search procedure. The data density is likely to vary. Thus, in dense regions, a smaller value
of σ is more appropriate than that in sparse regions.

Let Pi be the conditional probability distribution over all other data points at a given
point xi. The entropy of Pi will grow along with the increase in σi. Then, with a fixed
perplexity specified by the user, a binary search for σi is performed in t-SNE to produce
a probability distribution Pi. In a sense, the perplexity can be interpreted as a smooth
measure of the effective number of neighbors. The performance of t-SNE is fairly robust to
changes in the perplexity, which is typically between 5 and 50, depending on the size of the
datasets. The joint probabilities pij can be obtained easily as follows:

pij =
pj|i + pi|j

2
, (2)

which ensures that ∑j pij >
1

2n for all data points xi. Thus, each data point xi can make a
significant contribution to the cost function [21].

In the lower dimension, t-SNE employs a Student t-distribution with one degree of
freedom as the heavy-tailed distribution to separate different clusters from each other.
The joint probabilities of map points are given by [27]

qj|i =
(1 + ||yi − yj||2)−1

∑k 6=l exp(1 + ||yk − yl ||2)−1 . (3)

KLD is typically adopted to characterize the mismatch between pij and qj|i. t-SNE
minimizes the sum of KLD over all data points using a gradient descent method. The cost
function C and the gradient of t-SNE are given by [27]

C = KL(P||Q) = ∑
i

∑
j

pijlog
pij

qij
, (4)

and
δC
δyi

= 4 ∑
j
(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1, (5)

respectively. Once the KLD decreases to an appropriate value, a faithful low-dimensional
map will be obtained.

3. The Proposed Preprocessing Manifold Learning Strategy

We noticed that the drawbacks of the t-SNE mentioned above are partly caused
by the Gaussian distribution of the high-dimensional data. In other words, due to the
algorithm design of t-SNE, the mapped data will be uniformly but loosely distributed
in a low dimension given that the high-dimensional data are in Gaussian distribution.
Thus, a natural way to handle such a problem is to modify the original data distribution
in advance in a reasonable way to fit the standard t-SNE. By reasonable, we mean the
updated data distribution tailored to t-SNE also inherits the characteristics of the original
data distribution.

Laplacian eigenmaps is another efficient manifold learning method, which maps
the high-dimensional data into a lower dimension by solving a generalized eigenvector
problem [19]. It shares some similar properties with LLE, e.g., it also employs weights rather
than the possibility to realize dimensionality reduction, hence a tighter map compared with
t-SNE could be obtained. Thus, the idea of LE can be introduced here to preprocess the
original high-dimensional data. Following the dimensionality reduction strategy of LE [28],
we first find the k-nearest neighbors for each data point by using KNN and characterize
their relations with Wij as follows:
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Wij =

{
e−
||xi−xj ||

2

t if i,j are neighbors,
0 otherwise.

Then the cost function is given by

N

∑
i=1

N

∑
j=1
||yi − yj||2Wij. (6)

To minimize the cost function, there are three matrices D, W and L defined in LE,
in which D is a diagonal matrix where Dii = ∑j Wij. W is composed of Wij, where Wij is
just the element at row i and column j. The Laplacian matrix [28] is defined as

L = D−W. (7)

Thus, the first dimensionality reduction can be accomplished by solving a generalized
eigenvector problem, i.e.,

Ly = λDy, (8)

and the m-dimensional mapped data are corresponding to the smallest m non-zero eigen-
values in Equation (8) [28].

It is easy to see that by using LE the data points can be aggregated more tightly with
their neighbors and the mapped data are not in Gaussian distribution anymore. Thus, if
we take the mapped data that were preprocessed by LE as the input of t-SNE, the loose
distribution problem associated with t-SNE can be significantly alleviated.

In Figures 1 and 2, we show the visualization of 5000 data selected from the MNIST
randomly by using t-SNE and t-SNE with LE as the preprocessing strategy, respectively.
The procedure of the latter strategy is as follows: We first use KNN to obtain k0 neighbors
for each data point; then, we reduce the dimensionality of the original data to N0 using the
concept of LE. Finally, we take those N0-dimensional data as the input for t-SNE to further
accomplish the dimensionality reduction.

1

2

3

4

5

6

7

8

9

10

Figure 1. Visualization of 5000 data randomly selected from MNIST by using t-SNE, the iteration
number is 500.

Just as we expect, the t-SNE implements t-distribution to solve the crowd problem
and a relatively obvious gap between different data clusters can be formed. However,
the clusters themselves are still loose to some extent, which undermines the ability of t-SNE
to form tight clusters. Worse yet, the entropy of each cluster is too high to yield a small K–L
divergence. On the other hand, from Figure 2, it is evident that not only the gaps between
each of the ten data clusters can be formed by using the preprocessing strategy, but each
data point also tends to be gathered with its neighboring points.
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However, we notice that the gaps between different clusters are not satisfactory, both
for the standard t-SNE and the one with LE as the preprocessing strategy, as shown in
Figures 1 and 2. Moreover, as both the computation and space complexity of t-SNE grow
quadratically with the number of data pairs, it will be of great interest to reduce the number
of data pairs involved in the final t-SNE.

1

2

3

4

5

6

7

8

9

10

Figure 2. Visualization of 5000 data randomly selected from MNIST by using t-SNE with LE as the
preprocessing strategy. Here we take k0 = 40 and N0 = 80. The iteration number of t-SNE is also 500.

Here, we continue to preprocess the data that experienced dimensionality reduction
by LE before they are processed by t-SNE. Inspired by the sparse approximation strategy
proposed in [29], we again use the KNN algorithm to find out the neighbors for each
data point, then aggregate neighboring similar data points and weaken the relationships
between dissimilar data pairs. As in [29], the pairwise similarities between data points, pij,
is redefined by

pj|i =


exp(−||xi−xj ||2/2σ2

i )

∑j 6=i exp(−||xi−xj ||2/2σ2
i )

if i,j are neighbors

0 otherwise
(9)

In this way, we propose another strategy by which we can decrease the distance
between neighboring data in order to increase the possibility that a data point chooses its
real neighbor.

After we implement LE, we perform the KNN algorithm again to find the neighbors
of each data point, and then we introduce a coefficient α as below

dij =

{
α||xi − xj||2 if i,j are neighbors
1
α ||xi − xj||2 otherwise

(10)

It makes sense and does little harm to the original data structure since we have already
implemented Laplacian eigenmaps to preprocess the data. With regard to the MNIST
dataset, we set α as 1× 10−5.

Now, we present our dimensionality reduction strategy with preprocessing as shown
in Algorithm 1.
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Algorithm 1 A preprocessing manifold learning strategy based on t-SNE.

Input: The high-dimensional data set X.
Output: The two-dimensional data Y after the dimensionality reduction.
1: Compute the Euclidean distances for each of the high-dimensional data pairs;
2: Apply a KNN algorithm to find out k0 neighbors for each data;
3: Apply Laplacian Eigenmaps on the original data and reduce its dimensionality to N0;
4: Apply the KNN algorithm again to find out k1 neighbors for each data, and for two

data points that are not neighbors i, j, set their conditional probability pj|i to 0;
5: Decrease the distance between neighboring data points by applying the coefficient α on

the neighboring data points;
6: Compute the joint probabilities with pij =

pj|i+pi|j
2 ;

7: Get the low-dimensional mapped data Y(0);

8: Compute the joint probabilities of the mapped points with qj|i =
(1+||yi−yj ||2)−1

∑k 6=l exp(1+||yk−yl ||2)−1 ;

9: Compute δC
δyi

= 4 ∑j(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1;

10: Compute Y(t) = Y(t−1) + η δC
δY + α(t)(Y(t−1) −Y(t−2)), where η represents the learning

rate and α(t) the momentum;
11: Repeat steps 8, 9 and 10 until t reach the number of iterations to implement t-SNE

on the pre-processed data or the corresponding dimensionality of the mapped data is
reduced to be 2.

In Figure 3, we show the visualization of 5000 data points selected from MNIST
randomly with our preprocessing strategy. The procedure of our preprocessing strategy is
as follows: first, we use KNN to obtain k0 neighbors for each data point; then, we apply
LE to reduce the dimensionality of the original data; after that, we implement the KNN
algorithm again to find k1 neighbors for each data point; and finally, we apply t-SNE on the
preprocessed data and reduce their dimensionality to 2.

1

2

3

4

5

6

7

8

9

10

Figure 3. Visualization of 5000 data selected from MNIST randomly with our preprocessing strategy
as shown in Algorithm 1. Here, we take k0 = k1 = 40, N0 = 80 and the iteration number is 500.
During the first 100 iteration of gradient descent, early exaggeration is exploited.

We have also applied our strategies on datasets Coil-100 and the Fashion-MNIST.
The former is a collection of color images of 100 objects taken from different angles and
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comprises 72 images per object in total. The size of each image is uniformly processed
to be 128× 128. The latter is a clothing image dataset from Zalando, Berlin, Germany,
containing a training set of 60,000 samples and a test set of 10,000 samples. Each sample is
a 28× 28 grayscale image associated with 10 categories of labels. The performance of the
t-SNE algorithm and our strategy on these datasets are shown in Figures 4–7. According to
the simulation results, our strategy has better performance on the MNIST dataset and the
Fashion-MNIST dataset. For the Coil-100 dataset, though the performance of our strategy
is slightly unsatisfactory due to the high dimensionality of the data, it is better than the
standard t-SNE algorithm.

Figure 4. Visualization of 720 data from 10 objects randomly selected from Coil−100 by using t−SNE.

Figure 5. Visualization of 720 data from 10 objects randomly selected from Coil−100 with our
preprocessing strategy.
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Figure 6. Visualization of 5000 data randomly selected from Fashion−MNIST by using t−SNE.

Figure 7. Visualization of 5000 data randomly selected from Fashion−MNIST with our preprocess-
ing strategy.

4. Discussion

As in previous simulations, in Figure 3 we again show the visualization of 5000 data
selected from MNIST randomly but by using our approach (Algorithm 1). It can be seen
that, compared with Figure 2, our strategy shows more pronounced benefits since data
of the same kind are aggregated far more tightly. In addition, the gaps between different
clusters are also enlarged. Thus, it provides many more advantages for the process of
extracting each cluster respectively.

Just as we mentioned in the last section, the strategy by which we decrease the distance
between neighboring data destroys the data structure in some cases, leading to an increase
in KLD to some extent. However, the KLD can be significantly reduced by using the idea
of LE in step 3 in Algorithm 1. In Figure 8, we show the changing trend of KLD along with
the increase in iterations. It is evident that by using our preprocessing strategy, the KLD
plateaus around “1” after 500 iterations, while the standard t-SNE plateaus at around 1.5
and the SNE plateaus at 2.8. In other words, the KLD yielded by our approach is about 33%
lower than the standard t-SNE and almost 66% lower than the SNE.
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Figure 8. The gradient descent process of the SNE, the standard t-SNE and our preprocessing strategy.

We also compare the computation complexity of the three approaches mentioned in
the context in terms of running time. As shown in Table 1, the running time caused by
our approach is increased by only 1.82% when compared with the standard t-SNE. There
are two reasons for this. Firstly, LE is a highly efficient algorithm; when it is introduced
into our preprocessing strategy to accomplish the preliminary dimensionality reduction,
the extra complexity can almost be ignored. Secondly, though KNN algorithms are used
in our approach twice, the number of data pairs considered in t-SNE can also be reduced
correspondingly. In other words, the extra complexity caused by KNN can be offset by itself.

Table 1. Average running time of SNE, t−SNE and our preprocessing approach on the visualiza-
tion of 5000 data randomly selected from MNIST. The simulation platform is a laptop with Intel
CPU i7−6700HQ.

Algorithm SNE t-SNE Our Preprocessing Strategy

Running Time 530.09 s 278.62 s 283.71 s

For the space complexity, since we have added a preprocessing process to the standard
t-SNE algorithm, some extra space is required, which is mainly caused by the Laplacian
eigenmaps and the KNN algorithm. Firstly, for the KNN algorithm, each data point is
stored as a separate object or array, and its space complexity is O(n× d), where n represents
the number of data points and d represents the dimensionality of each data point. Secondly,
Laplacian eigenmaps need to construct the graph Laplacian matrix, which is an n × n
matrix, so the space complexity of Laplacian eigenmaps is O(n2). As the standard t-SNE
needs to compute and store the joint probabilities of mapped points, its space complexity is
O(n2). In conclusion, our strategy requires approximately twice as much space compared
to the standard t-SNE algorithm.

To show the effect of different parameters k0, k1 and α on the performance of our
algorithm, we performed simulations with different parameters and gave the corresponding
gradient descent process. Since both k1 and k2 are the neighbor numbers of the KNN
algorithm, we also made them consistent to maintain their consistency. In Figure 9, we
show that a suitable parameter α can bring good performance to our strategy. In Figure 10,
we show that the performance does become better along with the increase in k0 and k1, but
at a cost of higher complexity as more neighbor nodes are involved. On the other hand, we
find that when k0 and k1 are increased to 80, the performance reaches a saturated state.
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Figure 9. The gradient descent process of our preprocessing strategy when using different
parameters α.

Figure 10. The gradient descent process of our preprocessing strategy when using different parame-
ters k, where we let k = k0 = k1.

Moreover, as we can set those parameters (k0, k1 and N0) according to different
scenarios, our approach offers a flexible balance between complexity and performance
as required. Now, we can safely arrive at the conclusion that our strategy significantly
improves the performance of the standard t-SNE while the complexity almost remains
the same.

5. Conclusions

We have developed a preprocessing t-SNE manifold learning algorithm whose pre-
processing strategy employs the idea of LE to aggregate each data cluster and the KNN
to enlarge the gaps between different clusters. Our approach significantly improves the
capability of dimensionality reduction and high-dimensional data visualization of the
standard t-SNE while the computation complexity remains almost the same.

We also want to point out that the parameters used in Algorithm 1 (such as k0, k1,
α and N0) are determined based on experience. Obviously, different parameters lead to
different dimensionality reduction performances and also different complexities. More
precisely, the larger the k0 or k1 the more complex the algorithm; on the other hand, if k0
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and k1 are too small, the structure of the low-dimensional data may be distorted. Thus, it
would be interesting to study how to set those parameters to an optimal value to balance
performance and complexity. We will consider this as a part of our next work.
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