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Abstract: Multi-label streaming feature selection has received widespread attention in recent years
because the dynamic acquisition of features is more in line with the needs of practical application
scenarios. Most previous methods either assume that the labels are independent of each other,
or, although label correlation is explored, the relationship between related labels and features is
difficult to understand or specify. In real applications, both situations may occur where the labels
are correlated and the features may belong specifically to some labels. Moreover, these methods
treat features individually without considering the interaction between features. Based on this, we
present a novel online streaming feature selection method based on label group correlation and
feature interaction (OSLGC). In our design, we first divide labels into multiple groups with the help
of graph theory. Then, we integrate label weight and mutual information to accurately quantify the
relationships between features under different label groups. Subsequently, a novel feature selection
framework using sliding windows is designed, including online feature relevance analysis and
online feature interaction analysis. Experiments on ten datasets show that the proposed method
outperforms some mature MFS algorithms in terms of predictive performance, statistical analysis,
stability analysis, and ablation experiments.

Keywords: multi-label feature selection; label group correlation; streaming features; mutual information

1. Introduction

Multi-label feature selection (MFS) plays a crucial role in addressing the preprocessing
of high-dimensional multi-label data. Numerous methods have been proposed and proven
to be effective in improving prediction performance and model interpretability. However,
traditional MFS methods assume that all features are collected and presented to the learning
model beforehand [1–4]. This assumption does not align with many practical application
scenarios where not all features are available in advance. In video recognition, for example,
each frame may possess important features that become available over time. Hence,
achieving real-time feature processing has emerged as a significant concern [5–8].

Online multi-label feature selection with streaming features is an essential branch of
MFS that facilitates the efficient real-time management of streaming features. It provides
significant advantages, such as low time and space consumption, particularly when dealing
with extremely high-dimensional datasets. Some notable works in this have attracted
attention, including online multi-label streaming feature selection based on a neighborhood
rough set (OM-NRS) [9], multi-label streaming feature selection (MSFS) [10], and novel
streaming feature selection(ASFS) [11]. However, these methods primarily focus on elimi-
nating irrelevant and/or redundant features. In addition to identifying irrelevant and/or
redundant features, feature interaction is crucial but often overlooked. Feature interaction
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refers to features that have weak or independent correlations with the label, but when
combined with other features, they may exhibit a strong association with the predicted
label. Streaming feature selection with feature interaction (SFS-FI) [12] is a representative
approach that considers feature interaction dynamically. SFS-FI has successfully identified
the impact of feature interaction; however, it lacks the capability to tackle the learning
challenge in multi-label scenarios.

Another difficulty with online MFS is that labels are universally correlated, which
is a distinctive property of multi-label data [13–16]. Intuitively, a known label can aid in
learning an unknown one, and the co-occurrence of two labels may provide additional
information to the model. For example, an image with ‘grassland’ and ‘lion’ labels is
likely also to be marked as ‘African’; similarly, ‘sea’ and ‘ship’ labels would tend to
appear together in a short video, while ‘train’ and ‘sea’ labels tend not to appear together.
Some research work has been carried out around label correlation. Representative work
includes multi-label streaming feature selection (MSFS) and online multi-label streaming
feature selection with label correlation (OMSFSLC). MSFS captures label correlation by
constructing a new data representation pattern for label space and utilizes the constructed
label relationship matrix to examine the merits of features. OMSFSLC constructs label
weights by calculating label correlation, and, on this basis, integrates label weights into
significance analysis and relevance analysis of streaming features. The methods mentioned
above select features by evaluating the relationship between features and the global label
space. This strategy may not be optimal as it is challenging to comprehend and specify
the relationship between relevant labels and features. Based on research by Li et al. [17], it
has been found that strongly correlated labels tend to share similar specific features, while
weakly related labels typically have distinct features. In line with this observation, this
paper will categorize related labels into two groups: strongly related labels will be grouped
together, while weakly related labels will be separated into different groups.

Accordingly, a novel online multi-label streaming feature selection based on label
group correlation and feature interaction, namely OSLGC, is proposed to select pertinent
and interactive features from streaming features. Firstly, our method involves calculating
the correlation matrix of labels and using graph theory to group related labels. Labels
within the same group have a strong correlation, while labels from different groups have a
weak correlation. Then, we define the feature relevance item and integrate the label weight
and feature interaction weight into the feature relevance item. Subsequently, a framework
based on sliding windows is established, which iteratively processes streaming features
through two steps: online feature correlation analysis and online feature interaction analysis.
Finally, extensive experiments demonstrate that OSLGC can yield significant performance
improvements compared to other mature MFS methods. The uniqueness of OSLGC is
established as follows:

• By utilizing graph theory, label groups are constructed to ensure that closely associated
labels are grouped together. This method provides an effective means of visualizing
the relationships among labels.

• We provide a formal definition of feature interaction and quantify the impact of feature
interaction under different label groups. Based on this, OSLGC is capable of selecting
features with interactivity.

• A novel streaming feature selection framework using sliding windows is proposed,
which resolves the online MFS problem by simultaneously taking feature interaction,
label importance, as well as label group correlation, into account.

• Experiments on ten datasets demonstrate that the proposed method is competitive
with existing mature MFS algorithms in terms of predictive performance, statistical
analysis, stability analysis, and ablation experiments.

The rest of this article is arranged as follows: In Section 2, we review previous research.
Section 3 provides the relevant preparatory information. In Section 4, we present the
detailed procedure for OSLGC. In Section 5, we report the empirical study. Finally, Section 6



Entropy 2023, 25, 1071 3 of 19

sums up the work of this paper and considers the prospects, priorities and direction of
future research.

2. Related Work

Multi-label feature selection (MFS), as a widely known data preprocessing method, has
achieved promising results in different application fields, such as emotion classification [18],
text classification [19], and gene detection [20]. Depending on whether the features are
sufficiently captured in advance, existing MFS methods can be divided into batch and
online methods.

The batch method assumes that the features presented to learning are pre-available.
Generally speaking, it can be further subdivided into several types according to the charac-
teristics provided by the complex label space, including missing labels [21,22], label distri-
bution [23,24], label selection [25], label imbalance [26,27], streaming labels [28,29], partial
labels [30,31], label-specific features [32–34], and label correlation [35–37]. Among them,
investigating label correlation is considered to be a favorable strategy to promote the
performance of learning. To date, many works have focused on this. For instance, label
supplementation for multi-label feature selection (LSMFS) [38] evaluates the relationship be-
tween labels using mutual information provided by the features. Quadratically constrained
linear programming (QCLP) [39] introduces a matrix variable normal prior distribution
to model label correlation. By minimizing the label ranking loss of label correlation reg-
ularization, QCLP is able to identify a feature subset. On the other hand, label-specific
features emphasize that different labels may possess their own specific features. One
of the most representative studies, Label specIfic FeaTures (LIFT) [32], has shown that
using label-specific features to guide the MFS process can elevate the performance and
interpretability of learning tasks. Recently, group-preserving label-specific feature selection
(GLFS) [33] has been used to exploit label-specific features and common features with
l2,1-norm regularization to support the interpretability of the selected features.

The online method differs from the batch method in that features are generated on-
the-fly and feature selection takes place in real-time as the features arrive. Based on the
characteristics of the label space, it can be categorized into two groups: label independence
and label correlation. For label independence, several methods have been proposed, such as
the streaming feature selection algorithm with dynamic sliding Windows and feature repul-
sion loss (SF-DSW-FRL) [40], multi-objective online streaming multi-label feature selection
using mutual information (MOML) [41], streaming feature selection via class-imbalance
aware rough set (SFSCI) [42], online multi-label group feature selection (OMGFS) [43],
and multi-objective multi-label-based online feature selection (MMOFS) [44]. Similar to the
static MFS methods, the online MFS approach also focuses on exploring label correlation.
For instance, MSFS [10] uses the relationship between samples and labels to construct a new
data representation model to measure label correlation, and implements feature selection
by designing feature correlation and redundancy analysis. Multi-label online streaming
feature selection with mutual information (ML-OSMI) [45] uses high-order methods to
determine label correlation, and combines spectral granulation and mutual information
to evaluate streaming features. Unfortunately, existing methods cannot exactly capture
the impact of label relationships on the evaluation of streaming features and are hindered
by a time-consuming calculation procedure. Thus, online multi-source streaming features
selection (OMSFS) [7] investigates label correlation by calculating mutual information, and,
on this basis, constructs the weight for each label and designs a significance analysis to
accelerate the computational efficiency.

Based on our review of previous studies, we find that with the arrival of each new
feature, existing methods can be effective in dealing with streaming features. However,
these methods pay more attention to the contribution of features to all labels, and do
not explore the specific relationship between features and labels. To put it simply, they
fail to consider that highly correlated labels may have common features, while weakly
correlated labels may have distinct features. Additionally, it is important to mention
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that most previous works have focused on selecting the most relevant features to labels,
but have ignored the potential contribution of feature interactions to labels. In contrast,
our framework pays close attention to feature interactions and label group correlation,
and seeks to explore the specific features and label group weights corresponding to the
label group.

3. Preliminaries
3.1. Multi-Label Learning

Given a multi-label information table MLS =< U, F, L >, where U = {x1, x2, · · · , xn}
is a non-empty instance set, F = { f1, f2, · · · , fd} and L = {l1, l2, · · · , lm} are a feature set
and label set used to describe instances, respectively. li(xk) represents the value of label li
on instance xk ∈ U, where li(xk) = 1, only if xk possesses li , and 0 otherwise. The task of
multi-label learning is to learn a function h : U → 2L.

3.2. Basic Information-Theoretic Notions

This section introduces some basic information theory concepts which are commonly
used in the evaluation of feature quality.

Definition 1. Let X = {x1, x2, · · · , xn} be a discrete random variable and P(xi) be the probability
of xi, then the entropy of X is

H(X) = − ∑
xi∈X

P(xi)logP(xi). (1)

H(X) is a measure of randomness or uncertainty in the distribution of X. It is at a maximum
when all the possible values of X are equal, and at a minimum when X takes only one value with
probability 1.

Definition 2. Let Y = {y1, y2, · · · , ym} be another random variable. Then, the joint entropy
H(X, Y) of X and Y is:

H(X, Y) = − ∑
xi∈X

∑
yj∈Y

P(xi, yj)logP(xi, yj), (2)

where P(xi, yj) denotes the joint probability of xi and yj .

Definition 3. Given X and Y, when the variable Y is known, the residual uncertainty of X can be
determined by the conditional entropy H(X|Y):

H(X|Y) = − ∑
xi∈X

∑
yj∈Y

P(xi, yj)logP(xi|yj), (3)

where P(xi|yj) is the conditional probability of xi given yj .

Definition 4. Given X and Y, then the amount of information shared by two variables can be
determined by the mutual information I(X; Y):

I(X; Y) = ∑
xi∈X

∑
yj∈Y

P(xi, yj)log
P(yj|xi)

P(yj)
. (4)

The larger the I(X; Y) value, the stronger the correlation between the two variables. Inversely,
the two variables are independent if I(X; Y) = 0.
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Definition 5. Given variables X, Y and Z, when Z is given, the uncertainty of X due to the known
Y can be measured by the conditional mutual information I(X; Y | Z):

I(X; Y | Z) = ∑
xi∈X

∑
yj∈Y

∑
zk∈Z

P(xi, yj, zk) log
P(xi | yj, zk)

P(xi | yj)
. (5)

4. The OSLGC Method
4.1. Exploiting Label Group Correlation

To investigate label group correlation, in this subsection, we introduce a graph-based
method to further distinguish the relevant labels, which can effectively differentiate relevant
labels by grouping strongly related labels together and separating weakly related ones
into different groups. The process involves two fundamental steps: (1) constructing an
undirected graph of the labels, and (2) partitioning the graph to create distinct label groups.

In the first step, OSLGC aims to construct an undirected graph that effectively cap-
tures the label correlation among all labels, thus providing additional information for
streaming feature evaluation. For this purpose, it is necessary to investigate the correlation
between labels.

Definition 6. Given < U, F, L >, xk ∈ U, li, lj ∈ L, li(xk) represents the value of label li with
respect to instance xk, the correlation rij between the labels is defined as:

rij = ∑
xk∈U

P(li(xk), lj(xk)) log
P(li(xk), lj(xk))

P(li(xk))P(lj(xk))
. (6)

Obviously, if li and lj are independent, then rij = 0; otherwise, rij > 0.

Using Equation (6), the label correlation matrix M(RLC) is obtained, and the form of
M(RLC) is shown below.

M(RLC) =


r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
...

...
rm1 rm2 · · · rmm

.

Based on the matrix, the weighted undirected graph of the label correlation can be
structured Graph = (V, E), where V = {li|li ∈ L ∧ i ∈ [1, m]} and E = {(li, lj)|li, lj ∈ L,
i, j ∈ [1, m], i 6= j} mean the vertex and edge of Graph, respectively. As M(RLC) is sym-
metric, Graph is an undirected graph that reflects the correlation among all labels. But,
regrettably, Graph has m vertices and m(m− 1)/2 edges. For ultra-high-dimensional data,
the density of the graph will be considerable, which often leads to strong edge interweaving
of different weights. Moreover, the resolution of complete graphs is an NP-hard problem.
Therefore, for Graph, it is necessary to reduce the edges of Graph.

In the second step, OSLGC aims to divide the graph and create label groups. With
this intent, we first generate a minimum spanning tree (MST) through the Prim algorithm.
MST has the same vertices as Graph and partial edges of Graph. The weight of the link
edge in the MST is expressed as W(li ,lj)

, which is essentially different for different edges.
To divide strongly correlated labels into groups, we set the threshold to break the edges
below the threshold in MST.

Definition 7. Given W(li ,lj)
represents the weight of the edges, and the threshold for weak label

correlation is defined as:

δ =
∑(li ,lj)∈MST W(li ,lj)

m− 1
. (7)
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δ is the average of the edge weights, which is used to divide the label groups, thereby putting
the strongly related labels in the same group.

Concretely, if W(li ,lj)
≥ δ, which means that the relationship between labels li and lj is a

strength label correlation, we will reserve the edge that connects li with lj. If W(li ,lj)
< δ, which

explains that the relationship between labels li and lj is a weakness label correlation, we can remove
the edge that connects li with lj from MST. Hence, the MST can be segmented into forests by
threshold segmentation. In the forest, the label nodes within each subtree are strongly correlated,
while the label nodes between subtrees are weakly correlated. Based on this, we can treat each subtree
as a label group, denoted as L = {LG1 ∪ LG2 ∪ · · · ∪ LGp}.

Example 1. A multi-label dataset is presented in Table 1. First, the label correlation matrix is
calculated using Equation (6), as follows:

M(RLC) =



1.00 0.13 0.05 0.61 0.02 0.26
0.13 1.00 0.13 0.28 0.00 0.13
0.05 0.13 1.00 0.00 0.02 0.02
0.61 0.28 0.00 1.00 0.00 0.13
0.02 0.00 0.02 0.00 1.00 0.26
0.26 0.13 0.02 0.13 0.26 1.00

.

Table 1. Example of multi-label data.

Instance f1 f2 l1 l2 l3 l4 l5 l6

x1 1 0 +1 −1 +1 + 1 −1 +1
x2 1 0 +1 −1 +1 +1 −1 + 1
x3 0 1 −1 +1 −1 −1 +1 −1
x4 0 1 −1 +1 +1 −1 +1 −1
x5 1 1 −1 −1 +1 −1 −1 +1
x6 1 0 +1 −1 −1 +1 +1 −1
x7 0 1 +1 +1 −1 −1 −1 +1
x8 0 1 −1 +1 +1 −1 −1 −1
x9 1 0 +1 +1 −1 +1 −1 +1
x10 1 1 +1 −1 +1 +1 + 1 +1

Then, we can create the label undirected graph by using the label correlation matrix,
as shown in Figure 1a. Immediately afterwards, the minimum spanning tree is generated
by the Prim algorithm, as shown in Figure 1b. Finally, the threshold δ of MST is calculated
using Equation (7), and the edges that meet condition W(li ,lj)

< δ are removed, as shown in
Figure 1c.

(a) (b) (c)

Figure 1. The relationship among labels. (a) label correlation matrix, (b) minimum spanning tree,
and (c) label groups.
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4.2. Analysis Feature Interaction under Label Group

As a rule, the related labels generally share some label-specific features [17,33], i.e., la-
bels within the same label group may share the same label-specific features. Thus, to gen-
erate label-specific features for different label groups, in this subsection, we will further
analyze feature relationships under different label groups, including feature independence,
feature redundancy, and feature interaction. We also give the interaction weight factor to
quantify the influence degree of the feature relationship under different label groups.

Definition 8 (Feature independence). Given a set of label groups L = {LG1 ∪ LG2 ∪ · · · ∪
LGp}, LGh ⊆ L, St = { f1, f2, · · · , fd∗} denotes the selected features, and ft is a new incoming
feature at time t. For ∀ fi ∈ St, fi and ft are referred to as feature independence under LGh if, and
only if:

I( fi; LGh) + I( ft; LGh) = I( fi, ft; LGh). (8)

According to Definition 8, I( fi; LGh) + I( ft; LGh) = I( fi, ft; LGh) suggests that the
information provided by feature fi and ft for the label group LGh are non-interfering,
i.e., the features are independent of each other under label group LGh.

Theorem 1. If I( ft; LGh| fi) = I( ft; LGh) or I( fi; LGh| ft) = I( fi; LGh), then fi and ft are
independent under label group LGh.

Proof. I( fi, ft; LGh) = I( fi; LGh)+ I( ft; LGh| fi)= I( ft; LGh)+I( fi; LGh| ft). If I( fi; LGh| ft) =
I( fi; LGh) or I( ft; LGh| fi) = I( ft; LGh), I( fi, ft; LGh) = I( fi; LGh) + I( ft; LGh). Thus, fi and
ft are independent under label group LGh.

Theorem 2. If fi and ft are independent, under the condition that label group LGh is known, then
I( fi; ft|LGh) = 0.

Proof. If fi and ft are independent, i.e., I( fi; ft) = 0, according to Definition 5, it can be
proven that I( fi; ft|LGh) = 0.

Definition 9 (Feature redundancy). Given a set of label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp},
LGh ⊆ L, St = { f1, f2, · · · , fd∗} denotes the selected features, and ft is a new incoming feature.
For ∀ fi ∈ St, fi and ft are referred to as feature redundancy under LGh if, and only if:

I( fi; LGh) + I( ft; LGh) > I( fi, ft; LGh). (9)

Equation (9) suggests that there is partial duplication of information provided by two
features; that is, the amount of information brought by two features fi and ft together for
label group LGh is less than the sum of the information brought by the two features for
LGh separately.

Theorem 3. If I( fi; LGh| ft) < I( fi; LGh) or I( ft; LGh| fi) < I( ft; LGh), then the relationship
between fi and ft is a pair of feature redundancy under label group LGh.

Proof. I( fi, ft; LGh) = I( fi; LGh)+ I( ft; LGh| fi)=I( ft; LGh)+ I( fi; LGh| ft). If I( fi; LGh| ft) <
I( fi; LGh) or I( ft; LGh| fi) < I( ft; LGh), I( fi, ft; LGh) < I( fi; LGh) + I( ft; LGh). Thus, the re-
lationship between fi and ft is a pair of feature redundancy under label group LGh.

Definition 10 (Feature interaction). Given a set of label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp},
LGh ⊆ L, St = { f1, f2, · · · , fd∗} denotes the selected features, and ft is a new incoming feature.
For ∀ fi ∈ St, fi and ft are referred to as a feature interaction under LGh if, and only if:
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I( fi; LGh) + I( ft; LGh) < I( fi, ft; LGh). (10)

Equation (10) suggests that there is a synergy between features fi and ft together for
label group LGh; that is, they yield more information together for label group LGh than
what could be expected from the sum of I( fi; LGh) and I( ft; LGh).

Theorem 4. If I( fi; LGh| ft) > I( fi; LGh) or I( ft; LGh| fi) > I( ft; LGh), then fi and ft is a pair
of feature interaction under label group LGh.

Proof. I( fi, ft; LGh) = I( fi; LGh)+ I( ft; LGh| fi) = I( ft; LGh)+ I( fi; LGh| fi). If I( fi; LGh| ft)
> I( fi; LGh) or I( ft; LGh| fi) > I( ft; LGh), I( fi, ft; LGh) > I( fi; LGh) + I( ft; LGh). Thus, fi
and ft are a pair of feature positive interaction under label group LGh.

Property 1. If two features fi and ft are not independent, the correlations between fi and ft under
a different label group LGh are distinct. It is easy to show with Example 2.

Example 2. Continue Table 1. As shown in Table 2, we can see that I( f1, f2; LG1) = 0.997 is
less than I( f1; LG1) + I( f2; LG1) = 1.227, and, according to Definition 9, f1 and f2 is a feature
redundancy under label group LG1. However, for label group LG3, it satisfies that I( f1, f2; LG3) >
I( f1; LG3) + I( f2; LG3); that is, f1 and f2 is a feature interaction under the label group LG3.
This finding suggests that the relationship between f1 and f2 changes dynamically under different
label groups.

Consequently, to evaluate features accurately, it is imperative to quantify the influence of the
feature relationships on feature relevance. That is, the inflow of a new feature ft has a positive effect
in predicting labels, and we should enlarge the weight of feature ft; otherwise, the weight of feature
ft should be reduced. The feature interaction weight factor is defined to quantize the impact of the
feature relationships as follows:

Table 2. The relationship between features.

Mutual Information Combination Feature Relationship

I( f1; LG1) = 0.771
I( f1, f2; LG1) = 0.997 Feature redundancyI( f2; LG1) = 0.446

I( f1; LG3) = 0.020
I( f1, f2; LG3) = 0.171 Feature interactionI( f2; LG3) = 0.020

Definition 11 (Feature Interaction Weight). Given a set of label groups L = {LG1 ∪ LG2 ∪
· · · ∪ LGp}, LGh ⊆ L,St = { f1, f2, · · · , fd∗} denotes the selected features, and ft is a new
incoming feature. For ∀ fi ∈ St, the feature interaction weight between fi and ft is defined as:

FW( fi, ft, LGh) =
I( fi, ft; LGh)

I( fi; LGh) + I( ft; LGh)
. (11)

FW( fi, ft, LGh) offers additional information for evaluating feature ft. If feature ft and
the selected feature fi ∈ St is independent or redundant, it holds that FW( fi, ft, LGh) ≤ 1.
However, if the feature relationship is interactive, it holds that FW( f, ft, LGh) > 1.

4.3. Streaming Feature Selection with Label Group Correlation and Feature Interaction

Streaming features refer to features acquired over time; however, in fact, not all features
obtained dynamically are helpful for prediction. Therefore, it is necessary to extract valuable
features from the streaming features’ environment. To achieve this purpose, in this paper,
we implement the analysis of streaming features in two stages: online feature relevance
analysis and online feature interaction analysis.
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4.3.1. Online Feature Relevance Analysis

The purpose of feature relevance analysis is to select features that are important to the
label groups. Correspondingly, the feature relevance is defined as follows:

Definition 12 (Feature Relevance). Given label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp}, ft is a
new incoming feature, the feature relevance item is defined as:

γ( ft) = ∑p
h=1 I( ft; LGh)×W(LGh). (12)

In which, W(LGh) denotes the weight assigned to each label group, and
W(LGh) = H(LGh)

∑
p
j=1 H(LGj)

where H(LGh) is the information entropy of label group LGh.

The higher the weight of the label group, the more important the label group is to other
label groups. In other words, the corresponding label-specific features of the label group
should have higher feature importance.

Definition 13. Given label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp}, ft is a new incoming feature,
and γ( ft) is the feature relevance. With a pair of thresholds α and β (0 < α < β), we define:

(1) ft is strongly relevant, if β ≤ γ( ft);
(2) ft is weakly relevant, if α < γ( ft) < β;
(3) ft is irrelevant, if 0 ≤ γ( ft) ≤ α.

In general, for a new incoming feature ft, if ft is powerfully relevant, we will select it;
if ft is irrelevant, we will directly abandon it and no longer consider it later; if ft is weakly
relevant, there is a risk of greater misjudgment in making a decision immediately, including
selecting or abandoning, and the best approach is to obtain more information to make
a decision.

4.3.2. Online Feature Interaction Analysis

Definition 13 can be used to make intuitive judgments about features that are weakly
correlated. However, Definition 13 does not provide a basis for selecting or abandoning
weakly relevant features. Therefore, it is necessary to determine whether to remove or
retain the weakly relevant features.

Definition 14. Given label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp}, St = { f1, f2, · · · , fd∗} de-
notes the selected features, and ft is a new incoming feature. The feature relevance when considering
feature interaction, called the enhanced feature relevance, is defined as:

z( ft) =
1
|St|∑

d∗

i=1 ∑p
h=1 I( ft; LGh)×W(LGh)× FW( fi, ft; LGh). (13)

In which, FW( fi, ft; LGh) is the feature interaction weight between ft and fi ∈ St.
Furthermore, to determine whether to retain the weakly relevant feature, we set the mean
value of feature relevance about the selected features as the relevance threshold, as follows:

Definition 15. Given St = { f1, f2, · · · , fd∗} denotes the selected features, fi ∈ St, at time t,
the mean value of the feature relevance about the selected features is:

Meant = ∑d∗

i=1
γ( fi)

|St|
. (14)

Obviously, when z( ft) > Meant, it shows that the weak relevant feature ft interacts
with the selected features. In this case, ft can enhance the prediction ability and be selected
as an effective feature. Otherwise, when z( ft) ≤ Meant, it denotes that adding the weakly
relevant feature ft does not promote the prediction ability for labels, and, in this case, we
can discard the feature ft.
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4.3.3. Streaming Feature Selection Strategy Using Sliding Windows

According to Definition 13, two main issues need to be addressed: (1) how to design a
streaming feature selection mechanism to discriminate the newly arrived features; (2) how
to set proper thresholds for α and β.

(1) Streaming feature selection with sliding windows: To solve the first challenge,
a sliding window mechanism is proposed to receive the arrived features in a timed sequence,
which is consistent with the dynamic nature of the streaming features. The specific process
can be illustrated using the example in Figure 2.

• First, the sliding window (SW) continuously receives and saves the arrived features.
When the number of features in the sliding window reaches the preset size, the features
in the window are discriminated, which includes decision-making with regard to
selection, abandonment, or delay.

• According to the feature relevance γ( ft) (Definition 12), we select the strongly relevant
features, as shown in Figure 2. We can straightforwardly select strongly relevant
features, e.g., f15 and f18. Similarly, for the irrelevant features, they are discarded from
the sliding window, e.g., f16 and f17.

• For weakly relevant features, we need to further analyze the enhanced feature rele-
vance by considering the feature interaction. If the weakly relevant features satisfy
the condition z( ft) > Meant, they can be selected, e.g., f19; otherwise, the weakly
relevant features are retained in the sliding window, for example, f14, and new features
are awaited to flow into the sliding window.

This process is performed repeatedly. That is, when the features in the sliding window
reach saturation or no new features appear, the next round of feature analysis is performed.

Figure 2. Streaming feature selection with sliding window.

(2) Thresholds setting of α and β: To solve the second challenge, we assume that the
experimental data follow a normal distribution and the streaming features arrive randomly.
Inspired by the 3σ principle of normal distribution, we set α and β as the mean and standard
deviation of features in the sliding window.

Definition 16. Given a sliding window SW, ft′ ∈ SW, and γ( ft′ ) is the feature relevance, then,
at time t, the mean value µt of the sliding window is:

µt = ∑
f
t′
∈SW

γ( ft′ )

|SW| . (15)
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Definition 17. Given a sliding window SW , ft′ ∈ SW, and γ( ft′ ) is the feature relevance, then,
at time t, the standard deviation σt of the sliding window is:

σt =

√√√√∑ f
t′
∈SW(γ( ft′ )− µt)2

|SW| . (16)

Therefore, we combine the 3σ principle of normally distributed data to redefine the
three feature relationships.

Definition 18. Given γ( ft) is the feature relevance, at time t, µt and σt are the mean and standard
deviation of the features in the sliding window. Then, we define three feature relationships as:

(1) ft is strongly relevant, if µt + σt ≤ γ( ft);
(2) ft is weakly relevant, if µt − σt < γ( ft) < µt + σt;
(3) ft is irrelevant, if 0 ≤ γ( ft) ≤ µt − σt.

Through the above analysis, we propose a novel algorithm, named OSLGC, as shown
in Algorithm 1.

Algorithm 1 The OSLGC algorithm
Input: SW:sliding window, fi:predictive features, L: label set.
Output: St: the feature subset at time t.

1: Generate label groups L = {LG1 ∪ LG2 ∪ · · · ∪ LGp} by Section 4.1;
2: repeat
3: Get a new feature ft at time t;
4: Add feature ft to the sliding window SW;
5: while SW is full or no features are available do
6: Compute µt, γt, and Meant;
7: for each ft′ ∈ SW do
8: if γ( ft′ ) ≥ µt + σt then
9: if z( ft′ ) > Meant then

10: St = St ∪ f
′
t ;

11: end if
12: else
13: Discard f

′
t ;

14: end if
15: end for
16: end while
17: until No features are available;
18: Return St;

The major computation in OSLGC is feature analysis in sliding windows (Steps 5–16).
Assuming |Ft| is the number of currently arrived features, and |L| is the number of labels,
in the best-case scenario, OSLGC obtains a feature subset after running online feature
relevance analysis, and the time complexity is O(|Ft| · |L|). However, in many cases, the
features are not simply strongly relevant or irrelevant, but include weakly relevant instances.
Therefore, online feature interaction analysis needs to be further performed. The final time
complexity is O(|Ft| · |Ft| · |L|).

5. Experiments
5.1. Data Sets

We conducted experiments on ten multi-label datasets, which were mainly from three
different domains, that is, text, audio, and images, respectively. Among them, the first
eight datasets (i.e., Business, Computer, Education, Entertainment, Health, Entertainment,
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Reference, and Society) were taken from Yahoo, and were derived from the actual web
text classification. For audio, Birds is an audio dataset that identifies 19 species of birds.
For images, Scene includes 2407 images with up to six labels per image. These datasets
are freely available for public download and have been widely used in research on multi-
label learning.

Detailed information is provided in Table 3. For each dataset S, we use |S|, F(S),
and L(S) to represent the number of instances, number of features, and number of labels,
respectively. LCard(S) denotes the average number of labels per example, and LDen(S)
standardizes LCard(S) according to the number of possible labels. In addition, it is worth
noting that the number of instances and the number of labels in different datasets vary from
645 to 5000 and from 6 to 33, respectively. These datasets with varied properties provide a
solid foundation for algorithm testing.

Table 3. Detailed description of datasets.

Dataset |S| F(S) L(S) LCard(S) LDen(S) Domain

Business 5000 438 30 1.599 0.053 Text
Computer 5000 681 33 1.507 0.046 Text
Education 5000 550 33 1.463 0.044 Text

Entertainment 5000 640 21 1.414 0.067 Text
Health 5000 612 32 1.662 0.052 Text

Recreation 5000 606 22 1.423 0.065 Text
Reference 5000 793 33 1.169 0.035 Text

Society 5000 636 27 1.67 0.062 Text
Birds 645 260 19 1.014 0.053 Audio
Scene 2407 294 6 1.074 0.179 Image

5.2. Experimental Setting

To visualize the performance of OSLGC, we compared OSLGC with several recent MFS
algorithms. For a reasonable comparison, two different types of algorithms were selected
as comparison algorithms, including (1) two online multi-label streaming feature selection
algorithms, and (2) five MFS methods based on information theory. Specifically, the two on-
line multi-label streaming feature selection methods included multi-label streaming feature
selection (MSFS) [10] and online multi-label feature selection based on neighborhood rough
set (OMNRS) [9]. On the other hand, the five MFS methods based on information theory
were multi-label feature selection with label dependency and streaming labels (MSDS) [16],
multi-label feature selection with streaming labels (MLFSL) [28], label supplementation for
multi-label feature selection (LSMFS) [38], maximum label supplementation for multi-label
feature selection (MLSMFS) [38], and constraint regression and adaptive spectral graph
(CSASG [46]), respectively. Details of these algorithms are provided below.

• MSDS: It acquires features by exploring the feature significance, label significance,
and label specific features, simultaneously.

• LSMFS: It leverages label relationships to extract all feature supplementary informa-
tion for each label from other labels.

• MLSMFS: It is similar to LSMFS, but it maximizes the feature supplementary informa-
tion of each label from other labels.

• MSFS: It realizes streaming feature selection by conducting online relevance and
redundancy analysis.

• OMNRS: It sets the bounds of pairwise correlation between features to discard redun-
dant features.

• MLFSL: It is an MFS algorithm based on streaming labels, which fuses the feature
rankings by minimizing the overall weighted deviation.

• CSASG: It proposes a multi-label feature selection framework, which incorporates a
spectral graph term based on information entropy into the manifold framework.
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For the proposed method, the size of the sliding window |SW| is set to 15 in this
paper. For the algorithms that obtain the feature subset, e.g., MSDS, MSFS, and OMNRS,
we use the feature subset obtained by these algorithms to construct new data for prediction.
For the algorithms that obtain feature ranking, e.g., MLFSL, LSMFS, MLSMFS, and CSASG,
the first p features are selected, which depends on the dimension of the feature subset
obtained by the OSLGC algorithm. Furthermore, we select the average precision (AP),
Hamming loss (HL), one error (OE), and macro-F1 (F1), as the evaluation metrics. Due to
space limitations, information on these metrics will not be provided in detail. The formulas
and descriptions of all the evaluation metrics are provided in [47,48]. Finally, MLkNN
(k = 10) is selected as the basic classifier.

5.3. Experimental Results

Tables 4–7 display the results for the different evaluation metrics, where the symbol
“↓ (↑)” indicates “the smaller (larger), the better”. Boldface highlights the best prediction
performance for a specific dataset, and the penultimate row in each table shows the average
value of the algorithm on all datasets. Furthermore, the Win/Draw/Loss record provides
the number of datasets where OSLGC outperforms, performs equally to, and underper-
forms compared to the other algorithms, respectively. The experimental results indicate that
OSLGC exhibits strong competitiveness compared with other algorithms; the experimental
results also provide some interesting insights.

• For web text data, OSLGC is capable of achieving the best predictive performance
on at least 7 out of the 8 datasets on all the evaluation metrics. This suggests that the
proposed method is suitable for selecting features for web text data.

• For the Birds and Scene data, OSLGC achieves the best result on 3 out of 4 evaluation
metrics. For the remaining evaluation metric, OSLGC ranks second with a disadvan-
tage of 0.96 % and 1.51 %, respectively. This result indicates that OSLGC can also be
applied to the classification problem of other data types, such as images and audio.

• The average prediction results of all datasets were comprehensively investigated, with
the results showing that the performance of OSLGC has obvious advantages. Further-
more, the Win/Draw/Loss records clearly demonstrate that OSLGC can outperform
the other algorithms.

• Although MSFS, OMNRS, and OSLGC are proposed to manage streaming features,
the performance advantage of OSLGC confirms that label group correlation and fea-
ture interaction can provide additional information for processing streaming features.

OSLGC is able to make use of label group correlation to guide feature selection,
and adds online feature interaction analysis to provide hidden information for predictive
labels. By combining the potential contributions of the feature space and the label space,
OSLGC performs very competitively compared to other mature MFS methods.

Table 4. Results for different algorithms on Average Precision (↑).

Average Precision MSDS MLSMFS LSMFS MSFS OMNRS MLFSL CSASG OSLGC

Business 0.8748 0.8705 0.8707 0.8667 0.8746 0.8750 0.8755 0.8782
Computer 0.6410 0.6329 0.6328 0.6303 0.6420 0.6260 0.6397 0.6458
Education 0.5538 0.5515 0.5319 0.5475 0.5547 0.5478 0.5599 0.5636

Entertainment 0.5617 0.5487 0.5685 0.5632 0.5704 0.5626 0.5649 0.5809
Health 0.6883 0.6617 0.6701 0.6815 0.6894 0.6551 0.7013 0.7040

Recreation 0.4904 0.4628 0.4774 0.4921 0.4991 0.4459 0.4824 0.5083
Reference 0.6238 0.6232 0.6205 0.6252 0.6332 0.6170 0.6290 0.6324

Society 0.5932 0.5902 0.5698 0.5961 0.5849 0.5862 0.5976 0.5983
Birds 0.4877 0.4603 0.4563 0.5181 0.4842 0.4614 0.5260 0.5317
Scene 0.8372 0.8331 0.8331 0.6756 0.8375 0.8428 0.8430 0.8451

Average 0.6352 0.6235 0.6231 0.6196 0.6370 0.6220 0.6419 0.6488
Win/Draw/Loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 10/0/0 -
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Table 5. Results for different algorithms on Hamming Loss (↓).

Hamming Loss MSDS MLSMFS LSMFS MSFS OMNRS MLFSL CSASG OSLGC

Business 0.0276 0.0281 0.0283 0.0283 0.0274 0.0275 0.0276 0.0273
Computer 0.0399 0.0404 0.0401 0.0400 0.0397 0.0417 0.0398 0.0396
Education 0.0400 0.0410 0.0413 0.0413 0.0408 0.0410 0.0403 0.0398

Entertainment 0.0616 0.0624 0.0615 0.0621 0.0617 0.0615 0.0606 0.0600
Health 0.0433 0.0447 0.0450 0.0434 0.0417 0.0456 0.0414 0.0408

Recreation 0.0607 0.0617 0.0614 0.0613 0.0595 0.0635 0.0603 0.0593
Reference 0.0311 0.0311 0.0291 0.0304 0.0294 0.0311 0.0306 0.0301

Society 0.0555 0.0559 0.0585 0.0553 0.0565 0.0575 0.0553 0.0549
Birds 0.0513 0.0536 0.0497 0.0484 0.0518 0.0513 0.0489 0.0463
Scene 0.0988 0.1002 0.1002 0.1637 0.1014 0.1019 0.1009 0.0957

Average 0.0510 0.0519 0.0515 0.0574 0.0510 0.0523 0.0506 0.0494
Win/Draw/Loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 10/0/0 -

Table 6. Results for different algorithms on One Error (↓).

One Error MSDS MLSMFS LSMFS MSFS OMNRS MLFSL CSASG OSLGC

Business 0.1240 0.1323 0.1323 0.1360 0.1247 0.1230 0.1233 0.1187
Computer 0.4273 0.4387 0.4387 0.4457 0.4330 0.4583 0.4313 0.4197
Education 0.5673 0.5910 0.6097 0.5893 0.5810 0.5907 0.5767 0.5653

Entertainment 0.5947 0.6057 0.5837 0.5910 0.5783 0.5903 0.5880 0.5620
Health 0.3967 0.4383 0.4140 0.4157 0.4043 0.4497 0.3860 0.3747

Recreation 0.6557 0.6897 0.6730 0.6517 0.6413 0.7157 0.6667 0.6277
Reference 0.4713 0.4843 0.4710 0.4697 0.4527 0.4840 0.4613 0.4650

Society 0.4500 0.4587 0.4780 0.4473 0.4613 0.4677 0.4453 0.4427
Birds 0.6279 0.6686 0.6512 0.5581 0.6221 0.6628 0.5349 0.5465
Scene 0.2676 0.2742 0.2742 0.5084 0.2667 0.2567 0.2550 0.2525

Average 0.4582 0.4782 0.4726 0.4813 0.4565 0.4799 0.4469 0.4375
Win/Draw/Loss 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 10/0/0 9/0/1 -

Table 7. Results for different algorithms on Macro_F (↑).

Macro_F MSDS MLSMFS LSMFS MSFS OMNRS MLFSL CSASG OSLGC

Business 0.1602 0.1387 0.1326 0.1210 0.0852 0.1465 0.1591 0.1668
Computer 0.0996 0.0902 0.0703 0.0612 0.0714 0.0727 0.0910 0.0919
Education 0.1329 0.1347 0.1088 0.1326 0.0786 0.1312 0.1284 0.1288

Entertainment 0.1259 0.0960 0.1162 0.1145 0.1125 0.1168 0.1336 0.1391
Health 0.2270 0.1682 0.1537 0.1997 0.1623 0.1632 0.2435 0.2261

Recreation 0.1033 0.0854 0.0790 0.0834 0.1243 0.0556 0.1019 0.1307
Reference 0.1191 0.1111 0.1172 0.1126 0.0747 0.1180 0.1251 0.1286

Society 0.0855 0.0614 0.0346 0.0855 0.0581 0.0442 0.0771 0.0791
Birds 0.0766 0.0412 0.0460 0.0855 0.0434 0.0503 0.0573 0.1129
Scene 0.7177 0.6921 0.6921 0.3564 0.6859 0.7019 0.6834 0.7026

Average 0.1848 0.1619 0.1550 0.1352 0.1496 0.1600 0.1800 0.1906
Win/Draw/Loss 9/0/1 9/0/1 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 -

5.3.1. Statistical Tests

To assess the statistical significance of the observed differences between the eight
algorithms, we used the Friedman test [49]. The Friedman test ranks the prediction perfor-
mance obtained by each dataset. The best algorithm ranks first, the sub-optimal algorithm
ranks second, and so on. For K algorithms and N datasets, ri

j represents the rank of the

i algorithm on the j dataset, and Ri = 1/N ∑N
j=1 ri

j represents the average rank of the i
algorithm. Under the null hypothesis (i.e., all algorithms are equivalent), the Friedman
statistic FF obeys the Fisher distribution of degrees of freedom (K− 1) and (K− 1)(N − 1):

FF =
(N − 1)χ2

F
N(K− 1)− χ2

F
, where χ2

F =
12N

K(K + 1)
(

K

∑
i=1

R2
i −

K(K + 1)2

4
). (17)
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Table 8 summarizes the value of FF and the corresponding critical value. Based on
the Friedman test, the null hypothesis is rejected at a significance level of 0.10. Consequently,
it is necessary to use a post hoc test to further analyze the relative performance between the
algorithms. As the experiments focus on the performance difference between OSLGC and
other algorithms, we chose the Bonferroni–Dunn test [50] to serve this purpose. In this test,
the performance difference between OSLGC and one comparison algorithm is compared

using the critical difference (CD), and CDα = qα ·
√

K(K+1)
6N , where qα = 2.450 at α = 0.10;

thus, we can compute CD0.1 = 2.6838.

Table 8. Friedman statistics FF and critical value.

Evaluation Metric FF Critical Value (α = 0.10)

Average Precision 15.2697

1.74
Hamming Loss 9.0301

One Error 13.5067
Macro-F1 9.2081

Figure 3 gives the CD diagrams, where the average rank of each algorithm is plotted
on the coordinate axis. The best performance rank is on the rightmost side of the coordinate
axis, and conversely, the worst rank is on the leftmost side of the coordinate axis. In each
subfigure, if the average rank between OSLGC and one comparison algorithm is connected
by a CD line, it indicates that the performance of the two algorithms is comparable and
statistically indistinguishable. Otherwise, if the average rank of a comparison algorithm is
outside a CD, it is considered to have a significantly different performance from OSLGC.

From Figure 3, we can observe that: (1) OSLGC has obvious advantages over LSMFS,
MLSMFS, MLFSL, and MSFS with respect to all the evaluation metrics; (2) OSLGC achieves
comparable performance with CSASG for each evaluation metric, but, different from the
setting of the known static feature space of CSASG, OSLGC selects features by assuming
the dynamic arrival of features, which entails a process of selecting the best feature with
local feature information; (3) It is noteworthy that, although OSLGC cannot be significantly
distinguished from all the algorithms, OSLGC exhibits significant advantages over the
other feature selection algorithms. In summary, OSLGC exhibits a stronger statistical
performance than LSMFS, MLSMFS, MLFSL, MSFS, MSDS, OMNRS, and CSASG.

CD=2.6838

8 7 6 5 4 3 2 1
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CSASG

OSLGC

MSDS
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LSMFS
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CD=2.6838
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Figure 3. The CD diagrams using the Bonferroni–Dunn test. (a) Average precision, (b) Hamming
loss, (c) One error, and (d) Macro-F1.

5.3.2. Stability Analysis

In this subsection, we employ spiderweb plots to verify the stability of the algorithms.
Because the results generated by the algorithm on different evaluation metrics are quite
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different, to reasonably compare, we standardize the prediction results to a standard range
[0.1, 0.5]. The spiderweb diagram has the following characteristics: (1) The larger the
area surrounded by the same color line, the better the performance and the stability of
the algorithm. (2) The closer the normalized value is to 0.5, the better the performance.
(3) The closer the shape of the encircling line corresponding to the algorithm is to a regular
polygon, the better the stability of the algorithm. Figure 4 shows spider diagrams for all
the evaluation metrics, where each corner denotes a dataset and different colored lines
represent different MFS algorithms, respectively.

By analyzing Figure 4, it is found that: (1) Among all the algorithms, the area sur-
rounded by OSLGC is the largest, which indicates that OSLGC has the best performance;
(2) The polygon enclosed by OSLGC is approximately a regular polygon with respect
to the average precision and macro-F1. This indicates that the performance obtained by
OSLGC is relatively stable on different datasets; (3) Furthermore, although the polygon
enclosed by OSLGC is not a regular polygon with respect to the Hamming loss and one
error metrics, the fluctuation range of OSLGC at each vertex is relatively small. In summary,
compared with the other algorithms, the OSLGC algorithm has obvious advantages in
terms of performance and stability.

(a) (b)

(c) (d)

Figure 4. Spiderweb diagrams showing the stability of the algorithm. (a) Average precision, (b) Ham-
ming loss, (c) One error, and (d) Macro-F1.

5.3.3. Ablation Experiment

To evaluate the contribution of the label group correlation, we conducted an ablation
empirical study by removing the label group correlation in Algorithm 1 and derived a
variant of the OSLGC algorithm, called the OSLGC-RLC algorithm. Table 9 displays the
results for OSLGC and OSLGC-RLC. Due to space limitations, we select three datasets for
experimental verification: Recreation, Entertainment, and Social. Considering the results
in Table 9, it is observed that OSLGC significantly outperforms OSLGC-RLC on all the
evaluation metrics. In conclusion, the above results suggest that considering the label
group correlation is an effective strategy in feature selection.



Entropy 2023, 25, 1071 17 of 19

Table 9. Results between OSLGC and OSLGC-RLC.

Evaluation Metric
Recreation Entertainment Social

OSLGC OSLGC-RLC OSLGC OSLGC-RLC OSLGC OSLGC-RLC

Average Precision 0.5083 0.4996 0.5809 0.5713 0.7126 0.7036
Hamming Loss 0.0593 0.0601 0.0600 0.0603 0.0250 0.0252

One Error 0.6277 0.6440 0.5620 0.5783 0.3767 0.3957
Macro-F1 0.1307 0.1129 0.1391 0.1375 0.1500 0.1400

6. Conclusions

In this paper, we have presented a new online multi-label streaming feature selection
method, called OSLGC, to select relevant or interactive features from streaming features.
In OSLGC, a set of trees is constructed using graph theory that is able to divide strongly
related labels into the same tree, and which applies a streaming feature selection strategy
using sliding windows, which identifies the relevant, interactive, and irrelevant features in
an online manner. OSLGC can be divided into two parts: online feature relevance analysis
and online feature interaction analysis. For online feature relevance analysis, we designed
the feature relevance terms to provide a basis for decision-making, such as for selection,
delay, and abandonment. For online feature interaction analysis, we defined an enhanced
feature relevance item that prefers to select a group of interactive features from the delay
decisions corresponding to the online relevance analysis. Based on experiments undertaken,
our research showed that OSLGC achieved a high level of competitive performance against
other advanced competitors.

In future work, we intend to combine label-specific features and common features to
design streaming feature selection strategies. Furthermore, we are committed to building
streaming feature selection strategies that are suitable for large-scale data.
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