Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields
Abstract
:1. Introduction
2. Theoretical Aspects
2.1. Basic Formal Grounds
2.2. Dynamical Behavior for Uncorrelated Systems
2.2.1. Single Gaussian Wave-Packet Dynamics
2.2.2. Young-Type Superposition Dynamics
2.3. Entangled Bipartite Systems
3. Results and Discussion
3.1. Single-System Dynamical Behaviors
3.2. Bipartite-System Dynamical Behaviors
4. Concluding Remarks
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- The Nobel Prize in Physics 2022. Nobel Prize Outreach AB 2022. Available online: https://www.nobelprize.org/prizes/physics/2022/summary/ (accessed on 4 October 2022).
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- von Neumann, J. Die Mathematische Grundlagen der Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 1932. [Google Scholar]
- Zurek, W.H.; Wheeler, J.A. Quantum Theory of Measurement; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 2005, 76, 1267–1305. [Google Scholar] [CrossRef] [Green Version]
- Gilder, L. The Age of Entanglement. When Quantum Physics Was Reborn; Alfred A. Knopf: New York, NY, USA, 2008. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. Roy. Soc. Lond. A 2003, 361, 1655–1674. [Google Scholar] [CrossRef] [Green Version]
- Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S.; Borondo, F.; Bastiaans, M.J. Loss of coherence in double-slit diffraction experiments. Phys. Rev. A 2005, 71, 042103. [Google Scholar] [CrossRef] [Green Version]
- Giulini, D.; Joos, E.; Kiefer, C.; Kupsch, J.; Stamatescu, I.O.; Zeh, H.D. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D.; Hiley, B.J. The Undivided Universe; Routledge: New York, NY, USA, 1993. [Google Scholar]
- Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Sanz, A.S.; Miret-Artés, S. Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking. Am. J. Phys. 2012, 80, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S. Bohm’s approach to quantum mechanics: Alternative theory or practical picture? Front. Phys. 2019, 14, 11301. [Google Scholar] [CrossRef] [Green Version]
- Zander, C.; Plastino, A.R. Revisiting Entanglement within the Bohmian Approach to Quantum Mechanics. Entropy 2018, 20, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzemos, A.C.; Contopoulos, G. Ergodicity and Born’s rule in an entangled two-qubit Bohmian system. Phys. Rev. E 2020, 102, 042205. [Google Scholar] [CrossRef] [PubMed]
- Tzemos, A.C.; Contopoulos, G. Ergodicity and Born’s rule in an entangled three-qubit Bohmian system. Phys. Rev. E 2021, 104, 054211. [Google Scholar] [CrossRef]
- Tzemos, A.C.; Contopoulos, G. The role of chaotic and ordered trajectories in establishing Born’s rule. Phys. Scr. 2021, 96, 065209. [Google Scholar] [CrossRef]
- Guay, E.; Marchildon, L. Two-particle interference in standard Bohmian quantum mechanics. J. Phys. A Math. Gen. 2003, 36, 5617–5624. [Google Scholar] [CrossRef] [Green Version]
- Walborn, S.P.; Cunha, M.O.T.; Pádua, S.; Monken, C.H. Double-slit quantum eraser. Phys. Rev. A 2002, 65, 033818. [Google Scholar] [CrossRef] [Green Version]
- Brida, G.; Cagliero, E.; Falzetta, G.; Genovese, M.; Gramegna, M.; Predazzi, E. Biphoton double-slit experiment. Phys. Rev. A 2003, 68, 033803. [Google Scholar] [CrossRef] [Green Version]
- Golshani, M.; Akhavan, O. Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics. J. Phys. A 2001, 34, 5259–5268. [Google Scholar] [CrossRef]
- James, D.F.V.; Kwiat, P.G. Quantum state entanglement: Creation, characterizatin and application. Los Alamos Sci. 2002, 27, 52–67. [Google Scholar]
- Ghirardi, G.; Marinatto, L.; Weber, T. Entanglement and properties of composite quantum systems: A conceptual and mathematical analysis. J. Stat. Phys. 2002, 108, 49–122. [Google Scholar] [CrossRef]
- Ghirardi, G.; Marinatto, L. General criterion for the entanglement of two indistinguishable particles. Phys. Rev. A 2004, 70, 012109. [Google Scholar] [CrossRef] [Green Version]
- Matzkin, A. Entanglement in the classical limit: Quantum correlations from classical probabilities. Phys. Rev. A 2011, 84, 022111. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S.; Miret-Artés, S. A trajectory-based understanding of quantum interference. J. Phys. A Math. Theor. 2008, 41, 435303. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, S.; Braverman, B.; Ravets, S.; Stevens, M.J.; Mirin, R.P.; Shalm, L.K.; Steinberg, A.M. Observing the average trajectories of single photons in a two-slit interferometer. Science 2011, 332, 1170–1173. [Google Scholar] [CrossRef]
- Braverman, B.; Simon, C. Proposal to Observe the Nonlocality of Bohmian Trajectories with Entangled Photons. Phys. Rev. Lett. 2013, 110, 060406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Sanz, A.S. Quantum-classical entropy analysis for nonlinearly-coupled continuous-variable bipartite systems. Entropy 2022, 24, 190. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals, Emended ed.; Dover: Mineola, NY, USA, 2010. [Google Scholar]
- Sanz, A.S.; Davidović, M.; Božić, M. Full quantum mechanical analysis of atomic three-grating Mach-Zehnder interferometry. Ann. Phys. 2015, 353, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S.; Borondo, F. A quantum trajectory description of decoherence. Eur. Phys. J. D 2007, 44, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S.; Borondo, F. Contextuality, decoherence and quantum trajectories. Chem. Phys. Lett. 2009, 478, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Pati, A.K.; Zukowski, M. Interference due to coherence swapping. Pramana—J. Phys. 2001, 56, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S.; Miret-Artés, S. A Trajectory Description of Quantum Processes. II. Applications; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 831. [Google Scholar]
- Davidović, M.; Sanz, A.S.; Božić, M.; Arsenović, D.; Dimić, D. Trajectory-based interpretation of Young’s experiment, the Arago-Fresnel laws and the Poisson-Arago spot for photons and massive particles. Phys. Scr. 2013, 2013, 014015. [Google Scholar] [CrossRef]
- Sanz, A.S.; Davidović, M.; Božić, M. Bohmian-based approach to Gauss-Maxwell beams. Appl. Sci. 2020, 10, 1808. [Google Scholar] [CrossRef] [Green Version]
- Sanz, A.S. Bohm’s quantum “non-mechanics”: An alternative quantum theoryw with its own ontology? Ann. Fond. Louis Broglie 2021, 46, 19–63. [Google Scholar]
- Schiff, L.I. Quantum Mechanics, 3rd ed.; McGraw-Hill: Singapore, 1968. [Google Scholar]
- Schrödinger, E. Probability between separated systems. Math. Proc. Camb. Philos. Soc. 1936, 32, 446–452. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence and the transition from quantum to classical. Phys. Today 1991, 44, 36–44. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence and the transition from quantum to classical—Revisited. Los Alamos Sci. 2002, 27, 2–25. [Google Scholar]
- Omnès, R. Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 1992, 64, 339–382. [Google Scholar] [CrossRef]
- Sanz, A.S.; Davidović, M.; Božić, M.; Miret-Artés, S. Understanding interference experiments with polarized light through photon trajectories. Ann. Phys. 2010, 325, 763–784. [Google Scholar] [CrossRef] [Green Version]
- Davidović, M.; Sanz, A.S. How does light move? Determining the flow of light without destroying interference. Europhys. News 2013, 44, 33–36. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz, Á.S. Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields. Entropy 2023, 25, 1077. https://doi.org/10.3390/e25071077
Sanz ÁS. Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields. Entropy. 2023; 25(7):1077. https://doi.org/10.3390/e25071077
Chicago/Turabian StyleSanz, Ángel S. 2023. "Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields" Entropy 25, no. 7: 1077. https://doi.org/10.3390/e25071077
APA StyleSanz, Á. S. (2023). Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields. Entropy, 25(7), 1077. https://doi.org/10.3390/e25071077