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Abstract: Graph entropy plays an essential role in interpreting the structural information and com-
plexity measure of a network. Let G be a graph of order n. Suppose dG(vi) is degree of the ver-
tex vi for each i = 1, 2, . . . , n. Now, the k-th degree-based graph entropy for G is defined as

Id,k(G) = −
n
∑

i=1

 dG(vi)
k

n
∑

j=1
dG(vj)k

log dG(vi)
k

n
∑

j=1
dG(vj)k

, where k is real number. The first-degree-based entropy

is generated for k = 1, which has been well nurtured in last few years. As
n
∑

j=1
dG(vj)

k yields the

well-known graph invariant first Zagreb index, the Id,k for k = 2 is worthy of investigation. We call
this graph entropy as the second-degree-based entropy. The present work aims to investigate the role
of Id,2 in structure property modeling of molecules.

Keywords: entropy; chemical graph theory; molecular graph; topological index; QSPR analysis

1. Introduction

Graph theory has developed into a powerful mathematical tool in a wide range of
disciplines, including operational research, chemistry, genetics, and linguistics, as well as
electrical engineering, geography, sociology, and architecture. In addition, it has grown
into a useful field of mathematics on its own. Using a diagram composed of a collection
of points with lines connecting specific pairs of these points, many real-world situations
can be simply explained. Chemists work with graphs on a daily basis because almost all
chemistry interactions are carried out through the graphic representation of compounds
and reactions. Chemical graph theory appears to be the natural language of chemistry
through which chemists communicate. One of the important tools in this area is the
graph invariant, which is any property of molecular graph that remains unchanged under
graph isomorphism. Numerous kinds of graph invariants have appeared in the literature
based on different graph parameters. One such important parameter is the degree of
vertex, which is defined as the number of incident edges. For a molecular graph, it
represents the valency of the corresponding atom. For degree-based invariants, readers
are referred to the article [1] and the references cited therein. The present work deals
with degree-based graph entropy. Shannon et al. [2] put forward the concept of entropy
in 1949, and it is now one of the most significant measures in information theory as an
indicator of the randomness of information content. This idea was imposed on graphs in
1955 [3], employing certain probability distributions associated with the automorphisms
of graphs. Graph entropies vary depending on the probability distributions set on the
graph. Dehmer’s graph entropies [4] based on information functionals are one of the
highlights and have led to many significant research insights in the fields of information
science, graph theory, and network science. Entropy corresponding to the independent
sets and the matching of graphs is investigated in [5]. Bounds of such entropy measures
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are illustrated in 2020 [6]. The distance between two vertices is employed to design a
new type of entropy in [7] whose upper bounds are set up by Ilić and Dehmer [8]. Cao
et al. [9] investigated numerous attributes of entropy measure formulated on information
functional by considering degree powers of graphs. To obtain insight about the quantity
degree power, readers are referred to [1,10,11]. For further knowledge on graph entropy,
see survey work [12].

For probability distribution α = (α1, α2, . . . , αn), the entropy I(α) due to Shannon is
defined as

I(α) = −
n

∑
i=1

αi log αi.

Let G be a finite, undirected and connected graph with vertex set V = {vi}n
i=1. For each

vertex vi, Dehmer [4] defined

αi =
φ(vi)

n
∑

j=1
φ(vj)

,

so that the entropy of G based on φ is formulated as

Iφ(G) = −
n

∑
i=1

 φ(vi)
n
∑

j=1
φ(vj)

log φ(vi)
n
∑

j=1
φ(vj)

. (1)

Now, different entropy can be generated by varying φ. Cao et al. [9] set φ(vi) =
dG(vi)

k, where dG(vi) stands for the degree of vertex vi, and proposed the k-th degree-
based graph entropy as follows

Id,k(G) = −
n

∑
i=1

 dG(vi)
k

n
∑

j=1
dG(vj)k

log dG(vi)
k

n
∑

j=1
dG(vj)k

, (2)

where k is real number. For k = 1, the entropy Id,1 is named as the first degree-based
entropy in [9] and extremal graphs for different classes are characterized. For more works

on such measures, see [13–15]. For k = 2, the quantity
n
∑

i=1
dG(vj)

k gives the first Zagreb

index [1,10,16,17], which is well-known and mostly used in chemical graph theory. Thus,
it is worthwhile to investigate the entropy measure Id,2. We call it the second-degree-
based entropy.

Predictive quantitative structure–property relationship (QSPR) models play an es-
sential role in the design of purpose-specific fine chemicals such as pharmaceuticals. It is
usually very costly to test a compound using a wet lab, but the QSPR study allows that
cost to be reduced. Topological indices plays an important role in establishing structure
property relationship of molecule. For some recent works on this analysis, readers are
referred to [18–21]. The ultimate goal of the present work is to investigate the role of
second-degree-based graph entropy Id,2 in structure–property modeling of molecules.

2. Application Potential of Entropy

Topological indices abound and continue to grow in number. The majority of them are
handled mathematically, lacking any sense of their chemical value. As a result, a collection
of beneficial components was assembled to aid in picking of a pertinent molecular descrip-
tor from a vast pool of candidates. Among the numerous qualities specified is the ability
to anticipate the properties and activities of molecules. For the purpose of looking into
the predicting ability of topological indices, quantitative structure–property relationship
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analysis is usually performed on theoretical attributes and experimental measures of some
benchmark chemicals. The entropy-based indices are nurtured well in mathematical chem-
istry from a mathematical standpoint. Our aim is to illustrate the chemical connection of
the entropy corresponding to the first Zagreb index. First, we consider the octane isomers
as benchmark datasets. As octanes contain no cycles, we then take into account some
hydrocarbons having cycles as a substructure.

The molecular graph representations of octane isomers are displayed in Figure 1. The
numerical values of different properties and the Id,2 index are reported in Table 1.

Figure 1. Molecular graph representations of octanes.

Table 1. Different properties and Id,2 index for octane isomers.

Octanes S HVAP DHVAP AF Id,2

C8:01 111.67 73.19 9.915 0.3979 1.9784

C8:02 109.84 70.3 9.484 0.3779 1.8338

C8:03 111.26 71.3 9.521 0.371 1.8337

C8:04 109.32 70.91 9.483 0.3715 1.8338

C8:05 109.43 71.7 9.476 0.3625 1.8338

C8:06 103.42 67.7 8.915 0.3394 1.5596

C8:07 108.02 70.2 9.272 0.3482 1.7132

C8:08 106.98 68.5 9.029 0.3442 1.7132

C8:09 105.72 68.6 9.051 0.3568 1.7132

C8:10 104.74 68.5 8.973 0.3225 1.5596

C8:11 106.59 70.2 9.316 0.3403 1.7132

C8:12 106.06 69.7 9.209 0.3324 1.7132

C8:13 101.48 69.3 9.081 0.3067 1.5596

C8:14 101.31 67.3 8.826 0.3008 1.4769

C8:15 104.09 64.87 8.402 0.3054 1.4769

C8:16 102.06 68.1 8.897 0.2932 1.4769

C8:17 102.39 68.37 9.014 0.3174 1.6118

C8:18 93.06 66.2 8.41 0.2552 1.3028

The Id,2 index is found to have a significant correlation with entropy (S), enthalpy of
vaporization (HVAP), standard enthalpy of vaporization (DHVAP), and acentric factor
(AF). We investigate the following relation to examine the potential of Id,2.
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P = C1 (±2× E1) I + C2 (±2× E2), (3)

where P, I, C1, C2, and E′is represent property, index, slope, intercept, and errors, respec-
tively. Performed regression analysis also contains standard error (SE), the F-test (F), and
the significance F (SF), in addition to R, to judge more accurately. For S and AF, Id,2 yields
the following structure–property relationships.

S = 24.782(±4.577)Id,2 + 64.242(±7.642), (4)

R2 = 0.879, SE = 1.613, F = 117.276, SF = 8.97× 10−9

HVAP = 10.637(±2.61)Id,2 + 51.491(±4.358), (5)

R2 = 0.806, SE = 0.92, F = 66.415, SF = 4.36× 10−7

The linear fittings of relations (4) and (5) are shown in Figure 2.

Figure 2. Linear fitting of Id,2 with entropy and HVAP for octanes.

For DHVAP and AF, the regression relation (3) takes following form.

DHVAP = 2.112(±0.376)Id,2 + 5.618(±0.627), (6)

R2 = 0.888, SE = 0.132, F = 126.325, SF = 5.28× 10−9

AF = 0.2(±0.026)Id,2 + 0.003(±0.044), (7)

R2 = 0.935, SE = 0.009, F = 229.253, SF = 6.64× 10−11.

The strength of structure property relationships (6) and (7), is displayed in Figure 3.
The blue circles in Figures 2 and 3 are the points (x, y), where x and y represent the Id,2 and
property for octanes, respectively, and the red line indicates the regression line.

From the R2 values, one can say that the data variances for S, HVAP, DHVAP, and
AF are 88%, 81%, 89%, and 94%, respectively. The blue circles for AF in Figure 3 are
closure to the regression line compared to other frames. As the SE value decreases, the
regression relation becomes strong. Each of the aforesaid equations yields small SE, AF
especially is significantly low. The model’s consistency boosts as the F-value rises. The
F-value in model (7) is comparatively high. The model is regarded as statistically reliable
when the SF value is less than 0.05. In each case, the SF value is significantly less than 0.05.
Thus, one can conclude that the second-degree-based entropy exerts better performance
in explaining acentric factor compared to S, HVAP, and DHVAP. Now, we will perform
external validation for the constructed model in case of AF. The nonane isomer is considered
here as an external data set. The set is divided into train and test sets in the ratio 80:20
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by means of python scikit learn machine learning module. The train set is considered to
generate the model, which is validated by the test set.

AF = 0.252(±0.039)Id,2 − 0.087(±0.071), (8)

R2 = 0.86, SE = 0.016, F = 159.886, SF = 1.3× 10−12.

Figure 3. Linear fitting of Id,2 with DHVAP and AF for octanes.

The relation (8) expresses the structure–property relationship in the train set, where
the data variance is 86%. Plotting of predicted data against experimental data and random
scattering in residual plot (see Figure 4) ensure that the model on training set is well aligned
and consistent. The data variance on test set is 82%, which confirms that the external
validation is meaningful.

Figure 4. Experimental vs. predicted AF and residual plot.

Now to compare the performance of Id,2 with some well known degree-based indices,
we correlate first (M1) and second (M2) Zagreb indices, forgotten index (F), inverse sum
indeg index (ISI), symmetric division degree index (SDD), sum connectivity index (SCI),
and inverse Randić index (RR). The absolute correlation coefficients of aforesaid indices
with S, HVAP, DHVAP, and AF for octanes are reported in Table 2. In case of S, the Id,2
performs better than ISI, SDD, SCI, and RR. The present invariant outperforms M1, F,
M2, ISI, and RR for HVAP. The correlation of Id,2 with DHVAP is better than that of M1,
F, M2, ISI, and RR. In case of AF, the current descriptor outperforms F, ISI, SDD, and
SCI.
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Table 2. The absolute correlation coefficients of some degree-based indices with S, HVAP, DHVAP,
and AF for octane isomers.

M1 F M2 ISI SDD SCI RR

S 0.954 0.953 0.942 0.636 0.909 0.923 0.953
HVAP 0.886 0.872 0.728 0.271 0.928 0.932 0.812

DHVAP 0.936 0.924 0.812 0.384 0.953 0.961 0.881
AF 0.973 0.965 0.986 0.733 0.901 0.929 0.995

Now, we consider some benzenoid hydrocarbons (BHCs) for investigation. The
molecular structures of BHCs are shown in Figure 5.

Figure 5. Molecular graphs of benzenoid hydrocarbons.

The second-degree-based entropy is observed to correlate well with the boiling point
(BP) of benzenoid hydrocarbons. The BP and Id,2 values are reported in Table 3.

Table 3. Boiling point, π-electron energy, and invariants for BHC.

Compounds BP Eπ Id,2 Compounds BP Eπ Id,2

BHC1 2.2338 218 13.6832 BHC12 3.0121 542 31.4251

BHC2 2.5603 338 19.4483 BHC13 3.0096 535 30.9418

BHC3 2.5603 340 19.3137 BHC14 3.0096 536 30.8805

BHC4 2.8094 431 25.1922 BHC15 3.0096 531 30.8795

BHC5 2.8094 425 25.1012 BHC16 3.0096 519 30.9432

BHC6 2.8094 429 25.2745 BHC17 3.1021 590 34.5718

BHC7 2.8094 440 24.9308 BHC18 3.0974 592 34.0646

BHC8 2.9146 496 28.222 BHC19 3.097 596 33.1892

BHC9 2.9146 493 28.3361 BHC20 3.0974 594 33.9542

BHC10 2.9146 497 28.2453 BHC21 3.0974 595 34.0307

BHC11 3.0121 547 31.2529
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The Id,2 index is also noticed to have significant correlation with the π-electron energy
of benzenoid hydrocarbons. The regression relations for BP and Eπ is as follows:

BP = 447.594(±28.633)Id,2 − 808.089(±6.474), (9)

R2 = 0.98, SE = 14.157, F = 977.456, SF = 8.38× 10−18

Eπ = 24.942(±1.6)Id,2 − 44.039(±4.65), (10)

R2 = 0.981, SE = 0.792, F = 970.691, SF = 8.94× 10−18.

From relations (9) and (10), we can say that 94% and 98% of observations fit the
models related to BP and Eπ , respectively. The corresponding linear fittings are shown in
Figure 6. For comparative purposes, we correlate some well-known degree-based indices
with boiling point and π-electron energy for benzenoid hydrocarbons. The correlation
coefficients displayed in Table 4 yield that Id,2 outperforms some of those well-established
indices.

Table 4. The absolute correlation coefficients of some degree-based indices with BP and Eπ for BHC.

M1 F M2 ISI SDD SCI RR

BP 0.988 0.979 0.975 0.987 0.996 0.997 0.988
Eπ 0.993 0.985 0.982 0.992 0.999 0.999 0.993

Figure 6. Linear fitting of Id,2 with Eπ and BP for benzenoid hydrocarbons.

Now, we consider some molecular graphs having cyclic substructure which are useful
in drug preparation. These compounds include Aminopterin, Aspidostomide E, Carmus-
tine, Caulibugulone E, Convolutamine F, Convolutamydine A, Tambjamine K, Deguelin,
Perfragilin A, Melatonin, Minocycline, Podophyllotoxin, Pterocellin B, Daunorubicin, Con-
volutamide A, Raloxifene. The molecular graphs of these structures are displayed in
Figure 7. The experimental and theoretical measures for these compounds are reported in
Table 5.
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Amathaspiramide E Aminopterin Aspidostomide E

Carmustine Caulibugulone E

Convolutamide A

Convolutamine F

Convolutamydine A

Daunorubicin

Deguelin

Melatonin MinocyclinePerfragilin A

Podophyllotoxin Pterocellin B

Raloxifene

Tambjamine K

Figure 7. Molecular graphs of some chemicals useful in drug preparation.
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Table 5. Boiling point, molar refraction and graph invariant for structures displayed in Figure 7.

Compounds BP MR Id,2 Compounds BP MR Id,2

Aminopterin 782.27 114 3.2656 Perfragilin A 560.1 105.1 3.1628

Aspidostomide E 798.8 116 3.0354 Melatonin 512.8 67.6 2.6596

Carmustine 309.6 46.6 2.2456 Minocycline 803.3 116 3.1999

Caulibugulone E 373 52.2 2.4413 Podophyllotoxin 431.5 63.6 2.5523

Convolutamine F 629.9 130.1 3.2006 Pterocellin B 597.9 104.3 3.2134

Convolutamydine A 387.7 73.8 2.4587 Daunorubicin 521.6 87.4 3.0304

Tambjamine K 504.9 68.2 2.5088 Convolutamide A 728.2 136.6 3.3907

Deguelin 770 130 3.3387 Raloxifene 391.7 76.6 2.784

The Id,2 index is noticed to perform well for molar refraction (MR) and boiling point
(BP) for the aforesaid structures. Corresponding regression relations are as follows:

BP = 381.182(±123.068)Id,2 − 538.567(±360.377), (11)

R2 = 0.733, SE = 89.762, F = 38.374, SF = 2.34× 10−5

MR = 74.224(±13.249)Id,2 − 122.652(±38.797), (12)

R2 = 0.899, SE = 9.66, F = 125.5426, SF = 2.24× 10−8.

Equations (11) and (12) reveal that the coefficient of determination for BP and MR are
73% and 90%, respectively. The linear fittings of the aforementioned structure–property
relationship are shown in Figure 8.

Figure 8. Linear fitting of Id,2 with BP and MR for some structures displayed in Figure 7.

To compare the present descriptor with M1, F, M2, ISI, SDD, SCI, and RR, we
correlate the degree-based indices with BP and MR for chemicals displayed in Figure 7.
The correlation coefficients reported in Table 6 imply that Id,2 performs better than some of
the well-known and most-used indices.

Table 6. The absolute correlation coefficients of some degree-based indices with BP and MR for some
structures depicted in Figure 7.

M1 F M2 ISI SDD SCI RR

BP 0.869 0.835 0.834 0.862 0.885 0.874 0.866
MR 0.888 0.818 0.83 0.894 0.899 0.947 0.891

Now, to check the relationship of Id,2 with well-known degree-based indices, we
correlate Id,2 with SCI, ISI, RR, SDD, M1, M2 and F. The absolute correlation coefficients
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of Id,2 with aforesaid indices are reported in Table 7 for decane isomers. It shows that first
Zagreb index and forgotten topological index are strongly correlated with Id,2. Thus, there
is a possibility of having a strong mathematical relation between them.

Table 7. The absolute correlation coefficients of Id,2 with some degree-based indices for decane
isomers.

SCI ISI RR SDD M1 M2 F

Id,2 0.576 0.939 0.96 0.944 0.992 0.683 0.994

3. Concluding Remarks

The impact of the entropy on structure property modeling corresponding to the first
Zagreb index has been investigated in this work. The Id,2 index has been found to have a
significant predictive potential for physiochemical properties of octane isomers. The linear
relation of Id,2 with entropy, enthalpy of vaporization, standard enthalpy of vaporization,
and acentric factor has been found to be satisfactory. Especially, the performance of Id,2
in explaining AF is remarkable. An external validation using nonane isomers confirms
this claim. The present entropy has been observed to model boiling point and π-electron
energy of benzenoid hydrocarbons with powerful accuracy. The Id,2 is also capable of
explaining boiling point and molar refraction of some compounds useful in drug generation.
The second-degree-based entropy performs better than some well-known and commonly
used degree-based indices for three data sets. This empirical study is expected to be
performed on other data sets in the future, including aromatic and hetero-aromatic amines,
polychlorobiphenyls, poly-arometic hydrocarbons, and so on. The strong correlation of
Id,2 with M1 and F indicates that there may be a strong mathematical connection between
them, which could be considered as a future research direction.
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