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Abstract: In this paper, the safe optimal control method for continuous-time (CT) nonlinear safety-
critical systems with asymmetric input constraints and unmatched disturbances based on the adaptive
dynamic programming (ADP) is investigated. Initially, a new non-quadratic form function is im-
plemented to effectively handle the asymmetric input constraints. Subsequently, the safe optimal
control problem is transformed into a two-player zero-sum game (ZSG) problem to suppress the
influence of unmatched disturbances, and a new Hamilton–Jacobi–Isaacs (HJI) equation is introduced
by integrating the control barrier function (CBF) with the cost function to penalize unsafe behavior.
Moreover, a damping factor is embedded in the CBF to balance safety and optimality. To obtain a
safe optimal controller, only one critic neural network (CNN) is utilized to tackle the complex HJI
equation, leading to a decreased computational load in contrast to the utilization of the conventional
actor–critic network. Then, the system state and the parameters of the CNN are uniformly ultimately
bounded (UUB) through the application of the Lyapunov stability method. Lastly, two examples are
presented to confirm the efficacy of the presented approach.

Keywords: critic neural network; asymmetric input constraints; unmatched disturbances; safety;
adaptive dynamic programming; nonlinear systems

1. Introduction

Safety-critical systems are those that, in case of accidents or failures, can result in
significant consequences, including but not limited to injuries, loss of life, environmental
harm, or financial losses. The emergence of safety-critical systems like unmanned aerial
vehicles (UAVs) [1–3] and robots [4] has led to an increased focus on safety control design
within the field of control systems [5,6]. Safety control designs entail control strategies that
satisfy safety specifications imposed by environmental limitations or physical limitations
of the system. Ignoring the detrimental impact of safety entails substantial risks to both the
safety of belongings and personal security. To address the challenges of the safe controller
design, researchers have provided some effective approaches [7–11]. The problem of
safety in the presence of unmodeled dynamics or disturbances in drones has recently been
addressed by designing the robust controller based on the nonlinear estimator in [9]. In
ref. [10], the use of neural networks integrated with the Lyapunov theory was preliminarily
treated with application in the automotive sector for critical situations, and this aspect was
further addressed in an even more organic way. In ref. [11], the quadratic programming-
based method was applied to develop a safe controller. Despite the fact that this method
can guarantee safety at a local level for every time step, selecting a step size that is too small
leads to redundant computations. In contrast, a step size that is too large causes unsafe
behavior, making it challenging to ensure the safety of the system. Hence, it is crucial
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to identify an appropriate control design method for CT safety-critical systems that can
guarantee the safety of the systems.

Recently, the CBF technique has emerged as an effective approach for ensuring the
security of safety-critical systems [12–14]. The underlying principle of the CBF is to insure
the forward invariance of the safe set. In ref. [15], the safe-based reinforcement learning
approach was demonstrated, where the CBF was merged into the cost function to assure
both the safety and optimality of the system. Typically, the CBF component is contained
within the primitive cost function to penalize behavior that violates safety constraints.
Reference [16] incorporated damping factors into the CBF and intervened selectively only
in the event of safety constraint violations, aiming to reduce disruptions to the optimal
controller. Reference [17] introduced the utilization of the CBF and summarized the verifi-
cation approach for safety-critical control systems. Nevertheless, the methods mentioned
above do not take into account the presence of external disturbances, which served as a
motivation for the research conducted in this paper.

As disturbances are present in almost all industrial systems and hurt control per-
formance, it is necessary to consider external disturbances in actual projects. Recently,
several methods have been proposed to address disturbances [18–24]. For instance, ref-
erences [18,19] used H∞ control to reduce external disturbances in nonlinear systems.
Reference [23] combined ADP with sliding mode control for addressing optimal control
problems of CT nonlinear systems considering uncertain disturbances. Reference [24] cast
external disturbances as the ZSG problem, with the control strategy aiming at minimizing
the cost function and the disturbance strategy striving towards maximizing it. It is well
known that for the HJI equation of the ZSG, it is difficult to find its analytical solution.
Fortunately, with the evolution of optimal control [25–27], the ADP approach [28] was
employed to approximately tackle the ZSG problem. For example, in reference [29], a new
database-based adaptive critic algorithm was presented to study the infinite-scale robust
control for nonlinear systems. However, the aforementioned methods fail to consider the
capability limitations of the system due to asymmetric input constraints.

Although symmetric input constraints have been widely investigated in prior research
and tackled with various techniques, such as the control problem that concerns the uncertain
impulse system that has input constraints, which was handled in [30], and the utilization
of integral reinforcement learning with the actor–critic network to address the tracking
control problem under input constraints in [31,32], there has been relatively little research
on the treatment of asymmetric input constraints that frequently occur in practical systems.
Several optimal control methods exist for addressing CT systems with nonlinear dynamics
and input constraints that are asymmetric. Among them is one that used the cost function
with adjustable upper and lower limits of integration [33–35]. Another proposed the
switching function [36] to tackle the problem, but it is only applied to linear systems.
However, none of these results considered the incorporation of CBF into the CT nonlinear
safety-critical systems to study the safe and optimal control problem under asymmetric
input constraints with external disturbances.

This study explores the safe and optimal control issue for safety-critical nonlinear
systems to reject unmatched external disturbances under the condition of asymmetric
input constraints. Unlike other works, a new non-quadratic form function for handling
asymmetric input constraints is proposed in this paper. To tackle the challenge posed by
unmatched disturbances, a two-player ZSG is put forward to formulate the optimization
problem. The ZSG is then addressed by finding the Nash equilibrium point, which is
obtained by addressing the HJI equation. However, since solving the HJI equation is chal-
lenging, an ADP technique similar to that used in references [37–39] is exploited to estimate
the solution of the HJI equation. In addition, one single CNN is used instead of a dual
actor–critic neural network to diminish the computational complexity in approximating
the control policy. Consequently, the optimal control policy is obtained by considering the
worst disturbance.

The contributions are outlined mainly as follows:
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1. Asymmetric input constraints are considered in the control problem of the CT nonlin-
ear safety-critical systems. In addition, this paper proposes a new non-quadratic form
function to address the issue of asymmetric input constraints. It is important to note
that when applying this approach, the optimal control policy no longer remains at 0,
even when the system state reaches the equilibrium point of x = 0 (see u∗(x) in later
Equation (15)).

2. This paper adopts the CBF to construct safety constraints and proposes designing
a damping coefficient within the CBF to balance the safety and optimality of safety-
critical systems based on varying safety requirements in different applications.

3. The safe optimal control problem is turned into the ZSG problem to address un-
matched disturbances; then, the optimal control law is gained by tackling the HJI
equation using one CNN. Moreover, the use of only one CNN to approximate the
HJI equation is an effective way to reduce the computational burden compared to the
actor–critic network and the system state, and CNN parameters are demonstrated to
be UUB.

The following structure is adopted for this article. Section 2 provides the initial
formulation of the problem. Section 3 presents a safe optimal control design for the two-
player ZSG problem. Then, in Section 4, an adaptive CNN method for addressing the
HJI equation using an online method is proposed, and its stability is verified. Section 5
introduces two examples to demonstrate that the presented approach is effective. Lastly,
Section 6 gives conclusions.

2. Problem Statement

Consider the CT nonlinear safety-critical system as

ẋ = F (x) + G(x)u + P(x)v, (1)

where x = [x1, x2, . . . , xn]T ∈ Ca ⊆ Rn indicates the system state vector with n-dimensional
parameters, F (x) ∈ Rn represents the internal dynamics, G(x) ∈ Rn×m and P(x) ∈ Rn×q

indicate control and disturbance coefficient matrices, respectively. Additionally, u ∈ Rm denotes
an input variable with m-dimensional parameters denoted by {u = {u|umax ≥ u ≥ umin},
where umax and umin stand for the upper and lower bounds, respectively. And v ∈ Rq is
the unmatched disturbances. The paper assumes F (·), G(·), P(·) are Lipschitz continuous
and satisfy F (0) = 0, and the safety-critical System (1) is stabilizable and controllable.
Moreover, we assume there exist two constants GM > 0 and PM > 0. Both G(x) and P(x)
have upper bounded values, i.e., GM ≥ ‖G(x)‖,PM ≥ ‖P(x)‖, for any x ∈ Rn.

In addition, it is essential to emphasize that Ca represents a safe set for (1). Ca is
derived from operational restrictions, such as the allowable states of the robot arm, which
is mathematically determined by

Ca = {x ∈ Rn|z(x) ≥ 0},
int(Ca) = {x ∈ Rn|z(x) > 0},

∂Ca = {x ∈ Rn|z(x) = 0},
(2)

where z(x) represents continuous concerning x. The set int(Ca) denotes the interior of Ca,
while ∂Ca represents the boundary of Ca.

Subsequently, the representation of the infinite horizon cost function from t = 0 for
System (1) is given by

V(x) =
∫ ∞

0
x(t)TQx(t) + U(u)− Υ2‖v‖2dt, (3)
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where Q represents a function with positive definite properties, ‖v‖2 = vTv, Υ > 0 repre-
sents a constant weight coefficient, U(u) is a non-quadratic form function employed for
handling the asymmetric input constraints determined by

U(u) = 2
∫ u

=
Ψtanh−1(

t−=
Ψ

)dt

= 2Ψ(u−=)tanh−1(
u−=

Ψ
) + Ψ2 ln(1− (u−=)2

Ψ
), (4)

with Ψ and = defined as

Ψ =
1
2
(umax − umin),= =

1
2
(umax + umin), (5)

where |umax| 6= |umin| and tanh(z) = (ez − e−z)/(ez + e−z) with z ∈ R.

Remark 1. Even though tanh(z) is symmetric, U(u) in (4) generates asymmetric constraints in
the control signal u∗(x) (see u∗(x) in later (15)). This is due to the fact that = is not equal to 0
in (4). This feature is different from studying the symmetric input constraints.

Additionally, the ultimate objective of this paper is to devise the safe and optimal
control input policy for (1), which involves the utilization of the CBF concept. In the
upcoming section, this paper presents the concept of the CBF and proposes an ADP-based
approach to design the safe and optimal controller.

3. Safe Optimal Control Design

This section presents a detailed explanation of the concept of the CBF. Then, the safe
and optimal control problem is converted to the two-player ZSG to overcome the un-
matched disturbances, and the CBF is integrated with the cost function without an interme-
diary to punish unsafe behavior.

3.1. Control Barrier Function

The utilization of the CBF provides a solution to address the safety constraint problem
in safety-critical systems. The CBF is a function that is non-negative within the set Ca
and exhibits divergence to infinity at the edge of Ca. As the state x is about to reach the
boundary of Ca, the condition of negative derivative can bring the system state x back
within Ca, ensuring that the system state is always confined within Ca. To better illustrate
the properties of the CBF, the following assumption is given.

Assumption 1. The CBF candidate Br(x) meets the subsequent three characteristics [40,41]:

(1) Br(x) ≥ 0, ∀x ∈ int(Ca),
(2) Br(x)→ ∞, ∀x ∈ ∂Ca,
(3) Br(x) is monotonically decreasing ∀x ∈ Ca.

Moreover, for all x ∈ Ca, the CBF Br(x) has the following properties:

1
γ1(z(x))

≤ Br(x) ≤ 1
γ2(z(x))

, Ḃr(x) ≤ γ3(z(x)), (6)

where γ1(·), γ2(·), and γ3(·) are class K functions.
Under the premise that Assumption 1 and Equation (6) both hold, a suitable choice for

Br(x) is ρy(x)/z(x), where y(x) represents a special scheduling function determined by
the user to allow for flexibility in selecting Br(x). Specifically, y(x) ensures that the CBF
operates only when the system is close to the unsafe set. ρ > 0 is the damping factor used
to balance safety and optimality.
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Remark 2. In contrast to the previous CBF [16], the ρ chosen here shows a positive correlation
with the value of Br(x). The larger the value of ρ, the faster the system state moves away from the
unsafe set, and the smaller the value of ρ, the slower the state x moves away from the unsafe set.
A smaller value of ρ emphasizes optimality and a larger value of ρ enforces safety.

3.2. Safe and Optimal Control Approach

By augmenting the selected CBF Br(x) to the cost function (3), a new refined cost
function is obtained, that is,

V(x) =
∫ ∞

0
x(t)TQx(t) + U(u)− Υ2‖v‖2 + Br(x)dt. (7)

Remark 3. To ensure the safety of the system, it is assumed that the original system state x is
confined within the set Ca. This is because the rapid increase in Br(x) as the state x nears the
boundary of Ca is the reason behind the penalization of state convergence behavior when the initial
state is beyond Ca. This prevents the system state from converging.

The conventional control problems can be transformed into two-player ZSG problems.
The Nash equilibrium point, i.e., the saddle point (u∗,v∗) can be obtained by addressing the
special HJI equation. Then, the optimal cost function is defined by

V∗(x) = min
u

max
v

∫ ∞

0
x(t)TQx(t) + U(u)− Υ2‖v‖2 + Br(x)dt. (8)

The purpose of the two-player ZSG problem is to identify a saddle point so that the
following inequality can hold:

V∗(x, u∗, v) ≤ V∗(x, u∗, v∗) ≤ V∗(x, u, v∗). (9)

Therefore, for the two-player ZSG problem, u∗ is the optimal control input policy min-
imizing the cost function, and v∗ represents the worst disturbance input policy maximizing
the cost function.

Definition 1. Input policy u is considered admissible in relation to (7) on f ∈ Rn, denoted by
u ∈ ℵ(f), u stabilizes (1) on f if u is continuous on f, and (7) is limited for any x ∈ f.

For the admissible input policy u ∈ ℵ(f), if Equation (7) is continuously differentiable,
computing the gradient of V(x) with respect to t on both sides of Equation (7) yields the
nonlinear Lyapunov equation as

0 = ∇V(x)T(F (x) + G(x)u + P(x)v) + x(t)TQx(t) + U(u)− Υ2‖v‖2 + Br(x), (10)

where ∇V(x) is the gradient of V(x), V(0) = 0.
Based on the optimal control approach, the HJI equation for the two-player ZSG

problem possesses an exclusive solution if there exists a saddle point, that is, if the following
conditions hold:

0 = min
u

max
v
H(x, u, v,∇V∗(x)) = max

v
min

u
H(x, u, v,∇V∗(x)), (11)

whereH(x, u, v,∇V∗(x)) refers to the Hamiltonian function of the safety-critical system (1),
that is,

H(x, u, v,∇V∗(x)) = ∇V∗(x)T(F (x) + G(x)u + P(x)v)

+ x(t)TQx(t) + U(u)− Υ2‖v‖2 + Br(x). (12)
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By using Equations (11) and (12), the saddle point can be found by addressing two
equations as

u∗(x) = arg min
u
H(x, u, v,∇V∗(x)), (13)

and
v∗(x) = arg max

v
H(x, u, v,∇V∗(x)). (14)

Thus, the saddle point (u∗, v∗) can be gained as

u∗(x) = −Ψ tanh(
1

2Ψ
G(x)T∇V∗(x)) + ψ=, (15)

and
v∗(x) =

1
2Υ2P(x)T∇V∗(x), (16)

where ψ= = [=,=, . . . ,=]T ∈ Rm with = given by Equation (5).

Remark 4. Given that = 6= 0 from (5), it can be concluded that u(0) = = 6= 0. Therefore, in order
to establish the equilibrium point of (1) at x = 0, the assumption of G(0) = 0 is necessary.

Substituting Equations (15) and (16) into Equation (11), the HJI equation can be
redefined as

0 =∇V∗(x)T(F (x) + P(x)v∗) + x(t)TQx(t) + U(−Ψ tanh(T(x)) + ψ=)

− Υ2‖v∗‖2 − (Ψ∇V∗(x))TG(x)tanh(T(x)) +∇V∗(x)TG(x)ψ= + Br(x), (17)

where T(x) = 1/(2Ψ)G(x)T∇V∗(x) and V∗(0) = 0.
For the optimal safe control problem of the ZSG with unmatched external disturbances

and asymmetric input constraints, it is necessary to obtain the value corresponding to the
optimal cost Function (8) for achieving the optimal control input Policy (15) and the worst
disturbance input Policy (16). Therefore, the solution of Equation (17) needs to be obtained.
Nevertheless, since Equation (17) represents a nonlinear partial differential equation, it is
challenging to find its analytical solution using conventional mathematical approaches.
Hence, the solution of this equation is estimated by using the CNN in the next section.

4. Adaptive CNN Design
4.1. Solving the HJI Equation via the CNN

This section designs a CNN to estimate cost function V∗(x) as

V∗(x) = WT
c δ(x) + ξ(x), (18)

where ξ(x) represents the estimation error about the CNN with ξ(0) = 0, Wc ∈ Rr

represents the ideal weight vector of the CNN, δ(x) = [δ1(x); δ2(x); . . . ; δr(x)] represents
activation function with δj(0) = 0, j = 1, 2, . . . , r, r is the number of neurons in the CNN.

The gradient of the approximate optimal cost function is

∇V∗(x) = ∇δ(x)TWc +∇ξ(x). (19)

Substituting Equation (19) into Equation (15), u∗(x) can be represented as

u∗(x) = −Ψ tanh(Ā(x)) + ξu∗(x) + ψ=, (20)

where
Ā(x) =

1
2Ψ
G(x)T∇δ(x)TWc, (21)
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and
ξu∗(x) = −1

2
(Im −Φ(A(x)))G(x)T∇ξ(x), (22)

with Φ(A(x)) = diag
{

tanh2(Al(x))
}
(l = 1, 2, . . . , m) with Al(x) = [A1(x);A2(x); . . . ;

Am(x)] ∈ Rm being selected between Ā(x) and T(x). Then, considering Equation (19),
v∗(x) in Equation (16) can be redefined as

v∗(x) =
1

2Υ2P(x)T∇δ(x)TWc + ξv∗(x), (23)

where ξv∗(x) = 1
2Υ2P(x)T∇ξ(x).

Similarly, substituting Equation (19) into Equation (17), the HJI equation can be rewrit-
ten as

0 =WT
c∇δ(x)(F (x) + P(x)v∗) + xTQx + U(−Ψtanh(Ā(x) + K(x) + ψ=)) + Br(x)

−ΨWT
c∇δ(x)G(x)tanh(Ā(x) + K(x))−Ψ∇ξ(x)TG(x)tanh(Ā(x) + K(x))

+∇ξ(x)T(F (x) + P(x)v∗)− Υ2‖v∗‖2 + (WT
c∇δ(x) +∇ξ(x)T)G(x)ψ=, (24)

where K(x) = 1/(2Ψ)G(x)T∇ξ(x).
However, since the ideal CNN weight Wc in Equation (18) is unknown, it can not be

used in the control procedure. Hence, the CNN is used to estimate the cost function and its
gradient as

V̂(x) = ŴT
c δ(x), (25)

∇V̂(x) = ∇δ(x)TŴc, (26)

where Ŵc represents the estimation of Wc.
Therefore, the approximate optimal input and the approximate worst disturbance

input become

û∗(x) = −Ψtanh(
1

2Ψ
G(x)T∇δ(x)TŴc) + ψ=, (27)

and
v̂∗(x) =

1
2Υ2G(x)T∇δ(x)TŴc. (28)

Subsequently, the approximated Hamilton function can be formulated by

Ĥ(x, Ŵc, v̂∗) =ŴT
c ð+ ŴT

c∇δ(x)G(x)ψ= + U(−Ψtanh(Γ(x)) + ψ=)

+ xTQx− Υ2∥∥Ŵc
∥∥2 −ΨŴT

c∇δ(x)G(x)tanh(Γ(x)) + Br(x), (29)

where
ð = ∇δ(x)(F (x) + P(x)v̂∗) (30)

and
Γ(x) =

1
2Ψ
G(x)T∇δ(x)TŴc. (31)

The CNN weight estimation error is denoted by

W̃c = Wc − Ŵc, (32)

and the approximation error $c of the Hamiltonian function is derived as

$c = Ĥ(x, Ŵc, v̂∗)−H(x, u∗, v∗,∇V∗(x))

= Ĥ(x, Ŵc, v̂∗). (33)
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To achieve Ŵc → Wc, it is necessary to ensure that $c → 0. Therefore, the chosen
target function is denoted by E = 1

2 $T
c $c(1/(1+ ðTð)2), whereO = 1+ ðTð. Consequently,

based on a normalized gradient descent algorithm, the weight vector Ŵc is defined by

˙̂Wc = −
α

O2
∂E

∂Ŵc
= − α

O2 $c, (34)

with α > 0 being the adjustable parameter and $c defined as Equation (33).
Using Equations (32) and (34), the weight approximation error ˙̃Wc can be expressed as

˙̃Wc =
αζ

O ξc − αζζTW̃c, (35)

where ξc = −∇ξ(x)T(F (x) + P(x)v̂∗) is the residual error and ζ = ð
O .

4.2. Stability Analysis

The UUB of both the state x and the CNN parameters in the closed-loop system is
demonstrated by utilizing the Lyapunov stability analysis principle in this subsection. First,
two assumptions that were also used in [28,42] are required, as

Assumption 2. The ideal optimal CNN weight vector Wc is upper bounded, i.e., ‖Wc‖ ≤ bWc ,
where bWc > 0 is a constant. Moreover, for any x ∈ f, this paper assumes that there are two
known constants b∇δ > 0, bδ > 0 so that ‖∇δ(x)‖ ≤ b∇δ, ‖δ(x)‖ ≤ bδ. Meanwhile, there exist
b∇ξ > 0 and bξ > 0 so that ‖∇ξ(x)‖ ≤ b∇ξ , ‖ξ(x)‖ ≤ bξ for any x ∈ f.

Assumption 3. We make bξu∗ , bξv∗ , bξc be positive constants.

(1) bξu∗ ≥ ‖ξu∗(x)‖ for any x ∈ f.
(2) bξv∗ ≥ ‖ξv∗(x)‖ for any x ∈ f.
(3) bξc ≥ ‖ξc‖ for any x ∈ f.

Theorem 1. Assuming Assumptions 1–3 are met, we consider System (1) with the associated
Control (27) and the update rule of CNN (34), ensuring all signals in the nonlinear system are UUB
if the following condition holds:

αkmin(ζζT)− (1/Υ2)=2
∇δP2

M > 0. (36)

Proof. We let the Lyapunov candidate function as the following (note: for convenience,
V∗(x) and (1/2)W̃T

c W̃c are abbreviated as L1 and L2 below):

L(t) = V∗(x)︸ ︷︷ ︸
L1

+ (1/2)W̃T
c W̃c︸ ︷︷ ︸

L2

. (37)

Taking the derivation of L1 in Equation (37) and using System (1), the derivation of L1
can be expressed as

L̇1 =
dV∗(x)

dt
= ∇V∗(x)T(F (x) + G(x)û∗ + P(x)v̂∗)

= ∇V∗(x)T(F (x) + G(x)u∗ + P(x)v∗)

+∇V∗(x)TP(x)(v̂∗ − v∗) +∇V∗(x)TG(x)(û∗ − u∗). (38)

Then, using Equations (12) and (11), it can be derived as

∇V∗(x)T(F (x) + G(x)u∗ + P(x)v∗) = −xTQx− U(u∗) + Υ2‖v∗‖2 −Br(x). (39)
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Similarly, taking into account Equations (27) and (28), the derived results are

∇V∗(x)TG(x) = 2Ψ(tanh−1((ψ= − u∗)/(Ψ)))T , (40)

and
∇V∗(x)TP(x) = 2Υ2v∗T . (41)

According to Equations (38)–(41), Equation (38) can be rewritten as follows (note: for
convenience, ω̄ − U(u∗) and 2Υ2v∗Tv̂∗ − Υ2‖v∗‖2 − Br(x) are abbreviated as Λ1 and Λ2
below):

L̇1 = −xTQx + ω̄− U(u∗)︸ ︷︷ ︸
Λ1

+ 2Υ2v∗Tv̂∗ − Υ2‖v∗‖2 −Br(x)︸ ︷︷ ︸
Λ2

, (42)

where

ω̄ = 2Ψ(tanh−1((ψ= − u∗)/Ψ))(û∗ − u∗). (43)

We apply Young’s inequality to Equation (43). Additionally, considering Equations
(19), (20), (27), (40) and (41), ω̄ can be formulated as

ω̄ ≤
∥∥∥Ψ(tanh−1((ψ= − u∗)/Ψ))

∥∥∥2
+ ‖û∗ − u∗‖2

=
1
4

∥∥∥G(x)T∇V∗(x)
∥∥∥2

+ ‖û∗ − u∗‖2

=
1
4

∥∥∥G(x)T(∇δ(x)TWc +∇ξ(x))
∥∥∥2

+
∥∥−Ψtanh(Γ(x)) + Ψtanh(Ā(x))− ξu∗(x)

∥∥2. (44)

Furthermore, utilizing Young’s inequality, ω̄ in Equation (44) further yields

ω̄ ≤2
∥∥−Ψtanh(Γ(x)) + Ψtanh(Ā(x))

∥∥2
+ 2‖ξu∗(x)‖2

+
1
2

(∥∥∥G(x)T∇δ(x)TWc

∥∥∥2
)
+

1
2

(∥∥∥G(x)T∇ξ(x)
∥∥∥2
)

≤4‖Ψtanh(Γ(x))‖2 +
∥∥Ψtanh(Ā(x))

∥∥2
+ 2‖ξu∗(x)‖2

+
1
2

(∥∥∥G(x)T∇δ(x)TWc

∥∥∥2
)
+

1
2

(∥∥∥G(x)T∇ξ(x)
∥∥∥2
)

. (45)

According to Equations (21) and (31), the following inequalities can be depicted as

‖tanh(Γ(x))‖2 = tanh2(Γ(x)) ≤ m (46)

and ∥∥tanh(Ā(x))
∥∥2

= tanh2(Ā(x)) ≤ m. (47)

Based on Equation (46) and Assumptions 2 and 3, ω̄ can be expressed as

ω̄ ≤ 8Ψ2m +
1
2
G2

M(=2
∇δ=2

Wc
+=2

∇ξ) + 2b2
ξu∗

. (48)

By observing Equations (4) and (5), it can be concluded that U(u∗) > 0. Using Young’s
inequality and Equation (48), the expression of Λ1 in Equation (42) can be rewritten as

Λ1 ≤ 8Ψ2m +
1
2
G2

M(=2
∇δ=2

∇Wc
+=2

∇ξ) + 2b2
ξu∗

. (49)
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Similarly, Λ2 in Equation (42) can be rewritten as follows (note: from Assumption 1,
Br(x) ≥ 0):

Λ2 = Υ2‖v̂∗‖2 −Br(x)

= −Υ2‖v∗‖2 + Υ2‖v∗‖2 + Υ2‖v̂∗‖2 −Br(x)

≤ −Υ2‖v∗‖2 + Υ2‖v∗‖2 + Υ2‖v̂∗‖2

≤ −Υ2‖v∗‖2 + Υ2(‖v∗‖2 + ‖v̂∗‖2)

= (1/(4Υ2))
∥∥∥P(x)T∇δ(x)T(Wc − W̃c)

∥∥∥2
. (50)

Meanwhile, using Young’s inequality and Assumptions 1 and 3, Λ2 in Equation (50)
further yields

Λ2 ≤ (1/(4Υ2))P2
M=2
∇δ

∥∥Wc − W̃c
∥∥2

≤ (1/(2Υ2))P2
M=2
∇δ(=2

Wc
+
∥∥W̃c

∥∥2
). (51)

Hence, by observing Equations (49) and (51), it can be inferred that L̇1 in Equation (42)
satisfies

L̇1 ≤− kmin(Q)‖x‖2 + (1/(2Υ2))P2
M=2
∇δ=2

Wc
+ 8Ψ2m + 2b2

ξu∗

+ (1/2)G2
M(=2

∇δ=2
Wc

+=2
∇ξ) + (1/(2Υ2))P2

M=2
∇δ

∥∥W̃c
∥∥2. (52)

Then, the derivative of L2 in Equation (37) along the solution of Equation (34) is as
follows (note: αW̃T

c (ζ/O)ξc is abbreviated as Λ3 below):

L̇2 = W̃T
c

˙̃Wc = αW̃T
c (ζ/O)ξc︸ ︷︷ ︸

Λ3

− αW̃T
c ζζTW̃c. (53)

Immediately after, using Young’s inequality, Λ3 can be depicted as

Λ3 ≤
α

2O (
∥∥∥ζTW̃c

∥∥∥2
+ ‖ξc‖2)

≤ α(
1
2

W̃T
c ζζTW̃c +

1
2
‖ξc‖2). (54)

Additionally, with Assumption 3 holding, it can be deduced that L̇2 in Equation (53)
satisfies

L̇2 ≤
1
2
(−αW̃T

c ζζTW̃c + α‖ξc‖2)

≤ 1
2
(−αkmin(ζζT)

∥∥W̃c
∥∥2

+ α=2
ξc
). (55)

Using Equations (37), (52) and (55), L̇ can be depicted as

L̇ ≤− kmin(Q)‖x‖2 + (1/(2Υ2)P2
M=2
∇δ=2

W) + (1/2)G2
M(=2

∇δ=2
W +=2

∇ξ)

− (1/2)(αkminζζT − (1/Υ2)P2
M=2
∇δ)
∥∥W̃c

∥∥2
+ 8Ψ2m + 2b2

ξu∗
+ (α/2)=2

ξc
. (56)

Finally, L̇ < 0 is true if x /∈ f(x) or W̃c /∈ f(W̃c), and based on Equation (36), f(x)
and f(W̃c) can be respectively formulated as

f(x) =

‖x‖ ≤
√

α=2
ξc
+ Ξ + A1P2

M

2kmin(Q)

, (57)
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and

f(W̃c) =

∥∥W̃c
∥∥ ≤

√√√√ α=2
ξc
+ Ξ + A1P2

M

αkmin(ζζT)− A2P2
M

, (58)

where Ξ = G2
M(=2

∇δ=2
Wc

+ =2
∇ξ) + 16Ψ2m + 4b2

ξu∗
, A1 = (1/Υ2)=2

∇δ=2
Wc

and A2 =

(1/Υ2)=2
∇δ.

To summarize, the Lyapunov stability method has been used to demonstrate the state x
of Equation (1) and W̃c are UUB, with Equations (57) and (58) representing their respective
bounds. The proof is complete.

5. Simulation Study

Within this section, two examples are utilized to validate the efficacy of the pro-
posed approach.

5.1. Example 1

Consider the F16 aircraft plant used in [28] as

ẋ = F (x) + G(x)u + P(x)v, (59)

where x(t) = [x1, x2, x3]
T ∈ R3 with x0 = [1,−1, 1]T represents the system state vector,

where x1, x2 and x3 represent the attack angle, the pitch rate, and the elevator deflection
angle, respectively. u is control input, v is disturbance input. The internal dynamics, control,
and disturbance coefficient matrices are expressed as

F (x) =

−1.01887x1 + 0.90506x2 − 0.00215x3
0.82225x1 − 1.07741x2 − 0.17555x3

−x3

, G(x) =

0
0
1

, P(x) =

 0
0
−1

.

The control input u is constrained to be greater than −1 and less than 2. Hence,
Ψ = 1.5 and = = 0.5. And then, the danger region is described as a ball with a radius of
0.15 and a center at [0.3, 0.05,−0.05]T . The y(x) is chosen as

1.5
√
(x1 − 0.3)2 + 0.1(x2 − 0.05)2 + 1.2(x3 + 0.05)2 − 0.15√
(x1 − 0.3)2 + (x2 − 0.05)2 + 25(x3 + 0.05)2 − 0.15

.

The z(x) is chosen as√
(x1 − 0.3)2 + (x2 − 0.05)2 + (x3 + 0.05)2 − 0.15.

In addition, substituting Ψ and = into Equation (4), U(u) can be expressed as

U(u) = 2Ψ(u−=)tanh−1(
u−=

Ψ
) + Ψ2 ln(1− (u−=)2

Ψ
)

= 3(u− 0.5)tanh−1(
u− 0.5

1.5
) + 2.25 ln(1− (u− 0.5)2

1.5
). (60)

Letting Q = I3 and Υ = 2, the cost function for Equation (62) is formulated as

V(x) =
∫ ∞

0
x(t)TQx(t) + U(u)− 22‖v‖2 + Br(x)dt, (61)

where Br(x) = ρ
y(x)
z(x) represents the CBF and ρ = 2.

The activation function is given as δ(x) = [x2
1, x1x2, x1x3, x2

2, x2x3, x2
3]

T and the CNN
weight vector is Ŵc = [Ŵc1, Ŵc2, Ŵc3, Ŵc4, Ŵc5, Ŵc6]

T . In addition, the adjustable parame-
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ter α is 10, and the original parameters of the CNN are configured as 1. At last, the probing
noise exp(−0.1t)(0.001)(sin(t)2cos(t) + sin(2t)2cos(0.1t)) is added to the control input
policy for the initial 30 s in order to ensure the persistence of the excitation.

Through simulation experiments, Figures 1–7 are obtained. Figure 1 displays that Ŵc
is convergent after the first 10 s, and can know the ideal vector W∗c = [16.4603,−6.5022,
−4.3910, 4.8851, 3.7081, 11.6158]T . Figure 2 displays the convergence of the states x1, x2,
and x3. Figure 3 displays the danger region, which is represented by the ball, and the
original states are in the danger area. However, the system states controlled by the safe
optimal controller bypass this ball, and as the damping coefficient ρ increases, the distance
between the system states and the dangerous region becomes larger and larger. Figure 3
shows that as states x1, x2, and x3 gradually approach the danger zone, the convergence
of x3 is accelerated due to the CBF and cost function. Figure 4 presents the control input
u with asymmetric input constraints. The plot reveals that the value of u remains within
the specified range, bounded by umax = 2 and umin = −1, providing evidence that
the asymmetric input constraints are implemented successfully. Figure 5 presents the
disturbance input v. Figure 6 presents the cost function of the system. It can be seen that
when the system states confront the danger area, the cost function changes significantly
and eventually converges to zero. According to the principle of optimal control, when the
cost function converges to zero, the following conclusion can be drawn: The cost function
imposes a higher penalty on control actions that do not comply with the asymmetric input
constraints and safety constraints. Therefore, when the cost function converges to zero,
the system finds the optimal control actions that satisfy all the constraints.

In order to further show the efficiency of the presented method, Equation (4) is
redefined as uT Ru (where R = I1), and the simulation results are illustrated in Figure 7.
Subsequently, Figure 4 illustrates the control input, which is restricted to the limits of −1 to
2. This can be observed by comparing it with Figure 7, where the input is clearly outside
this range.

Figure 1. Convergence of the CNN weights.
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Figure 2. Convergence of system states x1, x2, and x3.

Figure 3. The comparison between the safe and unsafe states.

Figure 4. Control input in the system.
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Figure 5. Disturbance input in the system.

Figure 6. The cost function of the system.

Figure 7. Control input without asymmetric input constraints.

5.2. Example 2

We consider the nonlinear system as

ẋ = F (x) + G(x)u + P(x)v, (62)

where x(t) = [x1, x2]
T ∈ R2 with x0 = [1,−1]T represents the system state vector; the in-

ternal dynamics, control, and disturbance coefficient matrices are expressed as

F (x) =
[
− 1

2 x1 + x2
−2x2cos(2x1)

]
, G(x) =

[
0
−x1

]
, P(x) =

[
0
x1

]
.

Just like F16, the control input u is subject to an asymmetrical boundary, with a lower
bound of −1 and an upper bound of 3, establishing its limits. Hence, Ψ = 2 and = = 1.
And then, the danger region is described as a circle with radius = 0.1, and the center of the
circle is [0.19,−0.12]T . The y(x) is chosen as

atan(
1√

(x1 − 0.19)2 + (x2 + 0.12)2 − 0.1
).



Entropy 2023, 25, 1101 15 of 19

The z(x) is chosen as √
(x1 − 0.19)2 + (x2 + 0.12)2 − 0.1.

In addition, substituting Ψ and = into Equation (4), U(u) can be expressed as

U(u) = 2Ψ(u−=)tanh−1(
u−=

Ψ
) + Ψ2 ln(1− (u−=)2

Ψ
)

= 4(u− 1)tanh−1(
u− 1

2
) + 4 ln(1− (u− 1)2

2
). (63)

Letting Q = I2 and Υ = 1.35, the cost function for Equation (62) is formulated as

V(x) =
∫ ∞

0
x(t)TQx(t) + U(u)− 1.352‖v‖2 + Br(x)dt, (64)

where Br(x) = ρ
y(x)
z(x) represents the CBF and ρ = 0.3.

Then, the CNN presented as Equation (18) is applied to address the HJI equation for
Equation (62). The activation function is given as δ(x) = [x2

1, x1x2, x2
2, x4

1, x3
1x2, x2

1x2
2, x1x3

2, x4
2]

T

and the CNN weight vector is Ŵc = [Ŵc1, Ŵc2, Ŵc3, Ŵc4, Ŵc5, Ŵc6, Ŵc7, Ŵc8]
T. In addition,

the adjustable parameter α is 20, the original parameters of the CNN are configured as 1.
At last, the probing noise exp(−0.001t)(−0.1(sin(t)2cos(t) + sin(t)5 + sin(2t)2cos(0.1t) +
sin(−1.2t)2cos(0.5t)) is added to the control input policy for the initial 30 s.

Through simulation experiments, Figures 8–14 are obtained. Figure 8 displays that Ŵc
is convergent after the first 10 s, and can know the ideal vector W∗c = [84.6487,−12.2017,
9.5269, 11.7425,−3.0924, 3.4273,−0.5533, 2.0591]T . Figure 9 displays the convergence of
the states x1 and x2. Figure 10 illustrates the relationship between the system states and
the dangerous area, revealing that increasing the damping factor ρ leads to a greater
distance between the system states and the dangerous zone. Evidently, system states x1
and x2 with a safe and optimal controller take an alternate route to avoid the dangerous
region, while the conventional optimal controller cannot circumvent the dangerous region.
As can be seen from Figure 10, when states x1 and x2 gradually approach the danger zone,
the convergence speed of x2 is accelerated due to the influence of CBF and cost function
and obtains an optimal trajectory around the danger zone again. Figure 11 shows input
u with asymmetric input constraints. The plot reveals that the value of u remains within
the specified range, bounded by umax = 3 and umin = −1, providing evidence that the
asymmetric input constraints are implemented successfully. Figure 12 presents disturbance
input v. Figure 13 presents the cost function of the system. It can be seen that the cost
function eventually converges to zero. Similar to the linear system, when the cost function
converges to zero, it can be concluded that the system finds the optimal control action that
satisfies the asymmetric input constraints and safety constraints.

In this paper, asymmetric input constraints and unmatched disturbances are applied
to nonlinear safety-critical systems for the first time, and Equation (4) is used to handle
the asymmetric input constraints. To further demonstrate the efficacy of the presented
algorithm, as in articles [14,16,28], (4) is redefined as uT Ru (where R = I1) and the simulation
results are shown in Figure 14. Subsequently, the control input in Figure 11 is constrained
to fall within the limits of −1 to 3, as can be observed by comparing it with Figure 14, while
the input in Figure 14 is clearly outside this range.
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Figure 8. Convergence of the CNN weights.

Figure 9. Convergence of system states x1 and x2.

Figure 10. The comparison between the safe and unsafe states.
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Figure 11. Control input in the system.

Figure 12. Disturbance input in the system.

Figure 13. The cost function of the system.

Figure 14. Control input without asymmetric input constraints.

6. Conclusions

The safe and optimal control problem of the nonlinear CT safety-critical systems with
asymmetric input constraints and unmatched disturbances was addressed. Firstly, the new
non-quadratic form function was considered for addressing the issue of asymmetric input
constraints. Then, the control design was transformed into the two-player ZSG problem
to handle unmatched disturbances. In order to obtain the optimal controller for safety,
the combination of the CBF and cost function was directly used to penalize unsafe behavior.
Moreover, the CNN was applied to reduce the computational complexity of dual actor–critic
network. The effectiveness of the proposed method was validated by the simulation results.
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