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Abstract: In this work, we investigate a novel intelligent surface-assisted multiuser multiple-input
single-output multiple-eavesdropper (MU-MISOME) secure communication network where an
intelligent reflecting surface (IRS) is deployed to enhance the secrecy performance and an intelligent
transmission surface (ITS)-based transmitter is utilized to perform energy-efficient beamforming. A
weighted sum secrecy rate (WSSR) maximization problem is developed by jointly optimizing transmit
power allocation, ITS beamforming, and IRS phase shift. To solve this problem, we transform the
objective function into an approximated concave form by using the successive convex approximation
(SCA) technique. Then, we propose an efficient alternating optimization (AO) algorithm to solve
the reformulated problem in an iterative way, where Karush–Kuhn–Tucker (KKT) conditions, the
alternating direction method of the multiplier (ADMM), and majorization–minimization (MM)
methods are adopted to derive the closed-form solution for each subproblem. Finally, simulation
results are given to verify the convergence and secrecy performance of the proposed schemes.

Keywords: intelligent reflecting surface (IRS); intelligent transmission surface (ITS); alternating
direction method of multiplier (ADMM); majorization–minimization (MM) algorithm; physical layer
security (PLS)

1. Introduction

With the development of Internet of Things (IoT) systems, a massive number of
data are transmitted via wireless networks, which are very vulnerable to eavesdropping
attacks due to the broadcast nature of the wireless medium. Information security has
become a non-negligible issue in sixth-generation (6G) networks. Physical layer security
(PLS) is a promising technique to enhance system security via exploiting the inherent
characteristics of the wireless channel. The theoretical basis of PLS comes from Shannon’s
information-theoretic secrecy research [1]. Then, Wyner introduced the wiretap channel
model and derived secrecy capacity in degraded broadcast channels [2]. Afterwards, the
idea of PLS was extended to non-degraded broadcast channels [3], Gaussian channels [4],
multi-antenna channels [5], and so on. Nowadays, various schemes, such as artificial
noise (AN), beamforming, and cooperative relaying, have been utilized to improve the
secrecy rate [6]. However, these techniques increase the computational complexity and
hardware cost, which have become challenging issues with a massive number of devices in
6G networks. Moreover, when the channel responses of the legitimate receivers and the
eavesdroppers are highly correlated, traditional schemes also benefit eavesdroppers [7].
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Recently, intelligent surfaces have been proposed as a potential alternative technique
for building an energy-efficient wireless networks [8]. To be specific, an intelligent surface
is a two-dimensional surface consisting of many low-cost, passive, reconfigurable elements.
The intelligent surface consumes much less power than conventional antennas since these
elements require no dedicated radio frequency (RF) chains or amplifiers [9]. Each element
of an intelligent surface can dynamically adjust the amplitude and/or phase of the incident
electromagnetic (EM) wave, which enables the intelligent surface to actively customize
wireless propagation environments [10]. Moreover, intelligent surfaces can be flexibly de-
ployed on building surfaces without introducing additional interference. Depending on the
operation mode of the intelligent surface elements, an intelligent surfaces is mainly divided
into two categories: an intelligent reflecting surface (IRS) and an intelligent transmission
surface (ITS).

Many studies have been carried out to examine IRS-aided PLS. For instance, Ref. [11]
proposed a power-efficient beamforming scheme for IRS-aided multi-antenna secure trans-
mission where a closed-form expression of the optimal beamformer is derived. In [12], the
achievable secrecy rate maximization problem of the IRS-aided multiuser (MU) system
is alternatively optimized by a block coordinate decent (BCD) algorithm. An IRS-aided
secrecy simultaneous wireless information and power transfer (SWIPT) network was con-
sidered in [13], where a penalty dual decomposition (PDD)-based algorithm was proposed
to solve a max–min fairness robust problem. Ref. [14] focused on the secrecy performance
of IRS-aided massive MIMO systems with statistical channel state information (CSI), where
an approximate expression of the sum achievable security data rate was derived.

The above works mainly focus on adopting intelligent surfaces as auxiliary nodes.
Actually, apart from being deployed as a passive reflector, intelligent surfaces can also be
equipped at the base station (BS) serving as an antenna array. Without the requirement for
a conventional RF combiner and phase shifter, intelligent surface-based transmitters con-
sume significantly less power than conventional transmitters [15]. Because of advantages
including higher aperture efficiency, larger working bandwidth, and no feed occlusion or
self-interference, the ITS-based transmitter is more promising than the IRS-based transmit-
ter in complicated communication environments [16]. In Ref. [17], the author proposed an
ITS-based transmitter in the MISO channel, where difference-of-convex (DC) programming
was used to maximize the achievable sum-rate. Further, the authors of [18] investigated the
SWIPT networks with ITS-based transmitters, where a robust transmission scheme was
proposed in the case of imperfect CSI. In Ref. [19], a novel joint intelligent surface-assisted
secure network was investigated for the first time, where PDD and element-wise Lagrange
dual methods were utilized to design ITS beamforming vector and IRS phase shift.

It can be seen that existing studies primarily focused on the standalone use of intel-
ligent surfaces as additional nodes or antenna arrays. Based on the above analysis, we
consider secure transmission over multiple-input single-output multiple-eavesdropper
(MISOME) channels where an ITS-aided transmitter and an IRS are jointly deployed to
improve system secure performance. Specifically, we constructed a WSSR maximization
problem by optimizing transmit power allocation, the ITS beamforming vector, and the
IRS phase shift vector. Since the original problem is non-concave, we first use successive
convex approximation (SCA) to approximate the object function by its linear lower bound.
Then, we decompose the reformulated problem into three subproblems through the AO
technique, where the transmit power allocation optimization subproblem is solved itera-
tively by using Karush–Kuhn–Tucker (KKT) conditions, and the optimization subproblem
of ITS beamforming vector and IRS phase shift vector are solved by the ADMM and MM
methods, respectively. The main contributions of this article are summarized as follows:

(1) We propose a novel intelligent surface-assisted MU-MISOME network architecture,
where an ITS-aided transmitter sends a confidential signal to several legitimate users
with the assistance of an IRS in the presence of multiple eavesdroppers. Specifically, the
ITS reduces the power consumption and hardware cost of the transmitter by replacing
power amplifiers and the RF chains. Moreover, the IRS is utilized to configure the radio
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propagation environment aiming for efficiently enlarging the channel difference between
Bobs and Eves. Furthermore, we derived the WSSR to characterize the secure performance
of the system.

(2) We propose an energy-efficient transmission scheme to maximize the WSSR by
jointly designing transmit power allocation, ITS beamforming, and the IRS phase shift. As
the objective function is non-concave and the optimization variables are highly coupled,
we firstly transform the objective function into a more feasible concave form and solve
it alternatively via the AO algorithm. Specifically, we derive the analytical solution for
transmit power allocation by employing the KKT conditions, while the ITS beamforming
and IRS phase shift are kept fixed. To solve the ITS beamforming and IRS phase shift
optimization subproblem, the ADMM and MM methods are proposed.

(3) The simulation results validate the accuracy of our derived results and show the
effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. In Section 2, we present a MU-MISOME
downlink secure transmission network assisted by an ITS-based transmitter and IRS. In
Section 3, the WSSR maximization problem is reformulated and solved by an AO algorithm.
Our theoretical analysis is verified by simulation results in Section 4, and conclusions are
drawn in Section 5.

Notation: Column vectors and matrices are represented as boldface lower-case and
upper-case letters, respectively. The transpose, conjugate, and conjugate transpose of A
are represented, respectively, as AT, A∗, and AH. A � 0 represents that A is a Hermitian
positive definite matrix. <{a}, |a|, and ∠a denote the real part, the absolute value, and
the angle of a complex value a, respectively. CN(0, δ) represents a circularly symmetric
complex Gaussian (CSCG) random variable with zero mean and covariance δ. The letter j
stands for the imaginary unit

√
−1.

2. System Model and Signal Representation

In this paper, we consider a secure MU-MISOME downlink broadcast system as
illustrated in Figure 1. An ITS-based transmitter (Alice) intends to send L independent
confidential data streams for each of the L legitimate users (Bobs) over the same frequency
band simultaneously in the presence of L internal untrusted non-cooperative eavesdroppers
(Eves) that are arbitrarily distributed around Bobs. An IRS is employed to assist the secure
communication. All Bobs and Eves are equipped with a single antenna, and the number of
transmissive elements at ITS and that of reflective elements at IRS are denoted as N and
M, respectively. Similar to [20], the CSI of all links is assumed to be perfectly known at the
transmitter, and the IRS that makes the results presented in this paper can be regarded as
the performance upper bound of the considered system. For convenience, we summarize
the key notations utilized throughout this paper in Table 1.

Figure 1. System model.
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Table 1. List of main notations in the considered system.

Symbol Definition

N number of ITS elements
M number of IRS elements

F ∈ CM×N channel matrix from ITS to IRS
hd,l ∈ CN×1/gd,l ∈ CN×1 channel vector from ITS to the lth Bob/Eve
hr,l ∈ CM×1/gr,l ∈ CM×1 channel vector from IRS to the lth Bob/Eve

w ∈ CN×1 beamforming vector of ITS
θ ∈ CM×1 phase shift vector of IRS

sl ∈ C confidential message for the lth Bob
al > 0 power allocation factor for sl

nd,l/ne,l AWGN at lth Bob/Eve

2.1. Channel Model

The channel coefficients from Alice to the IRS, from Alice to the lth Bob/Eve, and
from the IRS to the lth Bob/Eve (l = 1, . . . , L) are denoted, respectively, by F ∈ CM×N ,
hd,l ∈ CN×1; gd,l ∈ CN×1; hr,l ∈ CM×1; and gr,l ∈ CM×1. Without a loss of generality, we
assume that gd,l and hd,l experience the Rayleigh fading. However, the IRS-related wireless
channels are modeled as Rician fading due to the fact that the IRS is commonly deployed
on the high-rise buildings near the desired receivers. Thus, we have

h =

√
κh

κh + 1
hLoS +

√
1

κh + 1
hNLoS (1)

where h ∈ H =
{

F, hr,l , gr,l
}

; κh is the Rician factor; and hLoS and hNLoS represent line-
of-sight (LoS) and non-LoS (NLoS) components of channel h, respectively. The NLoS
components hNLoS follow the Rayleigh fading. The LoS components hLoS is given by
hLoS = ar(at)

H, where at and ar are the array response vectors of the corresponding
transmitter and receiver, respectively. In this paper, we assume both IRS and ITS are
modeled as the uniform planar array (UPA). For a H ×V UPA, the array response vector is
formulated as follows:

a(ν, ψ) = 1√
HV

[
1, ..., ej2π de

λ (m sin(ν) sin(ψ)+n cos(ψ)), . .., ej2π de
λ ((H−1) sin(ν) sin(ψ)+(V−1) cos(ψ))

]T
(2)

where de represents the spacing between two adjacent array elements; λ is the carrier
wavelength; and ν and ψ denote the azimuth and elevation angle of arrival (or departure),
respectively. m ∈ [0, H] and n ∈ [0, V] represent the horizontal and vertical element indices
at the array, respectively.

2.2. Signal Model for ITS and IRS

The ITS-based transmitter we considered consists of a feed antenna and an ITS. The
feed antenna sends a single frequency electromagnetic (EM) wave to the ITS. To facilitate the
analysis, the EM wave emitted from the feed antenna is assumed to be transmitted through
ITS completely [18]. The ITS performs signal modulation and beamforming on the incident
wave by adjusting the amplitude and phase of each transmissive element [17]. In this work,
we focus on the beamforming design of ITS, and the beamforming vector is denoted by

w=[w1, ..., wN ]
T ∈ CN×1, where wn ∈ W

∆
=
{

wn
∣∣wn = αnejβn , αn ∈ [0, 1], βn ∈ [0, 2π), ∀n

}
,

αn, and βn represent the amplitude and phase response of the nth transmissive element,
respectively. Similarly, we let θ = [θ1, ..., θM]T ∈ CM×1 denote the phase shift vector of the

IRS where θm ∈ X
∆
=
{

θm
∣∣θm = ejφm , φm ∈ [0, 2π), ∀m

}
, φm denotes the phase shift of the

mth reflective element of the IRS. Note that the amplitude of IRS phase shift is normalized,
i.e., |θm| = 1, ∀m because each IRS reflective element only modifies the phase of the incident
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wave without changing amplitude. Moreover, we ignore the signal reflected multiple times
as a result of severe path loss [20].

2.3. Signal Transmission Model

The confidential message transmitted to the lth Bob is denoted as sl , which is assumed
as the i.i.d CSCG random variable, i.e., sl∼ CN(0, 1), ∀l. Then, the signal sent by Alice can
be formulated as x = w ∑L

l=1 alsl , where al is the corresponding power allocation factor for
sl . Thus, the received signal at the lth Bob/Eve can be represented as

yd,l =
(

hH
d,l + hH

r,lΘ
HF
)

w
L

∑
i=1

aisi + nd,l (3)

ye,l =
(

gH
d,l + gH

r,lΘ
HF
)

w
L

∑
i=1

aisi + ne,l (4)

respectively, where Θ = diag(θ1, ..., θM) is the phase shift matrix of IRS. nd,l∼CN
(

0, σ2
d,l

)
and ne,l∼CN

(
0, σ2

e,l

)
represent additive white Gaussian noise at the lth Bob/Eve, respec-

tively. By letting θ̂ =
[
θH, 1

]H, Hl =
[
diag

(
hH

r,l

)
F, hH

d,l

]T
, and Gl =

[
diag

(
gH

r,l

)
F, gH

d,l

]T
,

the received signals in (3) and (4) can be reformulated as follows:

yd,l = θ̂HHlw
L

∑
i=1

aisi + nd,l (5)

ye,l = θ̂HGlw
L

∑
i=1

aisi + ne,l (6)

Assuming each Eve only attempts to eavesdrop its nearest Bob, the received signal-to-
interference-plus noise ratio (SINR) at the lth Bob/Eve can be written as [19]

rd,l =

∣∣θ̂HH̃lwal
∣∣2

∑L
i=1,i 6=l

∣∣θ̂HH̃lwai
∣∣2 + 1

(7)

re,l =

∣∣θ̂HG̃lwal
∣∣2

∑L
i=1,i 6=l

∣∣θ̂HG̃lwai
∣∣2 + 1

(8)

respectively, where H̃l = Hl/σd,l , G̃l = Gl/σe,l . The achievable secrecy rate for the lth Bob
in bits/second/Hertz (bps/Hz) can be given as

Rs,l = [Rd,l − Re,l ]
+ (9)

where [z]+ ∆
= max(z, 0), Rd,l = ln(1 + rd,l), and Re,l = ln(1 + re,l) denote the achievable

rates of the lth Bob/Eve, respectively. Since the optimal value of our problem must be
non-negative, the operator [·]+ is omitted for simplicity in the remaining parts of this paper.

3. Problem Formulation and Solution for Wssr Maximization

In this work, our objective is to jointly optimize the power allocation {al}L
l=1, the ITS

transmission coefficient w, and the IRS phase shift θ̂ to maximize the WSSR of the system.
Let ηl denote the weight for the lth Bob, which is used to represent the priority of the lth
Bob in the system. Thus, the WSSR maximization problem can be generally formulated as
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max
{al}L

l=1,w,θ̂
Rs

∆
=

L

∑
l=1

ηl [ln(1 + rd,l)− ln(1 + re,l)] (10a)

s.t.
L

∑
l=1

a2
l ≤ Ps, al ≥ 0, ∀l (10b)

wn ∈ W , ∀n (10c)

θm ∈ X , ∀m, θ̂M+1 = 1 (10d)

where Rs represents WSSR of the system; constraint (10b) defines the total transmit power
constraint; and constraints (10c,d) characterize the constraints of the ITS beamforming and
the phase shifts of the IRS, respectively. The proposed WSSR maximization problem (10)
is challenging to solve directly, mainly because of the non-concave objective function as
well as the coupling relation of the optimization variables. In order to tackle this, we first
approximately reformulate the objective function (10a) into a tractable form by deriving
its concave lower bound. Then, we decouple the optimization variables and decompose
the transformed problem into three solvable subproblems by utilizing the alternating
optimization (AO) technique, and each subproblem is efficiently solved via the iterative
algorithm. Finally, we present the overall algorithm and analyze its convergence and
complexity

3.1. Problem Transformation

To start with, let
{
{at

l}
L
l=1, wt, θ̂t} denote a given point in problem (10) at the tth

iteration and introduce the following lemma.

Lemma 1 ([21]). For any u and v > 0, we have

ln

(
1 +
|u|2

v

)
≥ ln

(
1 +

∣∣ut
∣∣2

vt

)
−
∣∣ut
∣∣2

vt +
2<
{(

ut)∗u}
vt −

∣∣ut
∣∣2(v + |u|2

)
vt
(

vt + |ut|2
) (11)

where
{

ut, vt} are fixed points.

Based on Lemma 1, we can find a lower bound of Rd,l and an upper bound of Re,l
around

{
{at

l}
L
l=1, wt, θ̂t}, which can be expressed as

Rd,l ≥ ln

(
1 +

∣∣xt
l

∣∣2
yt

l

)
−
∣∣xt

l

∣∣2
yt

l
+

2<
{(

xt
l
)∗xl

}
yt

l
−

∣∣xt
l

∣∣2(yl + |xl |2
)

yt
l

(
yt

l +
∣∣xt

l

∣∣2) ∆
= Rlb

d,l (12)

Re,l ≤ ln
(
1 + zt

l
)
+ 1+zl

1+zt
l
− ln

(
1 + ct

l
)
+ ct

l

−2
L
∑

i=1,i 6=l
<
{

ai(w)HG̃H
l θ̂
(
θ̂t)HG̃lwtat

i

}
+

ct
l

1+ct
l

(
1 +

L
∑

i=1,i 6=l

∣∣θ̂HG̃lwai
∣∣2)− 1 ∆

= Rub
e,l

(13)

respectively, where xl = θ̂HH̃lwal , xt
l =

(
θ̂t)HH̃lwtat

i , yl = ∑L
i=1,i 6=l

∣∣θ̂HH̃lwai
∣∣2 + 1, yt

l =

∑L
i=1,i 6=l

∣∣∣(θ̂t)HH̃lwtat
i

∣∣∣2 + 1, zl = ∑L
i=1
∣∣θ̂HG̃lwai

∣∣2, zt
l = ∑L

i=1

∣∣∣(θ̂t)HG̃lwtat
i

∣∣∣2, and ct
l =

∑L
i=1,i 6=l

∣∣∣(θ̂t)HG̃lwtat
i

∣∣∣2.

Proof. Please refer to Appendix A.
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By substituting (12) and (13) into (10a) and neglecting the constant terms, we transform
the problem (10) into a tractable approximated form around the fixed point

{
{at

l}
L
l=1, wt, θ̂t}

as follows:

min
{al}L

l=1,w,θ̂

L

∑
l=1

ηl


ct

l
1 + ct

l

[
L

∑
i=1,i 6=l

∣∣∣θ̂HG̃lwai

∣∣∣2]+
∣∣xt

l

∣∣2 L
∑

i=1

∣∣θ̂HH̃lwai
∣∣2

yt
l

(
yt

l +
∣∣xt

l

∣∣2) +

L
∑

i=1

∣∣θ̂HG̃lwai
∣∣2

1 + zt
l

− 2
L

∑
i=1,i 6=l

R
{

aiwHG̃H
l θ̂
(
θ̂t)HG̃lw

tat
i

}
+

2R
{

aiwHH̃H
l θ̂
(
θ̂t)HH̃lwtat

i

}
yt

l

 (14a)

s.t.(10b)− (10d) (14b)

However, problem (14) is still difficult to solve directly due to the highly coupled opti-
mization variables in (14a). In the following part, we use the AO technique to decompose
problem (14) into three subproblems and alternately update {al}L

l=1, w and θ̂ while keeping
the other variables fixed.

3.2. Power Allocation Optimization

In this subsection, we consider the optimization of {al}L
l=1 with the given w and θ̂.

By omitting the irrelevant term, the WSSR maximization problem with respect to power
allocation {al}L

l=1 is reformulated as follows:

min
{al}L

l=1

L

∑
l=1

(
Tla2

l − 2tlal

)
(15a)

s.t.(10b) (15b)

where

T0 =
L

∑
i=1

ηict
i

∣∣∣(θ̂t)HG̃iwt
∣∣∣2

1 + ct
i

+
L

∑
i=1

ηi
∣∣xt

i

∣∣2∣∣∣(θ̂t)HH̃iwt
∣∣∣2

yt
i

(
yt

i +
∣∣xt

i

∣∣2) +
L

∑
i=1

ηi

∣∣∣(θ̂t)HG̃iwt
∣∣∣2

1 + zt
i

Tl = T0 −
ηlct

l

∣∣∣(θ̂t)HG̃lwt
∣∣∣2

1 + ct
l

tl =
L

∑
i=1,i 6=l

ηiR
{

at
l
(
wt)HG̃H

i θ̂t(θ̂t)HG̃iwt
}
+

ηlR
{

at
l
(
wt)HH̃H

l θ̂t(θ̂t)HH̃lwt
}

yt
l

(16)

Note that problem (15) is a quadratically constrained quadratic programming (QCQP),
which can be solved by using a convex optimization solver, e.g., CVX [22]. In order to
further reduce computational complexity, we propose a more efficient method by solving
KKT conditions. The KKT conditions of the problem (15) with respect to {al}L

l=1 are given
as follows:

∂L
(
{al}L

l=1, λ
)

∂al
= 0 (17)

λ

(
L

∑
l=1

a2
l − Ps

)
= 0 (18)



Entropy 2023, 25, 1102 8 of 19

where L
(
{al}L

l=1, λ
)
=

L
∑

l=1

(
Tla2

l − 2tlal
)
+ λ

(
L
∑

l=1
a2

l − Pmax

)
is the Lagrangian function

and λ ≥ 0 is the Lagrangian multiplier associated with the constraint (10b). By solving (17),
we can derive power allocation al(λ) as

al(λ) =
tl

Tl + λ
, ∀l (19)

The optimal λ∗ can be calculated by solving the second KKT condition (18). We search λ∗

by considering the following two cases:
(1) If al(0) satisfies the power constraint, i.e., ∑L

i=1 a2
l (0) ≤ Pmax, then λ∗ = 0, and the

optimum power allocation is obtained by a∗l = al(0).
(2) Otherwise, the full power constraint ∑L

i=1 a2
l (λ) = Pmax should be met. Given (19),

we have ∑L
i=1 t2

l /(Tl + λ)2 = Pmax. Since ∑L
i=1 t2

l /(Tl + λ)2 decreases monotonically with
respect to λ, the optimal λ∗ can be found efficiently by applying the bisection method.
Moreover, since Tl > 0 ∀l, we can set an upper searching bound on λ by letting Tl = 0 ∀l;

thus, the search interval is
[

0,
√

∑L
i=1 t2

l /Pmax

]
.

The detailed steps for calculating {a∗l }
L
l=1 and λ∗ are summarized in Algorithm 1.

Algorithm 1 Power Allocation Optimization

1:Initialization: set the accuracy ε, and set the searching bounds λl and λu;
2:Calculate {al(0)}L

l=1 according to (19). If ∑L
i=1 a2

l (0) ≤ Pmax , then a∗l = al(0)∀l, λ∗ = 0
and terminate; otherwise, move to step 3;
3:Repeat
4: Calculate λ = (λl + λu)/2 ;
5: Update {al(λ)}L

l=1 via (19);
6: If ∑L

i=1 a2
l (λ) ≤ Pmax set λl = λ; Otherwise, set λu = λ end if;

7:Until|λl − λu| ≤ ε;
8:Output

{
{a∗l }

L
l=1, λ∗

}
.

3.3. Optimization of ITS Beamforming

In this subsection, we attempt to optimize the ITS beamforming vector w with given
{al}L

l=1 and θ̂. With some manipulations, the problem (14) can be reformulated as follows:

min
w

wHAw− 2<
{

wHb
}

(20a)

s.t.(10c) (20b)

where A =
L
∑

l=1
ηlAl and b =

L
∑

l=1
ηlbl . A and b are, respectively, denoted as

Al =
ct

l ∑L
i=1,i 6=l

(
at

i
)2G̃H

l θ̂t(θ̂t)HG̃l

1 + ct
l

+

∣∣xt
l

∣∣2 ∑L
i=1
(
at

i
)2H̃H

l θ̂t(θ̂t)HH̃l

yt
l

(
yt

l +
∣∣xt

l

∣∣2) +
∑L

i=1
(
at

i
)2G̃H

l θ̂t(θ̂t)HG̃l

1 + zt
l

bl =
L

∑
i=1,i 6=l

G̃H
l θ̂t(θ̂t)HG̃lw

t(at
i
)2

+
H̃H

l θ̂t(θ̂t)HH̃lwt(at
l
)2

yt
l

(21)

Problem (20) is a quadraitic programming problem that can be solved by using the
CVX toolbox. Here, we propose a low-complexity algorithm where a closed-form solution
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is derived iteratively by using the ADMM method. First, let us reformulate problem (20) as
follows:

min
r,w

rHAr− 2<
{

rHb
}

(22a)

s.t.|wn| ≤ 1, ∀n ∈ M (22b)

r = w (22c)

where r ∈ CM×1 is a slack variable. Then, the augmented Lagrange function of (20a) can be
written as

L(r, w, p)=rHAr− 2<
{

rHb
}
−<

{
pH(r−w)

}
+ ρ

2‖r−w‖2 (23)

where p ∈ CN×1 is the Lagrange multiplier with respect to the constraint (22b) and ρ ≥ 0 is
the penalty factor. By using the ADMM method, we have the following iterations:

rk+1= arg min
r
L
(

rk, wk, pk
)

(24a)

wk+1= arg min
|wn |=1∀n

L
(

rk+1, wk, pk
)

(24b)

pk+1=pk − ρ
(

rk+1 −wk+1
)

(24c)

According to first-order optimality condition of (23), we have

2Ark+1 − 2b− pk − ρ
(

rk+1 −wk
)
= 0 (25)

Then, the solution for (24a) is derived as

rk+1=(ρI + 2A)−1
(

2b + ρwk + pk
)

(26)

Problem (24b) is equivalent to min
|wn |=1∀n∈N

∥∥∥w−
(

rk+1 − ρ−1pk
)∥∥∥2

, which is a projection

problem, and the closed-form solution is given as

[
wk+1

]
n
=


[
rk+1 − ρ−1pk

]
n
, if

[
rk+1 − ρ−1pk

]
n
≤ 1

[rk+1−ρ−1pk]n
|[rk+1−ρ−1pk]n|

, if
[
rk+1 − ρ−1pk

]
n
> 1

(27)

where [w]n denotes the nth element of w. Then, by exploiting (24c) and (25), we obtain that
pk+1 = 2Ark+1− 2b. The detailed step of the ADMM algorithm is stated in Algorithm 2, and
it guarantees to converge when the value of the penalty parameter ρ satisfies: ρI/2 −A �
0 [23].

Algorithm 2 The ADMM algorithm for problem (20)

1:Initialization: set the maximum iteration number K; the accuracy ε; a feasible point{
{a0

l }
L
l=1, w0, θ̂0}; and the penalty factor ρ, which satisfies ρI/2 −A � 0;

2:Repeat k
3: Update rk+1 according to (26);
4: Update wk+1 according to (27);
6: Update pk+1=2Ark+1 − 2b;
7:Until

∣∣∣ f(wk+1
)
− f

(
wk
)∣∣∣/ f

(
wk+1

)
≤ ε or k > K;

8:Output w∗.
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3.4. Optimization of IRS Phase Shift

In this subsection, we aim to optimize the IRS phase shift θ̂ with given {al}L
l=1 and w.

We first recast the problem (14) as follows:

min
θ̂

θ̂HΩθ̂− 2<
{

θ̂Hϕ
}

(28a)

s.t.(10d) (28b)

where Ω =
L
∑

i=1
ηiΩi, ϕ =

L
∑

i=1
ηiϕi, Ωi and ϕi are denoted by

Ωl =
ct

l
1 + ct

l

L

∑
i=1,i 6=l

(
at

i
)2G̃lw

t(wt)HG̃H
l +

∣∣xt
l

∣∣2 L
∑

i=1

(
at

i
)2H̃lwt(wt)HH̃H

l

yt
l

(
yt

l +
∣∣xt

l

∣∣2)

+

L
∑

i=1

(
at

i
)2G̃lwt(wt)HG̃H

l

1 + zt
l

∀l

ϕl =
L

∑
i=1,i 6=l

G̃lw
t(wt)HG̃H

l θ̂t(at
i
)2

+
H̃lwt(wt)HH̃H

l θ̂t(at
l
)2

yt
l

∀l (29)

The unit modulus constraint (10d) makes the problem difficult to solve. Although the
semidefinite relaxation (SDR) method can be used to solve it, it is time consuming [11]. We
provide two efficient algorithms to tackle this problem. We start by introducing the MM
method first.

(1) The MM method: the main idea behind the MM method is to transform the
problem (28) into a series of tractable approximated subproblems [24]. Generally, the MM
method contains two steps. In the majorization step, we construct a surrogate function that
upperbounds the objective function of (28) up to a constant. Let us denote the objective
function of (28) as f

(
θ̂
)
. According to the second order Taylor expansion of f

(
θ̂
)

at a fixed
point θ̂k, we obtain the following inequality:

f
(
θ̂
)
≤ λmaxθ̂Hθ̂− 2<

{
θ̂H
[
(Ω− λmaxIM×M)θ̂k +ϕ

]}
+ (θ̂k)H(Ω− λmaxIM×M)θ̂k (30)

where λmax is the maximum eigenvalue of matrix Ω. By taking the unit modulus con-
straint

∣∣θ̂m
∣∣ = 1, ∀m into consideration, we have θ̂Hθ̂ = M. Then, Equation (30) can be

transformed as

f
(
θ̂
)
≤ λmaxM− 2<

{
θ̂H
[
(Ω− λmaxIM×M)θ̂k +ϕ

]}
+ (θ̂k)H(Ω− λmaxIM×M)θ̂k ∆

= g
(

θ̂
∣∣∣θ̂k
)

(31)

where g
(

θ̂
∣∣∣θ̂k
)

is the surrogate function of f
(
θ̂
)

at point θ̂k. In the minimization step,

we derive the corresponding solution by minimizing g
(

θ̂
∣∣∣θ̂k
)

and solve problem (28)

iteratively. By omitting the constants, the subproblem of minimizing g
(

θ̂
∣∣∣θ̂k
)

at the kth
iteration can be rewritten as

min
θ̂
− 2<

{
θ̂Hqk

}
(32a)

s.t.(10d) (32b)
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where qk = (Ω− λmaxIM×M)θ̂k +ϕ. It is easy to see that the problem (32) has a closed-form
solution, which is derived as

θ̂k+1 = exp
(

j arg
[
qk
])

(33)

According to the principle of the MM method, the proposed MM algorithm is described in
Algorithm 3.

Algorithm 3 The MM algorithm for problem (28)

1:Initialization: set the accuracy ε, the maximum iteration number K, and a feasible
point

{
{a0

l }
L
l=1, w0, θ̂0};

2:Repeat k
3: Calculate qk = (Ω− λmaxIM×M)θ̂k +ϕ;
4: Update θ̂k+1 according to (33);
5:Until

∣∣∣ f(θ̂k+1
)
− f

(
θ̂k
)∣∣∣/ f

(
θ̂k+1

)
≤ ε or k > K;

6:Output θ̂∗.

(2) The ADMM method: Note that problem (28) has a similar structure to problem (22)
except for the modulus constraint |θm| = 1, ∀m. Therefore, after making some modifications
to (27), we obtain the following expressions:

[
θ̂k+1

]
m
=


[rk+1

θ −ρ−1
θ pk

θ ]m
|[rk+1

θ −ρ−1
θ pk

θ ]m|
, if

[
rk+1

θ − ρ−1
θ pk

θ

]
m
6= 0[

θ̂k
]

m
, if

[
rk+1

θ − ρ−1
θ pk

θ

]
m
= 0

(34)

where rθ , ρθ , and pθ are corresponding auxiliary variables related to θ̂. A closed-form
solution of problem (28) can be obtained by adopting the ADMM method as described in
Algorithm 2 in the preceding section, which is omitted here for brevity.

Lastly, the WSSR maximization problem (10) was decomposed into three solvable
subproblems that were solved iteratively by corresponding methodsṪhe proposed AO
algorithm is summarized in Algorithm 4.

Algorithm 4 The proposed AO algorithm for the WSSR maximization problem

1:Initialization: set the maximum iteration number K, the accuracy ε, and a feasible
point

{
{a0

l }
L
l=1, w0, θ̂0};

2:Repeat k
3: Obtain {ak+1

l }L
l=1 via solving (15) with fixed

{
{ak

l }
L
l=1, wk, θ̂k

}
;

4: Obtain wk+1via solving (20) using the ADMM method with fixed
{
{ak+1

l }L
l=1, wk, θ̂k

}
;

5:Obtain θ̂k+1 via solving (28) using the ADMM or MM method with fixed{
{ak+1

l }L
l=1, wk+1, θ̂k

}
;

6:Until Rk+1
s − Rk

s < ε or k > K;
7:Output

{
{a∗l }

L
l=1, w∗, θ̂∗

}
.

3.5. Complexity Analysis

In this part, we analyze the computational complexity of the proposed algorithms. We
first denote the iteration number of the ADMM, MM, and AO algorithms as TADMM, TMM,
and TAO, respectively. Specifically, the complexity of the proposed ADMM method mainly
lies in updating r, the complexity of which is O

(
N2 + N3), where O

(
N3) and and O

(
N2),

respectively, denote the complexity for calculating (ρI + 2A)−1 and other multiplication
operations in updating r. We note that the inverse matrix (ρI + 2A)−1 is calculated only
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once during the whole algorithm. Therefore, the total complexity of the ADMM method
is O

(
TADMM N2 + N3) [25]. Similar to the ADMM algorithm, the complexity of the MM

algorithm mainly lies in two parts. At the beginning of the MM algorithm, calculating
λmax incurs O

(
M3) computational complexity. In each iteration of the MM algorithm, the

main complexity comes from updating qk, the complexity of which is O
(

M2). Thus, the
complexity of the MM algorithm is O

(
TMM M2 + M3) [26]. It can be observed that the

complexity of the ADMM and MM methods mainly depends on the iteration times, which
is typically several hundreds of seconds. Lastly, the overall complexity of the proposed AO
algorithm is O

(
TAO((TADMM N2 + N3) + (TADMM/MM M2 + M3))

)
.

4. Simulation Results

In this section, we evaluate the performance of our proposed algorithms by numerical
simulation results. The simulation scenario for the coordinates (in meters) is illustrated
in Figure 2, where Alice and the IRS are located at (0, 0) and (100, 0), respectively. L Bobs
are randomly scattered in a circle centered at (100, 20) with a radius of 5 m. Each Bob is
eavesdropped by one Eve, which randomly located within a circle centered at the Bob with
radius 2 m. The heights of Alice, IRS, Bobs, and Eves are set as 20 m, 10 m, 1.5 m and 1.5 m,
respectively. The large-scale path loss is modeled as PL = PL0 − 10log10(d/d0) dB, where
PL0 is the path-loss at the reference distance and d is the link distance in meters. The path
loss exponents for the Alice-Bobs/Eves link, the Alice-IRS link, and the IRS–Bobs/Eves
link are set as αt = 4, αtr = 2 and αr = 2, respectively. Other parameters, unless otherwise
specified, are set as follows: N = 48, M = 64, Pmax = 10 dBm, σ2

d,l = σ2
e,l = −70 dBm,

d0 = 1 m, L = 4, and Ricean factor κ = 3.

Figure 2. Simulation setup.

We first study the convergence behaviors of the proposed algorithm with different
numbers of transmissive element N and reflective element M. Figure 3 shows the conver-
gence properties of ADMM and MM algorithms for optimizing the phase shift of IRS in the
first AO iteration. It can be observed that the WSSR achieved by both methods increases
with the iteration number. Although the ADMM method converges a little more slowly
than the MM method, they both tend to converge within 200 iterations, which verifies the
convergence of the two methods.

The convergence performance of the AO algorithm is shown in Figure 4 for different
N and M. It is clear that the AO algorithm tends to converge within 15 iterations for all N
and M combinations considered, which demonstrates the convergence of the suggested AO
algorithms. Moreover, the increase in N or M leads to higher WSSR but slower convergence
performance, which is because large N or M indicates more variables that need to be
optimized. Also, given the same N and M combinations, the AO-MM and AO-ADMM
algorithms have a similar convergence speed, but the WSSR obtained by the AO-MM
method is higher than that of the AO-ADMM method.
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Figure 3. The convergence performance of ADMM and MM algorithms.
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Figure 4. The convergence behavior of OA algorithms.

Next, we evaluate the performance of the proposed algorithm and contrast it with
the benchmark methodologies shown below: (1) Random IRS: Only {al}L

l=1 and w are
optimized, and the phase for each IRS reflective components is generated uniformly and
independently over [0, 2π). (2) No IRS: Replace the IRS-related channel matrices by zero
matrices and remove step 5 from Algorithm 4. (3) Equal power: Allocate the same power
to each Bob, i.e., set al = Pmax/L ∀l. (4) The upper bound: Obtaining the optimal value
of power allocation, ITS beamforming, and IRS phase shift numerically by using CVX
toolbox. Specifically, {a∗l }

L
l=1 and w∗ are obtained by directly solving problem (15) and (20)

as QCQP and QP, respectively. θ̂∗ is obtained by solving problem (28) via applying the SDR
method and Gaussian randomization techniques.

Figure 5 compares the WSSR performance versus the transmit power Pmax of all
schemes. We can see that the WSSR increases with Pmax. Moreover, both ADMM and
MM algorithms achieve near-optimal performance compared to the upper bound and also
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significantly outperform other schemes, demonstrating the performance of our proposed
transmission strategy. Further, the random phase scheme outperforms the no IRS scheme,
which verifies the benefits of utilizing IRS. Lastly, the equal power scheme achieves the
worst performance when Pmax > 10 dBm, which can be explained by the fact that the
inter-user interference becomes the primary performance constraint in the high transmit
power region.
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Figure 5. The WSSR versus the transmit power.

Then, we study the impact of the number of IRS reflective elements M on the WSSR
of a different scheme in Figure 6. We can see that the WSSR experiences a great increase
with M for both ADMM and MM schemes, which indicates that increasing the number
of IRS elements can improve the WSSR effectively. By contrast, the WSSR of the random
phase scheme is significantly lower that of the ADMM or MM schemes, which verifies the
advantage of our proposed algorithm. Moreover, the WSSR of random phase scheme is
higher than that of the no IRS case, and the gap only increases slightly with M, which is
due to the fact that more signals can be reflected by IRS with larger M and these additional
signals can enhance secrecy performance only if the phase shifter been properly designed.

Next, we investigate the system performance with a different number of Bobs/Eves
L, as shown in Figure 7. As we can see, the WSSR declines with L, which is because the
inter-user interference increases with L and the weight 1/L for each Bobs decreases with L .
As a result, the WSSR tends to decrease.

Lastly, we discuss the relationship between system performance and path loss expo-
nent. As Figure 8 shows, the WSSR of the proposed algorithms decreases dramatically
with the increase in the path loss exponent of the IRS–Bobs link. This is mainly because
more severe path loss will decrease the power of the reflected signal from the IRS, which
jeopardizes the system performance. Meanwhile, the increase in the path loss exponent
of the IRS–Eves link improves the WSSR as depicted in Figure 9, which is due to the fact
that more severe large-scale fading degrades the reflected signal at Eve. These two figures
demonstrate a technical insight that, in order to achieve a better performance, the IRS
should be carefully installed so that there are fewer obstructions in the legitimate link or
more obstructions in the eavesdropping link.
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Figure 9. The WSSR versus pathloss exponent of the IRS–Eves link.

5. Conclusions

This paper has investigated an ITS-and IRS-empowered MU-MISOME secure commu-
nication network where an IRS is deployed to create a programmable wireless environment,
and an ITS-based transmitter is adopted to perform energy-efficient beamforming. To be
specific, we have maximized the WSSR by jointly optimizing the power allocation, ITS
beamforming, and phase shift of IRS while guaranteeing transmit power constraint and
unit-modulus constraints. The non-concave objective function was transformed into a
tractable form by using the SCA technique. An efficient AO scheme was developed to
convert the reformulated problem into three solvable subproblems. The KKT conditions
and the ADMM and MM methods were adopted to derived the closed-form solution for
each subproblem. The numerical results demonstrated that the proposed schemes can
achieve near-optimal performance and the IRS can improve the system WSSR effectively.
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The performance of the MM algorithm is slightly better than that of the ADMM
algorithm, while the ADMM algorithm is a more general approach since it does not require
the objective function to be differentiable. Both secrecy transmission schemes we proposed
are suitable for resource-constrained IoT devices because they do not rely on computational
complexity. In addition, the IRS can be flexibly deployed in IoT networks without causing
additional interference or changing the network topology.
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Appendix A

Proof of (12) and (13). The prove of (12) is straightforward since Rlb
d,l can be obtained

directly by using Lemma 1 after rewriting Rd,l as follows: ln
(

1 + |xl |2
/

yl

)
. Next, let us

derive Rub
e,l . We first rewrite Re,l as

Re,l = ln(1 + zl)− ln

(
1 +

L

∑
i=1,i 6=l

∣∣∣θ̂HG̃lwai

∣∣∣2) (A1)

According to the first-order condition of the concave function, an upper bound of ln(1 + zl)
can be derived as follows:

ln(1 + zl) ≤ ln
(
1 + zt

l
)
+

1 + zl

1 + zt
l
− 1 (A2)

For (11), let v = vt = 1; then, (11) can be written as follows:

ln
(

1 + |u|2
)
≥ ln

(
1 +

∣∣ut∣∣2)− ∣∣ut∣∣2 + 2<
{(

ut)∗u}−
∣∣ut
∣∣2(1 + |u|2

)
1 + |ut|2

(A3)

According to (A3), the following inequality can be derived by keeping ui fixed for ∀i 6= l,

ln

(
1 +

L

∑
i=1,i 6=l

|ui|2 + |ul |2
)
≥ ln

(
1 +

L

∑
i=1,i 6=l

∣∣ut
i
∣∣2 + ∣∣ut

l
∣∣2)

−
∣∣ut

l
∣∣2 + 2<

{(
ut

l
)∗ul

}
−

∣∣ut
l

∣∣2(1 +
L
∑

i=1,i 6=l
|ui|2 + |ul |2

)

1 +
L
∑

i=1,i 6=l

∣∣ut
i

∣∣2 + ∣∣ut
l

∣∣2 (A4)
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Using (A4) with l = 1, ..., L, we derive the following inequality:

ln

(
1 +

L

∑
i=1
|ui|2

)
≥ ln

(
1 +

L

∑
i=1,

∣∣ut
l
∣∣2)− L

∑
i=1

∣∣ut
l
∣∣2

+
L

∑
i=1

2<
{(

ut
l
)∗ul

}
−

L
∑

i=1

∣∣ut
l
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According to (A5), we have

ln

(
1 +

L

∑
i=1,i 6=l

∣∣∣θ̂HG̃lwai

∣∣∣2) ≥ ln
(
1 + ct

l
)
− ct

l

+ 2
L

∑
i=1,i 6=l

<
{

ai(w)HG̃H
l θ̂
(
θ̂t)HG̃lw

tat
i

}
−

ct
l

1 + ct
l

(
1 +

L

∑
i=1,i 6=l

∣∣∣θ̂HG̃lwai

∣∣∣2) (A6)

Finally, it is straightforward to obtain Rub
e,l by substituting (A2) and (A6) back

into (A1).
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