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Abstract: We studied the ability of deep reinforcement learning and self-organizing approaches to
adapt to dynamic complex systems, using the applied example of traffic signal control in a simulated
urban environment. We highlight the general limitations of deep learning for control in complex
systems, even when employing state-of-the-art meta-learning methods, and contrast it with self-
organization-based methods. Accordingly, we argue that complex systems are a good and challenging
study environment for developing and improving meta-learning approaches. At the same time, we
point to the importance of baselines to which meta-learning methods can be compared and present a
self-organizing analytic traffic signal control that outperforms state-of-the-art meta-learning in some
scenarios. We also show that meta-learning methods outperform classical learning methods in our
simulated environment (around 1.5–2× improvement, in most scenarios). Our conclusions are that,
in order to develop effective meta-learning methods that are able to adapt to a variety of conditions, it
is necessary to test them in demanding, complex settings (such as, for example, urban traffic control)
and compare them against established methods.

Keywords: complex systems; self-organization; meta-learning

1. Introduction

As we learn more about the many systems that make up our world, the more complex
it appears to become. The economy, biosphere, society, power grids, cities, and urban
traffic are just a few examples of systems beyond our ability to fully understand, predict,
or control.

A proposed response to the limitations of our understanding has recently come in the
form of black box models such as deep learning. In complex systems, deep reinforcement
learning (RL) methods have been especially favored and frequently used in control prob-
lems. There are many benefits to using deep learning, including its universality and ease
with which it can be applied to a variety of problems. Indeed, in many tasks, deep learning
has been shown to perform better than humans [1,2].

Nevertheless, there are also limitations to what deep learning methods can do. Some
of the most commonly mentioned limitations include lack of robustness, adaptability,
explainability, and fairness [3]. Most of the deep models do not currently contribute to a
good understanding of the various systems they might help us control. Generally, we do
not understand traffic any better by knowing that a particular deep learning model would
control it in a certain way under some particular conditions.

In actuality, a deep learning model is an additional complex system we fail to fully
understand. It might appear somehow unfounded to create a complex system, the inner
workings of which we do not fully grasp, to control another complex system we do not
entirely understand. This also makes it difficult to accurately assess the deep model’s
success in an absolute sense, since we do not usually know the optimal behavior of the
system we are attempting to control. To understand and interpret the performance and
utility of deep learning models, it is useful to compare them against non-deep learning
models that are well-studied and -understood.
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Moreover, as dynamic complex systems continue to evolve in unpredictable ways,
classical deep learning approaches often become inadequate as they cannot function ef-
fectively under significant data-shifts. Hence, the more adaptable meta-learning methods
have become popular when applying deep learning to complex systems [4].

A real-world example of a complex system is urban traffic. Traffic congestion is an
emergent property of most, if not all, sufficiently large modern metropolises. It is mostly
considered as a negative emergent and leads to lost time, air and sound pollution, and
frustration. Any truly smart city would hope to resolve the issue or at least mitigate it.
Currently, the main way of dealing with congestion is through the design of smart traffic
signal control approaches.

A great variety of RL multi-agent systems have been recently designed for control of
traffic signals in urban environments [5–7], including ones that are able to meta-learn [8,9].
However, the majority of these methods have only been compared against previous RL
methods (which they are usually shown to outperform). While this shows that deep
learning for traffic signal control is continuously getting better, it is not yet clear how well
it actually performs with regard to other approaches, such as analytic ones.

In this paper, we study the advantages and limitations of deep learning approaches for
the problem of traffic signal control in the complex system of urban traffic. We conducted
experiments on traffic signal control in simulated urban networks to compare RL methods
with an analytic self-organization approach. We highlight that, while using deep learning
in the context of complex systems has much potential, there is a need for strong baselines
agains twhich to compare. Lastly, we conclude that, in the context of traffic signal control
and at the current state of deep learning development, self-organization appears to be a
good baseline, which is able to outperform RL methods in many settings.

2. Motivation

In this section, we discuss the relevant motivation, delineate key concepts, and present
some background needed to grasp our experiments.

2.1. Deep Learning

Deep learning refers to any model that uses a Deep Neural Network (DNN). In most
cases, the DNN is trained with some data and used as a classifier or decision maker. Deep
learning does not require any specialist knowledge about the system for which it is used
(but may still incorporate it in certain models [10,11]). Deep learning can be widely applied
to a large variety of different systems; for example, the same DNN architecture can be used
to learn to control traffic or a power grid.

On the other hand, the training of most deep learning models requires large, repre-
sentative datasets and is computationally demanding [12]. The DNN is itself a complex
structure, often containing thousands of parameters across many layers. It can itself be
studied as a complex system [13] (where, from the local interactions of individual nodes,
there emerge some global activation patterns). Due to its great number of unexplainable
parameters, deep learning has recently been criticized for lacking fairness [14] and being
prone to biases induced by training data [15]. Some of the limitations of deep learning have
been linked to the strong influence on the field by the practice of engineering [3].

In traffic systems, deep RL has been applied to the problem of traffic signal control [16].
A variety of methods have been proposed, including [5,9].

2.2. Meta-Learning

In the context of learning conditions—where the underlying system might undergo an
unpredictable change—or using data—in which distribution might shift—meta-learning
has been seen as a promising methodology. Generally, meta-learning methods, unlike
traditional deep learning, are able to be generalized to scenarios different from the one
they were trained on [17]. In this context, a common method is to use gradient-based
model agnostic meta-learning, periodically alternating between a global and individual
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adaptation [4]. One might also benefit from using mixed experience replays based on
different scenarios [8]. Similarly, improved generalization can be gained from using model
agnostic meta-learning and flow clustering [9]. Meta-learning can also be used to improve
data efficiency, which then allows one to limit the interactions with the environment neces-
sary for convergence [18]. Incorporating short- and long-term information by employing
decentralized advantage actor–critic [19] can also lead to better generalization ability.

It is worth noting that, of the meta-learning methods proposed recently, many are
highly complex. While showing great promise in dealing with the issues of adaptability to
changing conditions, which are especially pertinent in complex systems, the meta-learning
methods have mostly been compared to other learning methods [8,9]. It is the interest of
this paper to also offer a comparison with non-learning methods that can be used as a
simple baseline for future comparisons.

2.3. Complex Systems

A complex system is usually defined as a system composed of many sub-systems that
interact with each other [20]. Such a system may be difficult to model, as the relationships
between the parts are often non-linear and high-dimensional. For the same reason, such a
system is also difficult to control. It may not even be clear how a given local intervention or
action will affect the global state of the system. A concept often associated with complex
systems is emergence, which is a spontaneous appearance of a global pattern precipitated
by the local interactions of the system’s parts [21]. Since complex systems exhibit high
levels of unpredictability and change, meta-learning is the best-suited learning paradigm
for such settings.

Urban traffic can be seen as an instance of a complex system. It consists of many
individual systems: intersections, vehicles, and pedestrians, all interacting with each other
non-linearly [22].

2.4. Self-Organization

We follow a working definition of self-organization, wherein it is an adaptive process
through which a system can acquire and maintain structure in the absence of external
control [21]. Due to its decentralized character, such self-organized order exhibits high
resilience to perturbations [23]. In social sciences, self-organization is also known as
spontaneous order or invisible hand phenomenon, which characterizes liberal free-market
economies [24]. Certain phenomena might also be considered to be self-organizing or
not, depending on the perspective of the observer [25]. As such, self-organization is not
a control approach, but rather a paradigm that aims to achieve desirable properties of
the system, by creating favorable conditions for their emergence. Many definitions of
self-organization have been given in the literature (see [21] for an overview); however,
in this work, we do not follow a strict definition (only a working one, given above), but,
rather, consider self-organization in the particular context of a complex system, where local
interactions lead to a certain order being established at a global level. In Table 1, we present
a comparison between deep learning and self-organization approaches in the context of
complex systems.

An emergent self-organizing property observable in urban traffic would be the syn-
chronization of neighboring signals, resulting in a ‘green wave’. An example of unfavorable
self-organization, in contrast, would be the formation of traffic jams. A self-organizing
traffic control aiming to overcome such congestion would be based on a set of modified
interaction rules that are followed by individual agents in a decentralized manner (as, for
example, in [26]).
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Table 1. Differences between deep learning and self-organization applied to complex systems.

Deep Learning Self-Organization

Requires training on large and representative
datasets

Ideally no training and no or little data
requirements

Might need retraining to adapt if the system
evolves in a way such that the training data are

not representative

Can adapt to an evolution that the system
might undergo and needs no retraining

Needs an extremely large set of parameters,
which are not explainable

Typically uses a limited number of explainable
parameters

Might be lacking fairness Fairness can be promoted/guaranteed

Requires no specialist knowledge or limited
knowledge of the system

Might require specialist knowledge about the
system to design effective rules

Can be universally applied to a variety of
different systems

Application is limited to specific kinds of
systems which are able to self-organize

2.5. Problem Description

In this work, we compare the effectiveness of deep learning and self-organization
for controlling the traffic signals in an urban traffic system. The traffic system presents a
challenging problem for deep learning algorithms as the traffic conditions can be highly
dynamic and difficult to predict. A model which is trained only on morning traffic will
likely under-perform on evening traffic. On the other hand, training a model to expect
certain temporal patterns (e.g., morning vs. evening) might produce a model, which will not
work well when an unexpected accident or roadwork causes the traffic patterns to change
unexpectedly. Due to its high sensitivity, dynamic nature, and low predictability, the urban
traffic system and its control are a difficult but interesting problem for the domain of deep
learning. As we have mentioned, the particular approach that appears highly relevant to
such a setting is meta-learning, which offers to produce models that are able to adapt and
work well, even in changing conditions.

Generally, the traffic signal control problem consists of individual intersections (agents)
taking actions. The actions consist of flows (traffic moving through an intersection from one
lane to another) aggregated into phases (a phase represents the set of all flows that are given
green, see Figure 1). The goal is to optimize a certain metric (often, the average travel time)
to avoid or delay congestion.

Figure 1. Left: An intersection with eight flows (not counting the right turns, which are assumed
to always be given green in any phase). The green arrows correspond to the flows that would be
given green by phase 1 from the right figure, red arrows represent flows that would be given red.
Right: The possible actions (phases) available to an intersection agent controlling an intersection
with eight flows (indicated by number 1 through 8).
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The learning agents typically used to control signals at an intersection are based on
deep reinforcement learning algorithms. The design of these agents can be defined by the
reinforcement learning paradigm they use (e.g., q-learning or policy gradient), the actions,
states, and reward. The actions available to such an agent correspond to phases that are
possible at the intersection. An example of possible actions for an intersection with eight
flows is given in Figure 1. The states can vary in detail (depending on the particular
implementation) but correspond to the meaningful features of the traffic situation at the
intersection. As such, they usually contain information such as the number of vehicles
on the lanes (occupancy), the current phase, and so on. The reward corresponds to the
measure of success and usually involves average travel time, delays, or number of stops.
A description of the design of the intersection agents used in our experiments can be found
in Section 3.

3. Methods

In this section, we introduce the main methods of the study—the Analytic+—and
describe the details of the simulation experiments, including the reinforcement learning
methods we compare against.

3.1. Analytic+

The Analytic+ algorithm [27] is based on short term anticipation of traffic. It relies
on two rules: an optimization rule and a stabilization rule. The optimization rule is de-
signed to minimize the total waiting times at a given intersection, while the stabilization
rule maintains the stability and fairness of the service by ensuring that no flow incurs
waiting times above a certain maximum. The Analytic+ method is decentralized, meaning
the agents do not communicate with each other and make decisions based only on locally
available information. This local information does, however, depend on the decisions taken
by neighboring intersections; thus, an implicit communication between neighbors does
occur. Each agent follows only two explainable rules. Despite the simplicity, from the
actions of each agent emerges a global, self-organizing order. The algorithm has care-
fully designed explainable parameters that define the average and maximum waiting
times allowed by the stabilization rule. The pseudocode for the algorithm is presented
in Algorithm 1, and the code of the implementation used for this study is available at
https://github.com/mbkorecki/meta_traffic (accessed on 26 June 2023).

Algorithm 1: Analytic+ pseudocode.

priorities = [];
for action ∈ actions do

priority = 0;
for f low ∈ action do

n f low ← f low.getNumberO f Vehicles;
if ncrit

f low > n f low then
priority← ∞; /ncrit

f low follows Equation (2)/
else

priority← priority + π f low; /π f low is the priority of a f low following
Equation (1)/

end
end
priorities.append(priority);

end
decision← max(priorities); /*The action with the highest priority is selected*/

https://github.com/mbkorecki/meta_traffic
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3.1.1. Optimization Rule

The optimization rule prioritizes the flows with highest priority scores according to
Equation (1):

πi =
n̂i

τ
pen
i,σ + τi + ĝi

. (1)

Herein, ĝi is the required green time needed to clear lane i (this is a variable dependent
on the number of cars on i and their maximum legal speed), τi is the penalty for switching
to another traffic flow, τ

pen
i,σ is the penalty for switching back, and n̂i is the number of

vehicles that are expected to be served in time period ĝi + τi. This formulation ensures
that the total waiting times of the vehicles at an intersection are minimized (assuming an
optimization horizon that includes only these vehicles, whose waiting time depends on the
current traffic signal).

3.1.2. Stabilization Rule

The stabilization rule is based on two parameters Tavg and Tmax, indicating the average
waiting time and the maximum waiting time that can be incurred by each flow. These
parameters can be specified separately for each intersection or homogeneously throughout
the entire system. Using Tavg and Tmax, we define a critical threshold ncrit

i . When the
number of vehicles waiting for a given flow surpasses ncrit

i , the flow is added to a priority
queue and is served in the next service period. The ncrit

i is fully specified in Equation (2),
where Qi indicates the average arrival rate of flow i, and zi is the variable service interval
between two successive service processes for i:

ncrit
i = QiTavg

Tmax − zi
Tmax − Tavg

. (2)

3.2. Simulation Experiments

Two main components of the experiments were the analysis of the analytic approach—
the effects of its paramterization on performance—and its comparison with state-of-the-art
RL methods. The experiments were conducted in Cityflow [28]. The Cityflow simulator was
selected for its high-speed performance (as compared to, for example, SUMO). In addition,
most of the recent deep learning methods applied to traffic signal control (including the
methods we reported in our experiments) have been implemented and tested in this
particular simulator.

For the comparison experiments, we were mostly interested in the adaptability of the
compared methods. The adaptability was expressed in terms of consistency of performance
across a variety of scenarios (increasingly different from the training scenario, in the case
of learning methods). Furthermore, the consistency of the performance across a given
flow distribution was also of interest. Hence, we report the variation in performance in
terms of the maximum and minimum values achieved on a given flow distribution by a
given method.

3.3. Scenarios

We ran the experiments on two scenarios representing parts of Atlanta and Hangzhou;
the road networks are visualized in Figure 2. Note that Atlanta had a much more irregular
network, while Hangzhou had a regular grid. Moreover, intersections in the Atlanta sce-
nario were heterogeneous (connecting four, three, and two roads), while, in the Hangzhou
road network, all intersections were the same (connecting four roads). We chose these
scenarios because they allowed us to test the methods in both heterogeneous and homoge-
neous settings. Furthermore, they have been used in many previous publications on these
topics, making it easier to compare across a spectrum of publications and methods [5,8,9].
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(a) Atlanta
(b) Hangzhou

Figure 2. The road networks of the two studied scenarios. The black lines represent roads, the blue
dots intersections.

In real world traffic systems, the flows change at different time scales (minutes, hours,
days, months). They might also be affected by unpredictable events such as accidents or
road work. Clearly, one of the key characteristics of a good traffic signal control method
is how well it can adapt to changing traffic conditions. Specifically, RL methods must
be tested in conditions that are different from the ones they were trained on. Therefore,
to test the adaptability of the compared methods, we generated a variety of traffic flows for
each of the two scenarios. These flows can be understood as representing different traffic
conditions that may result, for instance, due to disruptions or different times of day.

We followed the methodology from [9], where a Wasserstein generative adversarial
network (WGAN) was used to generate traffic flows from distributions away from the
training distribution (which is based on real world data). To make sure that the generated
traffic flows were realistic enough, some constraints were enforced through the loss function.
For example, the variation in the count of vehicles between two adjacent time intervals
could not differ too much. The exact details of the implementation can be found in [9].

We generated four traffic flow distributions away from the training distribution by
0.005, 0.01, 0.05, and 0.1, in terms of Wasserstein distance. For each distribution, we
generated ten flows, tested on all of them, and reported minimum, maximum, and mean
average travel times achieved by each method. In Table 2, we present the details of the
scenarios. As the Wasserstein distance from the initial training distribution increased, the
median entry time into the system decreased, leading to more vehicles being present in the
system at the same time, which increased the complexity of the system and difficulty of
controlling it. The number of vehicles also increased with the Wasserstein distance, which
again led to more complex traffic dynamics. The increase in the number of vehicles was
more pronounced for the Hangzhou scenario.

Table 2. The number of vehicles and their median entry time (s) into the system for all studied
scenarios. Median entry time represents the time at which half of all the vehicles have entered
the system.

Number of Vehicles Median Entry Time (s)

Scenario D0 D0.005 D0.01 D0.05 D0.1 D0 D0.005 D0.01 D0.05 D0.1

Atlanta 2530 2570 3060 3150 3120 1928 1938 1856 1846 1676
Hangzhou 5397 6447 7434 7875 8106 1941 1923 1894 1838 1680

To study the effects of parameter settings on Analytic+, we ran the method on all
scenarios with five different parameter settings and reported the mean average travel
times achieved for each of the flow scenarios (ten different flows from each distribution).
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The parameter settings were selected according to their meaning. The first parameter
indicated the average wait time, while the second indicated the maximum wait time.
Therefore, they needed to be sufficiently different (with the second being higher) in order to
make sense. Generally, the lower the maximum waiting time, the better for the individual
drivers (but not necessarily better for the system’s global performance). We searched
through a varied range of parameters, from low (better for individuals) to high (potentially
better for the system). The results for the RL methods were taken from [9].

3.4. Compared Methods

In our studies, we compared the results of the Analytic+ against eight RL methods.
The full results are available in Appendix A, but, for the sake of brevity, we only present
the results of the three best performing methods in Section 4. These methods were chosen
because they were reported to have achieved state-of-the-art results when published and
were compared with many other learning algorithms (but not analytic baselines, which
was important for this paper). Moreover, the Generalight and Metalight methods explicitly
used a form of meta-learning, which was of particular interest and was highly applicable
to our problem statement. The hyperparameters of the learning methods and their im-
plementations have been given in https://github.com/only-changer/GeneraLight, this
repository (accessed on 26 June 2023), which follows [9]. The best hyperparameters for each
algorithm were assumed to have been worked out in [9] or in each publication introducing
the corresponding method, as referenced below. We described each agent in terms of
its states, rewards, and additional details. The actions of each agent were the same and
correspond to the phases given in Figure 1.

Specifically, the algorithms are listed below:

• Analytic+: The self-organizing method described in Section 3.1;
• Generalight: A meta-RL method based on a deep q-learning paradigm, using the

MAML framework [4] and clustering [9]. It outperforms other RL methods in sce-
narios that are different from the training scenarios. States: one-hot encoded vector
representing the current phase at the intersection and the numbers of vehicles on each
incoming lane and outgoing lane. Reward: the negative of the pressure of the inter-
section, which is a metric measuring the imbalance between outgoing and incoming
lanes [7];

• Colight: An RL method based on a deep q-learning paradigm, designed to handle
multi-intersection environments and using attention mechanism to share information
between neighbors. States: one-hot encoded vector representing the current phase at
the intersection and the number of vehicles on each incoming lane. Reward: the sum
of queue lengths of each incoming lane [5];

• Metalight: This method transfers knowledge between intersections, designed to
generalize to intersections with varied numbers of incoming and outgoing lanes.
States: one-hot encoded vector representing the current phase at the intersection and
the number of vehicles on each incoming lane. Reward: the average queue length of
incoming lanes [8].

It is worth noting that the Analytic+ method can be easily scaled to as large a number
of intersection as is needed. Since it does not require training, the cost of deployment is
constant. The cost of operation is low since the algorithm does not perform any costly
computations. On the other hand, the deployment cost of the learning algorithms is higher
as they need to be trained for each specific scenario.

4. Results

In this section, we report the results of the parameter study (Tables 3 and 4), as well as
the performance of the studied methods in the two scenarios (Figures 3 and 4).

https://github.com/only-changer/GeneraLight
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Table 3. Mean of the average travel times in seconds achieved by the Analytic+ algorithm in the
Atlanta scenarios for different parameter settings. D. indicates the traffic flow type of the scenario in
terms of the Wasserstein distance from the D0 scenario. The best (lowest) average travel times are
shown in bold. Parameters set to ∞ correspond to the stabilization rule not being applied.

Avg. Travel Time(s)

Parameter Settings D0 D0.005 D0.01 D0.05 D0.1

Tavg = 60, Tmax = 120 85.5 86.0 393.1 664.2 1113.5
Tavg = 120, Tmax = 240 84.0 83.9 93.8 307.8 232.6
Tavg = 240, Tmax = 360 83.8 84.2 93.9 289.4 315.1
Tavg = 360, Tmax = 480 83.9 84.0 93.9 276.1 353.0

Tavg = ∞, Tmax = ∞ 83.9 84.0 93.9 292.3 363.7

Table 4. Mean of the average travel time in seconds achieved by the Analytic+ algorithm in the
Hangzhou scenarios for different parameter settings. D. indicates the traffic flow type of the scenario
in terms of the Wasserstein distance from the D0 scenario. The best (lowest) average travel times are
shown in bold. Parameters set to ∞ correspond to the stabilization rule not being applied.

Avg. Travel Time(s)

Parameter Settings D0 D0.005 D0.01 D0.05 D0.1

Tavg = 60, Tmax = 120 542.2 645.5 763.1 851.1 995.8
Tavg = 120, Tmax = 240 438.0 504.4 625.9 735.4 842.5
Tavg = 240, Tmax = 360 398.4 423.6 448.8 537.5 640.9
Tavg = 360, Tmax = 480 400.8 425.3 445.0 554.1 648.9

Tavg = ∞, Tmax = ∞ 396.7 417.0 442.8 557.3 660.8

0 0.005 0.01 0.05 0.1
Wasserstein Distance From Training Scenario

250

500

750

1000
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Atlanta
Analytic+
Generalight
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Metalight

Figure 3. The performance, in terms of average travel time (seconds), of the compared methods
in the Atlanta scenarios. The variability intervals represent the minimum and maximum values
achieved for a given set of scenarios; the mean is marked on the line. Lines are guides to the eye only,
to indicate trends.

0 0.005 0.01 0.05 0.1
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Av
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Figure 4. The performance, in terms of average travel time (seconds), of the compared methods in
the Hangzhou scenarios. The variability intervals represent the minimum and maximum values
achieved for a given set of scenarios; the mean is marked on the line. Lines are guides to the eye only,
to indicate trends.
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4.1. Analytic+ Parameter Study

Table 3 shows that, for the Atlanta scenarios, a good choice of parameters (w.r.t. avg.
travel time) was Tavg = 120, Tmax = 240. This setting produced the lowest avg. travel
times in three out of five flow scenarios. Note that the differences for flows D0, D0.005,
and D0.01 were minimal; they increased for D0.05 and were even greater for D0.1. Tavg = 60,
Tmax = 120 was by far worse than the other settings, with D0.01, D0.05, and D0.1.

Based on Table 4, the optimal parameters for the first three flow scenarios of the
Hangzhou scenarios were T = ∞, Tmax = ∞, and, for the last two, T = 240, Tmax = 360.
The difference between the two parameter settings for the first three flow scenarios was
very small (around 1%). For the last two flow scenarios, they were larger (around 3%).
Since we considered the last two scenarios to be more complex (because they were most
different from the training scenario), we preferred to use T = 240, Tmax = 360 as the
optimal parameter settings.

Note that the optimal parameter setting for the Hangzhou scenarios is different from
the Atlanta scenarios, showcasing that these parameters are dependent on the flows and
road networks. In the following, we used T = 120, Tmax = 240 for Atlanta and T = 240,
Tmax = 360 for Hangzhou.

4.2. Comparison Study

Figure 3 shows the average travel time achieved in each of the compared methods
on the Atlanta scenarios. In all five flow scenarios, the Analytic+ achieved better mean
performance, in most cases with relatively tight variability intervals. It allows for approxi-
mately two times lower travel times in four out of five flow scenarios when compared to
Generalight—the next-best method. Generalight and Metalight achieved similar results
for the first three scenarios but diverged for the last two scenarios, where Generalight was
superior. Moreover, Analytic+ also had the smallest variability intervals in four out of five
flow scenarios, meaning it performed more consistently over scenarios sampled from the
same distribution than the other methods.

Figure 4 displays the performance of the compared methods for the Hangzhou sce-
narios in terms of average travel time. Here, Analytic+ performed at the same level as
Generalight in all five flow scenarios. Colight was significantly worse than both Generalight
and Analytic+. Again, Analytic+ displayed the smallest variability intervals for all flows.
Metalight performed worse than the other two RL methods, unlike in the Atlanta scenario,
where it performed better than Colight .

Exact numerical results, along with comparison with additional methods, are available
in Appendix A.

5. Discussion

The immediate impression from our results is that reinforcement learning methods do
not appear to handle heterogeneity well. While Analytic+ and Generalight performed at a
comparable level in the homogeneous, grid-like Hangzhou street network, Analytic+ was
twice as good as Generalight in the heterogeneous artery of Atlanta. This might occur due to
different lengths of incoming lanes in Atlanta scenario, as has been observed in [29]. Moreover,
the heterogeneity of intersection (difference in the number of incoming lanes) might negatively
affect RL’s ability to generalize [8]. Analytic+ does not appear to be affected—it can deal well
with heterogeneity, both in terms of lane lengths and the number of lanes.

Moreover, in both scenarios, Analytic+ had the smallest variation in performance,
indicating that it performs consistently well over any flow drawn from a given distribution.
The same was not true for RL agents, some of which were strongly inconsistent, even across
flows drawn from the same distribution (e.g., Colight). It is also clear (Appendix A) that
most of the RL methods, other than Generalight , performed at a sub-optimal level in both
scenarios across all distributions.

One of the limitations of this study is that it only compares the performance in terms
of one metric—the average travel time. Nevertheless, there are other important metrics
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that can be taken into account, including waiting times (which can be optimized by the
Analytic+ stabilization rule; (as such, Analytic+ is expected to perform very well again).
A multi-objective approach to traffic optimization and comparison of methods across more
than one metric will be a future direction of research.

Furthermore, a potential future extension is to learn the optimal parameters of the
Analytic+ using RL methods. Thus, we could combine the benefits of deep learning with
the benefits of the self-organization. Since Analytic+ parameters are explainable, the results
learned by an RL agent could be easily validated.

Nevertheless, this traffic signal control problem seems highly relevant to the com-
plexity as well as machine learning community. It provides a real-world example of a
complex system which proves highly challenging for traditional deep learning as well
as meta-learning algorithms. The need for lifelong adaptation is also clear in the traffic
system, where unpredictable events such as accidents, jams, and roadwork can occur daily
(the effects of such disruptions on learning algorithms in the context of traffic has been
investigated in [30]). In order for a traffic signal control algorithm to be actually useful, the
learning algorithm would need to enable continuous learning and be highly adaptable.

Moreover, this study raises a question of the applicability of deep learning to control
of complex systems in general. This question should certainly be further studied; the
most promising methodologoies appear to be meta-learning approaches. The non-learning
baseline that we provide makes it easier to propose and compare new effective algorithms
for this particular problem setting.

In conclusion, we have investigated the applicability of deep learning and self-
organization methods to complex systems, exemplified by an urban traffic system. We
have shown that the self-organization method can achieve better or comparable results to
deep learning, while not requiring any training, in addition to being explainable and fair.
Apparently, there is more work to be performed if deep learning is to be used in the field
of complex systems. Clearly, deep learning has great potential (especially meta-learning,
in the context of complex systems), but, in order for it to be fully realized, it needs to be
approached critically and challenged against strong, non-deep learning baselines. We have
provided an approachable setting in which the performance of learning and non-learning
control methods can be studied in a complex system. We have also provided a strong,
non-learning baseline for this system. We hope that our contribution will make it more
accessible for future researchers to study and design learning approaches that can work
well in the challenging domain of complex dynamic systems.
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Appendix A. Additional Results

Here, we present the full results of the comparison experiments. The additional
methods are listed here:

• DQN: Simple deep q-network approach. Uses vehicles’ positions as states [6];
• PressLight: State-of-the-art RL method. Uses number of vehicles on incoming and

outgoing lanes, current phase as state, and pressure as the reward [7];
• +MAML: Adds the MAML RL framework to a given method [4].
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Table A1. Performance of all methods in the Atlanta scenarios, in terms of average travel time (seconds). The best methods are shown in bold.

Model

Avg. Travel Time(s)
D0 D0.005 D0.01 D0.05 D0.1

Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean

DQN 301.7 255.5 280.3 297.1 241.8 266.1 577.1 349.1 399.9 690.1 375.5 441.9 991.3 578.3 755.3
+MAML 264.3 201.3 226.5 237.8 194.0 214.8 517.9 299.2 344.8 641.9 345.0 414.5 983.2 525.3 742.1

PressLight 472.0 207.2 286.9 477.3 198.0 277.6 561.0 297.0 346.2 631.6 383.3 430.4 968.0 684.4 859.7
+MAML 223.0 189.5 210.1 230.9 195.8 218.5 370.8 266.2 306.4 435.7 361.9 394.3 994.5 551.8 669.8

MetaLight 206.9 176.8 196.5 258.4 177.0 209.6 463.1 279.9 338.9 583.3 386.3 429.9 991.2 616.5 819.2

CoLight 580.7 195.5 433.3 593.6 187.1 435.2 785.4 256.6 579.1 903.4 421.9 797.5 911.1 526.5 849.2
+MAML 632.6 140.9 427.3 600.0 190.2 290.4 869.4 255.1 558.7 919.4 580.5 794.0 992.9 527.1 847.3

GeneraLight 194.5 165.1 180.3 200.0 167.7 181.6 283.4 232.8 253.9 363.3 298.5 329.0 646.6 409.0 554.2

Analytic+ 86.5 82.9 84.0 85.8 82.0 83.9 96.7 92.5 93.8 532.8 230.3 307.8 263.3 196.7 232.6

Table A2. Performance of all methods in the Hangzhou scenarios, in terms of average travel time (seconds). The best methods are shown in bold.

Model

Avg. Travel Time(s)
D0 D0.005 D0.01 D0.05 D0.1

Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean

DQN 979.1 846.6 921.0 1016 935.7 986.7 1069 964.1 1010 1127 1024 1088 1284 1209 1249
+MAML 530.1 394.8 448.2 605.0 462.0 529.5 707.9 504.2 617.0 855.8 715.7 781.0 1147 884.4 1021

PressLight 395.9 384.6 389.9 435.8 415.7 426.6 484.2 436.2 460.3 662.0 565.7 592.9 855.1 749.2 813.4
+MAML 468.1 395.6 424.0 597.9 468.9 520.5 712.4 569.1 634.5 909.8 665.9 801.4 1100 817.0 1004

MetaLight 514.4 475.0 497.2 587.3 512.0 545.6 671.6 580.5 637.8 843.3 719.9 767.4 937.9 814.2 861.1

CoLight 425.6 368.7 383.9 603.0 387.7 456.4 721.5 402.7 537.8 887.9 517.1 624.1 1040.4 726.2 880.2
+MAML 402.7 390.9 397.5 490.4 424.8 452.0 531.7 458.6 482.9 643.1 513.0 570.2 785.4 638.0 718.3

GeneralLight 385.1 376.3 380.0 410.2 393.6 402.0 458.7 409.4 432.2 582.0 443.5 493.5 652.2 579.8 622.5

Analytic+ 403.2 395.4 398.4 428.3 419.3 423.6 452.0 444.2 448.8 548.5 526.4 537.5 682.3 616.3 640.9
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