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Abstract: The thermodynamics of solid (hcp) 4He is studied theoretically by means of unbiased Monte
Carlo simulations at finite temperature, in a wide range of density. This study complements and
extends previous theoretical work, mainly by obtaining results at significantly lower temperatures
(down to 60 mK) and for systems of greater size, by including in full the effect of quantum statistics,
and by comparing estimates yielded by different pair potentials. All the main thermodynamic
properties of the crystal, e.g., the kinetic energy per atom, are predicted to be essentially independent
of temperature below∼ 1 K. Quantum-mechanical exchanges are virtually non-existent in this system,
even at the lowest temperature considered. However, effects of quantum statistics are detectable in
the momentum distribution. Comparison with available measurements shows general agreement
within the experimental uncertainties.
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1. Introduction

Among naturally occurring substances, the solid phase of helium (which is stable only
under applied pressure) represents a unique example of “quantum crystal”, i.e., one in
which quantum mechanics most considerably and observably affects its thermodynamic
properties [1]. The most direct manifestations include a kinetic energy per particle markedly
above its classical value 3T/2 (we adopt a system of units in which the Boltzmann constant
kB = 1); quantitative theoretical predictions for such excess kinetic energy have been
made [2] for all rare gas solids, and there exist a number of experimental confirmations (see,
for instance, Ref. [3]). For the rare gas solids of elements heavier than helium, however, the
excess kinetic energy is essentially the only measurable manifestation of their quantum-
mechanical nature. Other relevant physical properties (e.g., the momentum distribution)
can be largely understood along classical lines.

In solid helium, on the other hand, the classical picture is quantitatively altered by
zero-point motion, which is nowhere near as important in other solids (with the sole ex-
ception, albeit not to the same extent, of molecular hydrogen [4]. This includes enhanced
atomic excursions away from the equilibrium (lattice) positions, with respect to what is
predicted and observed in most solids, based on classical (thermal) arguments. Indeed, for
a long time, zero point motion was believed to be the physical reason underlying the failure
of liquid helium to solidify, under the effect of its own vapor, a view that has relatively re-
cently been challenged, as quantum statistics (i.e., exchanges of indistinguishable particles)
has been shown to play a pivotal role in the stabilization of the crystal phase, at least in
4He [5]. In solid 3He, exchanges have been proposed as the physical agent responsible for
the stabilization of the bcc over the hcp crystalline phase [6].

As helium can be regarded as the archetypal quantum crystal, it poses a challenge
to many-body theorists; achieving an accurate microscopic description, based on realistic
interatomic potentials, capable of making reliable predictions for experimentally cogent
quantities, is a worthwhile goal in theoretical condensed matter and many-body physics.
Of particular interest are calculations in which the fundamental quantum-mechanical
equations are treated without any uncontrolled approximations. Ideally, one starts from a
microscopic Hamiltonian in which the only external (independent) input is the potential
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energy of interaction among atoms.
Experimentally, the bulk of the available information on the solid phase of helium has

been delivered by X-ray [7–10] and neutron [11–17] scattering measurements, whose main
outcome is the thermodynamic equation of state, as well as single-atom dynamics through
the momentum distribution, from which the mean atomic kinetic energy can be inferred
[18]. On the theoretical side, Path Integral Monte Carlo simulations have played a major role
in shaping our current understanding of the physics of condensed helium in the condensed
phase [19,20]. These are unbiased calculations which involve no a priori physical assump-
tions. Indeed, only two main assumptions are built into the (almost) totality of PIMC
simulations, namely (a) that He atoms, which are taken as the elementary constituents (see
discussion below) can be regarded as distinguishable particles, as quantum-mechanical
exchanges are suppressed in the solid phase, due to atomic localization and (b) that the
bulk of the potential energy of interaction among the helium atoms can be captured by
a pair-wise, central potential featuring a repulsive core at short interatomic separation;
three-body interaction terms are neglected.

The development of an accurate, ab initio pair potential, describing the interaction of
two helium atoms, has been the subject of an intense theoretical effort spanning nearly a
century and still ongoing [21–24]. The first pair interaction to have been extensively used
in PIMC simulations whose results have been compared to available experimental data
for the superfluid phase of 4He [25] is the earliest version of the Aziz pair potential [22].
The agreement between theory and experiment afforded by that potential is generally
satisfactory, as confirmed by subsequent studies [26,27] overcoming the main limitations of
the original calculation, mainly the relatively small size of the simulated system (64 atoms).

For the solid phase, on the other hand, the comparison of experimental and theoretical
estimates has been considerably more limited in scope, for a number of reasons. The most
important is the simple fact that the wealth of experimental data available for the superfluid
phase [28] is presently unmatched in the crystal. The resurgence of interest in the solid
phase of helium that took place two decades ago, following the report of possible “super-
solid” behavior [29], prompted new investigations, significantly expanding the available
comparison dataset. However, assessing different theoretical calculations is complicated
by the plethora of helium pair potentials [24,30–36] that have been proposed and utilized
since Ceperley and Pollock’s 1986 calculation.

Many of these potentials are either refinements of, or at any rate based upon the
original Aziz model interaction; the differences among them are often relatively small
and pertain to specific features, such as the depth of the attractive well, or the behavior
of the repulsive core at short interatomic separation. To be sure, some of these aspects
become quantitatively important as the system is compressed, and for pressures, e.g., in the
megabar range, three-body interactions must be included in order to achieve a quantitative
reproduction of the experimental EOS [37,38]. It is not clear, however, how sensitive to
the details of the pair interaction are the most important experimental quantities, e.g., the
single-particle kinetic energy, especially at low pressure (less than ∼ 100 bars).

We present here the results of PIMC simulations of the hcp phase of 4He at low
temperature (typically around 1 K, but also as low as . 0.1 K for specific densities), in a
range of pressure between 25 and 150 bars. We consider a perfect helium crystal, namely
one free of point (e.g., vacancies or interstitials) or extended (e.g., dislocations) defects. We
make use of different versions of the Aziz pair potential and compare the results for the
single-particle kinetic and total energy per atom and for the pressure to the most recent ex-
perimental estimates. For the physical quantities considered here, agreement with available
experimental data seems satisfactory; the differences between the estimates yielded by the
different potentials are typically (much) smaller than the experimental uncertainty. In other
words, in the region of parameter space considered here, all of the pair potentials that have
been utilized over the past two decades give essentially equivalent results. This study also
provides additional, strong evidence that a perfect crystal of 4He is not superfluid, at arbi-
trarily low temperatures. Indeed, quantum-mechanical exchanges of atoms remain strongly
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suppressed even at a temperature at low as 60 mK, at the melting density. Nevertheless, the
effects of quantum statistics are detectable in the one-body density matrix (and therefore,
experimentally, in the momentum distribution). We also compare our low-temperature
energy estimates to recent ground-state Monte Carlo calculations; the comparison again
points to the greater reliability of finite temperature techniques.

This paper is organized as follows: in Section 2 we describe the model of interest and
briefly review the computational technique utilized; in Section 3 we present our results,
offering a discussion in Section 4.

2. Model and Methodology

The system is described as an ensemble of N point-like, identical particles with a mass
m equal to that of a 4He atom, and with spin zero, thus obeying Bose statistics. This is where
a basic assumption is built into the model, namely the Born-Oppenheimer approximation,
which allows us to integrate out the electrons and regard 4He atoms as elementary particles.
At ordinary conditions of temperature and pressure, this procedure is justified by the large
decoupling between electronic and ionic energy scales. In different physical settings, e.g.,
in the interior of Jovian planets, such separation is no longer possible, and one has to take
into account electronic and ionic degrees of freedom separately [39], but, in this study, we
regard the individual 4He as our elementary constituents.

The system is enclosed in a cell of volume Ω so that n = N/Ω is the nominal density.
The cell is shaped like a cuboid, with periodic boundary conditions in all three directions.
The sizes are adjusted to fit a perfect classical crystal, with no defects.

The quantum-mechanical many-body Hamiltonian reads as follows:

Ĥ = −λ ∑
i
∇2

i + ∑
i<j

v(rij) (1)

where the first (second) sum runs over all particles (pairs of particles), λ ≡ h̄2/2m =
6.0596415 KÅ2, rij ≡ |ri − rj| and v(r) is the pair potential which describes the interaction
between two helium atoms. As mentioned in the Introduction, several different forms
for v have been used in this study. Most of the results shown here were obtained with
the original (1979) Aziz pair potential [22] (henceforth referred to as Aziz I), which is
largely phenomenological, the result of a careful combination of all available theoretical
and experimental data for the interaction of two helium atoms in the gas phase. The Aziz
I pair potential has been shown to provide a rather accurate quantitative description of
the superfluid phase of 4He [19]. Generally speaking, at high density (in both the liquid
and solid phases), the pressure obtained from calculations based on the Aziz I potential
is higher than the experimentally measured one, signaling that the Aziz I potential is too
“stiff” at short distances and/or the presence of attractive forces, presumably arising from
the interaction of clusters of atoms (e.g., triplets).

Two different strategies have been pursued, in order to improve the agreement be-
tween theory and experiment. In the effective potential approach [40], one attempts to
incorporate three-body effects into a single pair potential, which is parameterized to re-
produce the experimental equation of state. Alternatively, and this is the approach that
has been most extensively considered in recent times, the aim is that of moving away
from empirical, parametrized forms, utilizing instead expressions arising from ab initio
quantum chemistry calculations. In that case, three-body terms are included as separate
contributions, and this is the spirit in which the original Aziz potential has been subse-
quently refined and other versions proposed. The result has been typically that of slightly
worsening the agreement between theory and experiment, which would then be improved
by the explicit inclusion of three-body terms [41,42]. As mentioned above, however, no
systematic comparison has been carried out of different versions of the Aziz pair potential
when it comes to reproducing the physical properties of the solid phase of helium at low
pressure, where the effect of three-body interactions is expected to be small. Here, for
comparison purposes we are going to show results obtained with the Aziz I potential, as
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well as with the versions thereof proposed in 1987 [30] (Aziz II) and 1995 [33] (Aziz III).
We performed QMC simulations of the system described by Equation (1), based on

the canonical version [43,44] of the continuous-space Worm Algorithm [26] based on Feyn-
man’s space-time approach to quantum statistical mechanics [45]. Since this methodology
is extensively described in the literature, it will not be reviewed here; rather, all the relevant
technical details will be provided, enabling others to attempt to reproduce the results
presented here. The first aspect to discuss is that in all the simulations carried out in this
study, 4He atoms are treated as indistinguishable, i.e., the many-particle paths in imaginary
time are allowed to “entangle”, with particles trading places [19,45]. Previous attempts
to assess quantitatively, by computer simulation, the importance of quantum statistics in
a perfect crystal of helium concluded that the effect was negligible [46,47]; in this work,
we extend those studies to lower temperatures. We note that the WA has been shown
particularly effective at sampling permutations of identical particles, and therefore we may
be reasonably confident that failure to detect a significant presence of exchanges should
constitute a true physical reflection of the nature of the system, as opposed to possible
algorithmic inefficiency.

Details of the simulation are standard; the short-time approximation to the imaginary-
time propagator used here is accurate to fourth order in the time step τ (see, for instance,
Ref. [48]). We have carried out numerical extrapolation of the estimates to the τ → 0 limit,
and observed convergence of the thermal averages for a value of τ = 3.125× 10−3 K−1

for all quantities of interest here. Figure 1 shows the extrapolation procedure for the
kinetic energy per atom, ek. Standard estimators were used for all the energetic properties,
including the well-known virial estimator for the pressure [19].

Figure 1. Time step extrapolation of the kinetic energy per particle ek(K) in hcp 4He at temperature
T = 1 K, for a system comprising N = 216 atoms. The density is n = 0.0286 Å−3. The results are
obtained with the Aziz I pair potential. The solid line is a quartic fit to the data. Arrow points to the
value of τ for which convergence is observed.

Physical quantities of interest calculated in this study include, besides pressure and
energetics, structural correlations such as the pair correlation function, which is related to
the experimentally accessible static structure factor. We have carried out simulations for
systems of different sizes, the largest comprising N = 512 atoms. In general, we found that
the numerical estimates of eK obtained on a simulated system comprising N = 216 atoms
are indistinguishable, within statistical uncertainties, from those obtained on systems
of larger sizes. The range of system sizes considered in this work gives us reasonable
confidence in our ability to gauge finite-size effects, i.e., that the numerical values quoted
herein are representative of the thermodynamic limit, within their statistical uncertainties.

For the calculation of the (potential) energy per particle and the pressure, we estimated
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the contribution of particles outside the main simulation cell by assuming a value of the
pair correlation function g(r) = 1, for r greater than half the (shortest) cell side. Based on
the observed quantitative consistency (within statistical uncertainties) of results for systems
of different sizes, we contend that this procedure is numerically reliable. We come back to
this point more quantitatively when discussing our results.

3. Results
3.1. Effect of Temperature

We begin by discussing the effect of temperature on the energetics and structure of
solid 4He. All of the calculations whose results are illustrated in this subsection were
carried out using the Aziz I pair potential (1979).

The left (right) panel of Figure 2 shows the computed kinetic energy per 4He atom
in a hcp 4He crystal of density 0.0286 (0.0312) Å−3, in the temperature range T < 1.5 K,
the lowest temperature being T . 0.1 K. The higher value of density corresponds to a
pressure close to 56 bar; the lower value is very close to the T = 0 melting density and
yields a computed pressure of approximately 25 bars (in both cases the pressure is nearly
temperature-independent). Also shown for comparison are the most recent experimental
estimates of the kinetic energy per atom in solid helium, namely those of Ref. [16].

Figure 2. Kinetic energy per 4He atom ek computed as a function of temperature, for a hcp crystal of
density 0.0286 (0.0312) Å−3, left (right) panel. The simulated system comprises N = 216 atoms, and
the interatomic potential utilized is the Aziz I (1979). Dashed lines represent fits to the data, based
on a constant value. Experimental data shown on the right panel are from Ref. [16]. Not shown in
the left panel is the experimental result from Ref. [15] at T = 1.6 K and n = 0.0288 Å−3, namely
24.25(30) K.

The two experimental works with which a comparison seems meaningful are Refs. [15,16].
The comparison of theoretical and experimental estimates shows quantitative agreement,
taking into account the relatively large uncertainty in the experimental determination of
the kinetic energy, as well as the uncertainty on the quoted values of the density in Ref. [16]
and the slight differences in temperature.

Within the statistical uncertainties of our calculation, no significant dependence on
the temperature of the kinetic energy per atom can be detected in the temperature range
considered. This is consistent with the observation made in previous theoretical [49] and
experimental [16] work (see Figure 2). We generally find this to be the case for all the basic
energetic properties, namely kinetic and total energy per atom, as well as the pressure
and for structural correlation as well, in the entire range of density considered in this
work. Henceforth, therefore, unless otherwise stated, all of the results quoted here are
at temperature T = 1 K, which can be for all practical purposes considered equivalent
to the ground state for the helium crystal. We come back to a more comprehensive and
quantitative discussion of our results for the energetics of the helium crystal in Section 3.3.

Figure 3 displays the spherically averaged pair correlation function g(r), computed
by numerical simulations at temperature T = 1 K, for three different densities, namely
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n = 0.0286 Å−3, which corresponds to a pressure of approximately 25 bars, n = 0.0312 Å−3,
for which the computed pressure is 56 bars, and the highest density considered here, namely
n = 0.0353 Å−3, for which the pressure is 141 bars. These are results obtained using the
Aziz I potential, but as we show more quantitatively below, the differences in the values of
the pressure computed with different versions of the Aziz potential are relatively small (of
the order of a fraction of a bar), in the range of densities considered here. These values of the
pressure (and all others reported in Table 1 below) are in excellent quantitative agreement
with the experimental equation of state of Driessen, van der Polls and Silvera [50,51].

Figure 3. Spherically averaged pair correlation function g(r) in hcp solid 4He at three different
values of the density, at T = 1 K. The calculations whose results are shown here were performed on a
system comprising N = 216 atoms.

The calculations whose results are shown in Figure 3 were performed on a system
comprising N = 216 atoms. As shown in Figure 3, the value of the pair correlation
function g(r) is very close to unity, giving us confidence that the approximation utilized to
compute the contribution to the potential energy and to the pressure, namely assuming
g(r) = 1 outside the simulation cell, is quantitatively reliable. One might think of such
a procedure as being somewhat “crude”, but its use is justified, in practice, by both the
exponential decay of the fluctuations around unity of g(r), as well as the rapid (∼ 1/r6)
decay with distance of the pair potential. In order to obtain a numerical check, we have
carried out calculations on a system of N = 512 atoms. and computed the pressure
based on the same approximation. The results are all consistent with those obtained for a
system of N = 216 atoms; for example, at a density n = 0.0312 Å−3 we obtain a pressure of
56.3(5) bars at T = 1 K, on a system of N = 512 atoms.

3.2. Effects of Quantum Statistics

As mentioned in the introduction, the calculations carried out in this work fully in-
clude the effect of quantum statistics, which means that exchanges of indistinguishable
helium atoms are allowed. However, the frequency with which they occur remains exceed-
ingly low, even at the lowest temperature and density considered here. For example, at
n = 0.0286 Å−3, which is very close to the T = 0 melting density, and at a temperature as
low as T = 0.0625 K, the measured likelihood of a single 4He atom to be involved in an
exchange is less than one percent, three-particle exchanges occurring in the basal plane
being overwhelmingly the most frequent. Within the statistical errors of our calculation,
the effects of Bose statistics on the energetic properties of the helium solid are essentially
not detectable. We carried out a separate simulation in which 4He atoms are treated as
boltzmannons, i.e., distinguishable quantum particles, and estimate the kinetic energy per
atom to remain unchanged, within our statistical uncertainties, as a result of the neglect of
quantum statistics.
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That is not to say, however, that quantitative effects of quantum statistics cannot be ob-
served, chiefly in the momentum distribution, which is experimentally measurable [15,17].
Specifically, effects of Bose statistics have been observed in solid 4He near melting, at a
temperature as high as 1.6 K, through an enhancement of the momentum distribution
at low momenta, compared to what one would predict based on a theoretical approach
neglecting quantum statistics.

Our calculations confirm such predictions. Figure 4 displays the spherically averaged
one-particle density matrix n(r), which is defined as

n(r) =
1

4πΩ

∫
dα d3r′ 〈Ψ̂†(r + r′) Ψ̂(r′)〉 (2)

where 〈. . . 〉 stands for thermal average, Ψ̂ and Ψ̂† are the usual Bose field operators and the
integration dα is over the solid angle of r. The one-body density matrix is connected to the
momentum distribution through a Fourier transformation. The comparison of the one-body
density matrix computed with the full inclusion of quantum statistics with that which arises
from an identical calculation in which helium atoms are considered distinguishable (dotted
line in Figure 4) shows how the former extends to considerably longer distances, roughly
up to three lattice constants. This can be attributed to the increasing particle delocalization
associated with quantum-mechanical exchanges. and is consistent with the observation that
three-particle ring exchanges are the most frequent. The enhancement of the n(r) at large
distances corresponds to a strengthening of the momentum distribution at low momenta.
It is worth noting that a similar manifestation of Bose statistics can be observed in the
momentum distribution of other Bose fluids and crystals, e.g., in liquid parahydrogen near
freezing [52].

The results shown in Figure 4 also support the conclusions reached in early Monte
Carlo studies [46,47], namely that in a perfect crystal of 4He the one-body density matrix
decays exponentially at large distances, displaying no noticeable dependence on the tem-
perature, i.e., there is no Bose-Einstein condensation in the T → 0 limit [53]. Indeed, all
credible scenarios of possible “supertransport” in the solid phase of 4He involve extended
defects such as dislocations [54–56]; there is overwhelming evidence that supersolidity
is not underlain by point defects such as vacancies or interstistials [57,58]. Otherwise,
theoretical work carried out mainly over the past two decades indicates that the existence
of a supersolid phase requires that the pairwise interaction among particles not feature the
kind of repulsive core that characterizes instead helium and other rare gas solids [59].

Figure 4. Spherically averaged one-body density matrix n(r) in hcp solid 4He at three different
temperatures. The density is n=0.0286 Å−3, and the simulated system comprises N = 216 atoms.
Dotted line represents the T = 1 K estimate for a 4He crystal in which atoms are regarded as
distinguishable (boltzmannons).
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3.3. Energetics

All of our results for the energetics of solid 4He are compiled in Table 1. We provides
estimates for the total energy per atom e (in K), as well as for the kinetic energy ek (also in K)
and for the pressure, obtained with different versions of the Aziz pair potential, specifically
the Aziz I, Aziz II and Aziz III.

Table 1. Energetics of solid 4He computed at T = 1 K by Monte Carlo simulations based on the
continuous space WA. The total energy per particle e (in K) is shown, as well as the kinetic energy ek
(in K), and pressure in bars. The results mainly show the Aziz I [22] pair potential, but for comparison
purposes, some results are included for the calculations based on the Aziz II [30] and Aziz III [33]
pair potentials. The results presented in this table pertain to the calculations for a system comprising
N = 216 atoms. The statistical errors (in parentheses) are on the last digit. They are not explicitly
shown for the pressure, as they are consistently of the order of half a bar. Shown within square
brackets are the ground state estimates from ref. [60].

n (Å−3) e (K) ek (K) Pressure (bars) Potential

0.0286 −6.00 (2) 23.96 (2) 24.9 Aziz I
0.0286 −6.31 (2) 23.93 (2) 24.0 Aziz II
0.0286 −6.21 (2) 24.07 (2) 24.1 Aziz III

0.0294 −5.94 (3) 25.11 (2) 33.4 Aziz I
0.0294 −6.02 (2) 25.22 (2) 33.1 Aziz III

0.0301 −5.64 (2) 26.06 (2) 41.7 Aziz I
0.0301 −5.79 (2) 26.30 (2) 40.7 Aziz III

[−5.73 (1)] [26.40 (7)] Aziz III

0.0312 −5.20 (2) 27.75 (1) 57.0 Aziz I
0.0312 −5.52 (2) 27.75 (2) 55.1 Aziz II
0.0312 −5.41 (2) 27.92 (2) 56.7 Aziz III

0.0329 −4.48 (3) 30.46 (3) 85.6 Aziz I
0.0329 −4.59 (2) 30.62 (1) 85.6 Aziz III

[−4.50 (1)] [30.82 (9)] Aziz III

0.0353 −2.74 (2) 34.41 (2) 140.7 Aziz I
0.0353 −2.89 (2) 34.73 (2) 141.5 Aziz III

[−2.83 (1)] [34.79 (8)] Aziz III

The first general remark, regarding the dependence of results on the pair potential
utilized in the calculation, is that the differences are very small, much smaller than the
current experimental uncertainties. In general, newer versions of the Aziz pair potential
yield an energy per atom some ∼ 0.2 K lower than that afforded by the original (Aziz I)
potential. On the other hand, the pressure estimates are very close, whereas those for the
kinetic energy are virtually identical for the Aziz I and Aziz II pair potentials, while the
Aziz III yields values that are between 0.1 and 0.2 K higher. There is otherwise no detectable
difference between the results obtained with the various versions of the Aziz potential for
quantities such as the one-body density matrix, or the pair correlation functions. Altogether,
given the typical uncertainties affecting the experimental determination of, e.g., the kinetic
energy, there scarcely seem to be compelling reasons to pick any of the various refinements
of the Aziz I potential (the only likely outcome being that of rendering more complicated
the comparison between different theoretical calculations).

As mentioned above, the inclusion of three-body terms in the potential energy of
interaction among helium atoms, becomes necessary in order to bring the computed
equation of state in agreement with experiment, at pressures significantly higher than those
considered in this work (e.g., in the MPa range). On the other hand, the effect on the kinetic
energy is rather small [37,38].
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Comparison with Recent Calculations

Also shown in Table 1 are the most recent estimates [60] published from solid 4He
in the same range of density considered here, all based on the Aziz III potential. These
results were obtained by means of Diffusion Monte Carlo simulations, i.e., they are strictly
speaking ground state estimates. However, given the weak dependence on the temperature
displayed by our results (shown in Figure 2) below 1 K, the comparison of our results,
which are at finite temperature, to those of Ref. [60] is quite appropriate. Within DMC,
Bose statistics can be incorporated by a proper choice of trial wave function [61], out of
which the exact ground state is (in principle) projected.

Taken individually (i.e., considering just one specific density) the energy estimates
obtained in this work may be considered in reasonable agreement with the DMC ones, in
that the differences may not be necessarily regarded as statistically significant. However,
the comparison across all density values consistently shows estimates at finite (T = 1 K)
temperature to be slightly lower than the (supposedly “exact”) T = 0 results. This situation
has been observed repeatedly during the past decades, for various Bose systems [62–64].
One may go back to the early GFMC [65] studies of solid 4He based on the Aziz I poten-
tial [66], yielding a value of the ground state per 4He atom of −5.175 K in the solid phase at
n = 0.02934 Å−3, almost 1 K higher than that obtained here (see Table 1). For a long time,
those estimates were held as reliable, largely due to the absence of experimental data and
of any alternative calculation.

Given that the DMC calculations carried out in Ref. [60] have comparable numbers of
atoms to those carried out here, and in any case finite-size effects on the energy are relatively
small, the most plausible explanation for the (small) discrepancy between their results and
ours can be ascribed to intrinsic limitations of the DMC projection method. Fundamental
reasons have been proposed as to why finite temperature methods are a superior option to
ground state ones, when it comes to studying the ground state of Bose systems [19], due to
various sources of bias from which finite temperature techniques are unaffected. Examples
of such sources of bias are the need for a trial wave function, which affects the estimation
of all the quantities, as well as the finite population of random walkers, whose effect can
be rather large [62,67].

There are also small differences between the results for the kinetic energy per particle
obtained in this work and those reported in Ref. [60]. This is less noteworthy than the
disagreement between total energies yielded by the two calculations, however, first of all
because the statistical errors on the kinetic energy quoted in Ref. [60] are fairly large, sec-
ondly because it is well-known that DMC does not allow for unbiased, reliable estimations
of thermodynamic averages of observables that do not commute with the energy.

4. Discussion

In this paper we present results of extensive numerical studies based on the continuous-
space WA, of the low-temperature properties of the solid phase of 4He. We focused on
a pressure interval ranging from approximately 25 bars (near the T = 0 melting line) all
the way to approximately 140 bars. The calculations made use of several versions of the
most popular interparticle pair potential traditionally utilized in computer simulation
studies of solid helium. We have compared the results of our simulations to available
experimental data, mainly for the EOS and for the kinetic energy per atom. The agreement
between theoretical results and existing experimental estimates is satisfactory; within the
experimental uncertainties, it is not possible to identify a specific version of the Aziz pair
potential that affords a closer reproduction of available experimental data. In general,
however, a theoretical model only including pairwise interactions appears sufficient to
obtain a reliable quantitative account of the energetics, structure, and dynamics of the
helium crystal, at least at moderate pressures.
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