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Abstract: Quantum synchronization has emerged as a crucial phenomenon in quantum nonlinear
dynamics with potential applications in quantum information processing. Multiple measures for
quantifying quantum synchronization exist. However, there is currently no widely agreed metric that
is universally adopted. In this paper, we propose using classical and quantum Fisher information
(FI) as alternative metrics to detect and measure quantum synchronization. We establish the con-
nection between FI and quantum synchronization, demonstrating that both classical and quantum
FI can be deployed as more general indicators of quantum phase synchronization in some regimes
where all other existing measures fail to provide reliable results. We show advantages in FI-based
measures, especially in 2-to-1 synchronization. Furthermore, we analyze the impact of noise on the
synchronization measures, revealing the robustness and susceptibility of each method in the presence
of dissipation and decoherence. Our results open up new avenues for understanding and exploiting
quantum synchronization.

Keywords: quantum synchronization; Fisher information; quantum information theory

1. Introduction

Synchronization is an emergent dynamic process that explains numerous phenomena
such as the flashing of fireflies (Photinus carolinus) in tandem [1], the clicking of pacemakers [2],
and the unusual sideward swaying of the Millenium bridge in London [3]. A key feature
of synchronization is the existence of self-sustaining oscillators coupled to each other or to a
driven oscillator.

Synchronization has yielded many interesting mechanisms for complex systems:
limit cycles, amplitude death, oscillation death, and so forth. Synchronization is also
intimately connected to chaos theory, where one speaks of the synchronization of chaotic
oscillators. Typically, synchronization revolves around the study of the behavior of an
oscillatory system under a periodic external force or the interaction between two or more
coupled oscillatory systems. In this regard, many different oscillators have been studied:
Stuart–Landau oscillators [4], Duffing oscillators [5], van der Pol oscillators [6], Kuramoto
oscillators [7], Rössler oscillators [8], and so forth. Depending on the situation and context,
different measures are proposed for measuring synchronization [9,10].

In recent years, there has been extensive work on quantum versions of classical
synchronization [11–14]. Instead of the classical phase space, one can investigate the Wigner
function and probe into the presence of an Arnold-like tongue. For more than one oscillator,
measures have been devised to detect the presence of quantum synchronization [15,16].
As in the classical case, we know less about quantum mixed synchronization. In the
classification of measures for continuous-variable quantum systems, authors have briefly
mentioned mixed synchronization for two oscillators with opposite momenta and its deep
connection to Einstein–Podolsky–Rosen pairs [16].
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Moreover, in the quantum regime, it is known that a limit-cycle oscillator with a
squeezing Hamiltonian can undergo a bifurcation where the Wigner function splits into
two symmetrical peaks [17]. In Ref. [18], the authors have investigated two quantum
oscillators that display peak synchronization at two different phases, with a phase of π
apart. In such cases, the system can be regarded as in-phase synchronization with the drive,
but the phase locking happens at two distinct phases. We refer to this phenomenon as
2-to-1 synchronization, and it is similar to the case described as mixed synchronization in
Weiss et al. [18].

Fisher information has been used as a measure of the ability to estimate an unknown
parameter or as a measure of the state of disorder of a system [19–23]. The quantum Fisher
information (QFI) serves as a crucial measure in quantum parameter estimation, providing
insights into the precision with which a quantum system can estimate an unknown param-
eter. QFI finds applications in various areas of quantum information science. In quantum
sensing, QFI provides a measure of the sensitivity of a quantum sensor to external per-
turbations, enabling the development of high-precision measurement devices. QFI is also
relevant to many-body entanglement [24–26] and quantum error correction [27,28], where
accurate estimation of parameters is essential. Despite its wide range of applications, it has
never been considered relevant for continuous-variable quantum synchronization.

In this paper, we look at various measures for the quantum synchronization of an
externally driven oscillator and explore the possibility of introducing Fisher information to
define quantum synchronization, especially for the general case of n-to-1 quantum synchro-
nization. This paper is organized as follows: In Section 2, we describe the driven quantum
Stuart–Landau oscillator and we discuss various possible measures of synchronization.
In Section 3, we study the behavior of the various measures of synchronization and discuss
2-to-1 synchronization in Section 4, the case where a squeezing term is added to the oscilla-
tor. There are different possible noises in such systems, and we investigate the effects of
noise in Section 5. In Section 6, we compare the correlations between the different measures.
Finally, in Section 7, we investigate the asymmetric case of 2-to-1 synchronization and make
some concluding remarks in Section 8.

2. Oscillator Model and Synchronization Measures

In this study, we investigate the quantum van der Pol oscillator (also known as
the quantum Stuart–Landau oscillator [29]) subjected to both single-photon drive and
two-photon squeezing drive. Both the van der Pol and Stuart–Landau oscillators are
important classes of nonlinear systems classically [2], and both of them have recently
been adopted to the quantum domain [12–14,30]. The quantum Stuart–Landau oscillator,
which is an approximation of the van der Pol oscillator to the first order, was deemed
the starting point of continuous-variable quantum synchronization, and still serves as the
paradigm in the current literature (but it is often still referred to as the quantum van der Pol
oscillator) [11,17,31–33]. The master equation in the rotating frame of the drive gives (with
h̄ = 1)

ρ̇ =− i[Ĥ, ρ] + γ1D[a†]ρ + γ2D[a2]ρ + γ3D[a]ρ
Ĥ =∆a†a + iE(a− a†) + iη(a†2e2iϕ − a2e−2iϕ), (1)

where D[L]ρ = LρL† − 1
2 (L†Lρ + ρL†L), γ represents the rate of decay, with γ1, γ2, and γ3

corresponding to negative damping, nonlinear damping, and linear damping, respectively.
∆ = ω0 − ωd is the amount of detuning between the frequency of the drive, ωd, and the
frequency of the oscillator, ω0. E is the amplitude of the harmonic drive, with a and a† being
the annihilation and creation operators. η is the squeezing parameter, with ϕ representing
the phase of squeezing.
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In this paper, we focus on the measures of quantum phase synchronization in an
externally driven oscillator. As a measure of phase synchronization, the phase coherence is
frequently used in the literature and defined as [11,18,33,34]

Spcoh =
Tr[aρ]√
Tr[a†aρ]

, (2)

where |S| measures the degree of phase coherence with a range of 0 ≤ |S| ≤ 1. Another
appropriate simple measure is based on the relative phase distribution [35,36]:

Speak = 2π max[P(Φ)]− 1, (3)

where the phase distribution is defined by P(Φ) = (1/2π)〈Φ|ρ|Φ〉with |Φ〉 = ∑∞
n=0 einΦ|n〉.

Speak represents the maximum value of P(Φ) compared to a uniform distribution. This
measure is valuable for detecting synchronization because it is exclusively nonzero when
P(Φ) deviates from a flat distribution.

It is well known that the phase operator is not well defined in quantum theory. How-
ever, most quantum harmonic oscillators are populated up to some finite levels, and we can
resort to the Pegg–Barnett phase operator. In Ref. [31], the mean resultant length (MRL),
which incorporates the Pegg–Barnett operator, has been proposed as a measure of synchro-
nization. It arises from the study of circular statistics [37] and was initially developed for
1-to-1 synchronization. However, it can be generalized to measure n-to-1 synchronization.
The n-th order mean resultant length (MRL(n)) of a circular distribution is given by

MRL(n) =
√
〈sin nφ〉2 + 〈cos nφ〉2 = |〈einφ〉|. (4)

This measure is capable of capturing n-to-1 synchronization, which exhibits multiple
peaks in the phase distribution P(Φ) and fixed points in the quasi-probability phase-space
distribution, e.g., Wigner function.

Fisher information proves to be an important tool for determining classical synchro-
nization in a system of Kuramoto oscillators [38,39]. It has been mooted as a good measure
for phase drift in clock synchronization, both classical and quantum [40–43]. It is also a use-
ful measure in classical signal processing [44], being intimately related to the Cramer–Rao
bound. The quantum Fisher information (QFI) is defined as the expectation of L2

ρ, with Lρ

being the Symmetric Logarithmic Derivative [45], which measures the distinguishability in
the space of density matrices. For a driven quantum limit-cycle oscillator, in which the prob-
ability distribution along the limit cycle is attracted and concentrated onto one (or more)
fixed point, measuring such distinguishability is equivalent to measuring the kurtosis [46]
of the distribution (how peaked the distribution is). Motivated by these works, we propose
the quantum Fisher information as a measure of quantum phase synchronization [47],
which is defined mathematically in a compact form:

QFI = FQ[ρ, Â] = 2 ∑
k,l

(λk − λl)
2

(λk + λl)
|〈k|Â|l〉|2, (5)

where λk,l and |k, l〉 are the eigenvalues and eigenvectors of the steady state ρ = ρss. We
use Â = a†a to measure the phase uncertainty in the steady state.

Phase synchronization is closely related to the phase distribution P(Φ), which is a
classical probability distribution. Therefore, it make sense to directly inspect this classical
distribution to obtain information about synchronization. We propose another measure
of phase synchronization using classical Fisher information (CFI). This new measure is
defined by the classical Fisher information of the phase distribution P(Φ):

CFI = E
[( ∂

∂Φ
log P(Φ)

)2
]

, (6)
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It is important to note that this CFI is different from the conventional Fisher informa-
tion, which is directly calculated from the density matrix as F(X̂|θ) = ∑x

1
p(x|θ) (

∂p(x|θ)
∂θ )2,

where p(x|θ) is the probability of observing outcome x when measuring observable X̂ [47].
Classical and quantum Fisher information and Speak read 0 for unsynchronized states,

but are unbounded for highly synchronized states, whereas phase coherence and MRL(n)

are bounded between 0 and 1.
Two advantages of FI-based measures over phase coherence can be observed: Firstly,

Fisher information appears to be more sensitive to highly synchronized states, while
exhibiting less sensitivity at the other extreme, as shown in Figure 1. However, in most cases,
our primary interest lies in the highly synchronized states. Secondly, FI-based measures are
more general metrics of synchronization. Measures such as phase coherence face limitations
in detecting the synchronization of squeezed states or, more generally, Wigner functions
with multiple peaks— n-to-1 synchronization, see Figure 2 as an example. In contrast,
FI-based measures are capable of detecting synchronization in such instances. As a measure
of synchronization, we find that FI-based measures are not only comparable to existing
measures for normal cases of 1-to-1 synchronization; they are also more appropriate for the
measurement of 2-to-1 synchronization. Measuring QFI in experiments can be challenging
due to its reliance on the full quantum state of the system. However, there are various
strategies that have been developed to estimate QFI experimentally, such as randomized
measurement [48–50].
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Figure 1. Phase coherence vs. FI-based measures. It is interesting to see FI-based measures are
more sensitive (larger gradient) for highly synchronized states, as shown by the dotted reference line
indicating ∇gradient = 2. Sample data simulated with ∆ = 0, E = 0.5, η = 0, ϕ = π/2, γ1 = 1, γ2 ∈
[1, 10], γ3 = 0.
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Figure 2. An example of a squeezed steady-state (a) Wigner function and its corresponding (b) phase
distribution P(Φ). Squeezed Wigner function and phase distribution have two distinct peaks, which
we refer to as 2-to-1 synchronization. Parameters in this example: ∆ = 0, E = η = 0.5, ϕ = π/2,
γ1 = γ2 = 1, γ3 = 0.

Recently, there has been some work [51] carried out to relate quantum synchronization
to the quantum geometric phase [52]. In this work, they showed that the geometric phase
for the quantum Stuart–Landau oscillator under a driven pump exhibits an Arnold-tongue-
like structure, somewhat similar to the Arnold tongue in quantum synchronization as
measured by the shifted phase distribution of the Q function. Also, for two oscillators, it is
sometimes useful to measure the quantum mutual information [15,53,54].

3. 1-to-1 Synchronization

We first study the scenario of a coherently driven oscillator without a squeezing drive
(by simply setting η = 0). When only coherent driving is present, there will be only one
preferred phase (namely ’fixed point’) to synchronize to and the phase distribution P(Φ)
has only one peak, as shown by the first row in Figure 3, whose position indicates the
relative phase between the oscillator and drive. With increasing amplitude of the driving,
the quantum phase synchronization between the oscillator and drive improves, and so do
the values of the synchronization measures. This indicates a monotonic behavior in the
measure. We show that all measures qualitatively agree in Figure 3, where synchronization
measures are plotted against the coherent driving amplitude E. Therefore, these are all
valid measures to capture 1-to-1 quantum phase synchronization, and their correlations are
close to unity, as shown in the later section. Take note that in Figure 3 the unbounded and
bounded measures are plotted separately.

In Figure 3, the synchronization measures are compared across different nonlinear
damping ratios γ2/γ1, where this ratio directly controls the radius of the limit cycle and
mean photon number in the oscillator. Conventionally, the oscillator is regarded in ’semi-
classical’ regime when γ2/γ1 ≈ 1, and ’quantum’ regime when γ2/γ1 � 1. We can see
that these measures remain valid for different regimes. A driven oscillator with a smaller
radius (i.e., larger γ2/γ1) is more prone to lose synchronization by phase diffusion and
quantum noise [11–13]. Comparing two columns of Figure 3, the values of a synchronization
measure are higher in the classical regime, as expected. Note that in the right column of
Figure 3, the value of CFI surpasses QFI at certain driving amplitudes E. As we have
explained previously, the CFI we propose in this paper is not the direct classical analog of
QFI. Therefore, this is not a violation of the assertion that QFI should be the supremum of
the CFI over all observables.
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Figure 3. Phase distribution P(φ) and synchronization measures plotted against driving amplitude
E. Fixed parameters: ∆ = 0, γ1 = 1, γ3 = 0. In these cases of 1-to-1 synchronization, the driven
oscillator has only one preferred phase to synchronize. Unbounded and bounded measures are
plotted separately.

More insights can be developed in the deep quantum regime (γ2 → ∞), where the
analytical solutions to all these measures can be obtained. By using the 3× 3 density matrix
ansatz proposed in [31], the analytical equations for MRL(1), QFI, and phase coherence
Spcoh are obtained as follows (with ∆ = 0, γ1 = 1, γ3 = 0):

lim
γ2→∞

MRL(1) =
2E

9 + 8E2 , (7)

lim
γ2→∞

QFI = 4
∣∣∣∣ 2E
9 + 8E2

∣∣∣∣2, (8)

lim
γ2→∞

Spcoh =
2E√

(8E2 + 9)(4E2 + 3)
. (9)

Subsequently, the phase distribution P(Φ) can be obtained:

lim
γ2→∞

P(Φ) =
1

2π
[1− 4E

9 + 8E2 cos(Φ)] (10)

After deriving the phase distribution P(Φ), the peak of phase distribution Speak and
CFI can be easily obtained as

lim
γ2→∞

Speak =
4E

9 + 8E2 , (11)
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lim
γ2→∞

CFI = 4
A0 + A1E2 + A2E4 + A3E6 + A4E8

λ(9 + 8E2)(λ− 9− 8E2)2 , (12)

where

A0 = 729(λ− 9),

A1 = 108(17λ− 201),

A2 = 544(3λ− 52),

A3 = 256(2λ− 67),

A4 = −4096,

λ =
√
(9 + 4E + 8E2)(9− 4E + 8E2). (13)

These solutions are valid when the driving amplitude E << 1 (see Appendix A),
beyond which the density matrix ansatz breaks down.

4. Squeezing Enhances 2-to-1 Synchronization

In this section, we show that squeezing drive can create and enhance quantum 2-to-1
synchronization, i.e., synchronization with two distinct fixed points in phase space, and the
phase distribution P(Φ) has two distinct peaks. However, as mentioned previously, some
synchronization measures are not suitable for measuring this type of synchronization.

As shown in the left column of Figure 4, increasing squeezing sharpens the two peaks
in the phase distribution and thus improves mixed synchronization. Here, we need to
consider the following question: does E = 0, i.e., no drive, make sense for synchronization?
We can always regard the squeezing term as a drive. When squeezing is present without
a coherent drive, the synchronization can be regarded as between the oscillator and the
squeezing drive. This is also considered in Ref. [17] for frequency entrainment (the fre-
quencies of the oscillator and external drive converge). Note that phase coherence Spcoh

and MRL(1) are zero when only squeezing is present, which is expected, as these measures
reflect the first off-diagonal elements in the density matrix. On the other hand, Speak and
MRL(2) scale almost linearly with squeezing.

Furthermore, 2-to-1 synchronization can be created out of 1-to-1 synchronization.
This is shown in the right column of Figure 4, where in addition to squeezing, a coherent
drive with amplitude E = 0.5 is present. This coherent drive creates a single peak when
squeezing is off or small. When the squeezing is turned up , the single peak splits into two
under pitchfork bifurcation, and so do the corresponding Wigner functions [17]. In this
scenario, the two measures (phase coherence Spcoh and MRL(1)) which are only capable
of measuring 1-to-1 synchronization decrease and appear to change almost linearly with
increasing the squeezing parameter. MRL(2) is a measure dedicated to 2-to-1 synchro-
nization; therefore, it is unsurprising that it only provides partial information when a
single peak is present. This explains why MRL(2) drops to zero at small η and increases
linearly afterwards. The measurement of Speak lacks the ability to differentiate between two
types of synchronization. Consequently, only the classical and quantum Fisher information
measures exhibit a monotonic relationship with respect to squeezing.



Entropy 2023, 25, 1116 8 of 16

0.0 0.2 0.4 0.6 0.8 1.0

0

2 2/ 1 = 10, E = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

un
bo

un
de

d CFI
QFI
Speak

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

bo
un

de
d Spcoh

MRL(1)

MRL(2)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

2/ 1 = 10, E = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3
CFI
QFI
Speak

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2 Spcoh

MRL(1)

MRL(2)

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.10

0.12

0.14

0.16

0.18

0.20

Figure 4. Phase distribution P(φ) and synchronization measures plotted against squeezing amplitude
η. Fixed parameters: ∆ = 0, ϕ = π/2, γ1 = 1, γ3 = 0. In these cases of 2-to-1 synchronization,
the driven oscillator has two distinct phases to synchronize. Unbounded and bounded measures are
plotted separately.

5. Effects of Noise

In this section, we investigate and compare the effect of different noises across
these measures. We consider two types of noise, namely single photon dissipation and
white noise.

The single-photon dissipation process is implemented by the Lindblad dissipator
proportional to γ3 in the master Equation (1). In Figure 5, all six measures are captured
in the surface plots with respect to the single-photon dissipation γ3 and coherent driving
amplitude E. It is known that single-photon dissipation can be beneficial for 1-to-1 synchro-
nization in coherently driven oscillators [31,33], which is reflected in Figure 5 among all
measures consistently. Surprisingly, this noise-induced synchronization boost is absent in
2-to-1 synchronization, as shown in Figure 6, in which the squeezing η is increasing instead
of the driving amplitude E. Again, the phase coherence and MRL(1) remain 0 for the same
reason explained in the previous section.

To introduce white noise into the density matrix, we define a noise parameter p ∈ [0, 1];
thus, the noisy steady-state density matrix is defined as

ρnoisy = (1− p)ρss + pÎ/Ndim, (14)

where ρss is the noiseless steady-state density matrix and Î is the identity matrix with
dimension Ndim.

After introducing white noise, it is expected for all measures to degrade with increasing
p as shown in Figures 7 and 8. Interestingly, phase coherence turns out to be the most
sensitive to white noise, as shown in Figure 7, where there is a bigger drop in the measure
as a function of noise p compared to other measures.
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Figure 5. Effects of single-photon dissipation noise in 1-to-1 synchronization, in the absence of squeez-
ing (η = 0), with fixed parameters: ∆ = 0, γ1 = 1, γ2 = 10, p = 0. All measures exhibit a noise-induced
boost where the dissipation is small, which is consistent with previous work [31,33].
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Figure 6. Effects of single-photon dissipation noise in 2-to-1 synchronization, without driving (E = 0),
with fixed parameters: ∆ = 0, γ1 = 1, γ2 = 10, p = 0. As discussed above, MRL(1) and phase
coherence are both zero in these cases.



Entropy 2023, 25, 1116 10 of 16

0.0
0.5

1.0
0 5 10

CFI

0.0
0.5

1.0
0 5 10

QFI

0.0
0.5
1.0

0 5 10

MRL(1)

0.0
0.5

1.0
0 5 10

MRL(2)

0.0
0.5

1.0
0 5 10

Speak

0.0
0.5

1.0
0 5 10

Spcoh

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7. Effects of white noise in 1-to-1 synchronization, in the absence of squeezing (η = 0),
with fixed parameters: ∆ = 0, γ1 = 1, γ2 = 10, γ3 = 0.
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Figure 8. Effects of white noise in 2-to-1 synchronization, without driving (E = 0), with fixed
parameters: ∆ = 0, γ1 = 1, γ2 = 10, γ3 = 0. MRL(1) and phase coherence are 0 in this case for the
same reason as above.

6. Correlations between Measures

In this section, a correlation analysis was performed to investigate the extent to which
the different measures of quantum synchronization carry independent and nonredundant
information. We calculate the Pearson correlation between the values of different measures,
defined as

C = cov(X, Y)
σXσY

, (15)

with cov(X, Y) being the covariance between two synchronization measures and σ the
standard deviation. In the case of 1-to-1 synchronization, i.e., a single peak, high Pearson
correlations are observed across all the measures, as shown in Figure 9a, whereas in the
case of 2-to-1 synchronization, it is obvious that phase coherence Spcoh, Speak, and MRL(1)

are ill-suited measures, as they are negatively related to the other three proper measures,
as shown in Figure 9b.
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From both plots, we can tell the connections between these measures: CFI, QFI, and
MRL(2) are highly correlated in their response to the driving. On the other hand, phase
coherence Spcoh and MRL(1) exhibit a strong connection, as they are both related to the first
off-diagonal coherences.
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Figure 9. Correlation between different measures on (a) 1-to-1 synchronization. Calculations are
performed on the same data as Figure 3—left column. (b) 2-to-1 synchronization. Calculations are
performed on the same data as Figure 4—right column.

7. Asymmetrical Synchronization

So far, we have discussed cases when the two peaks in phase distribution are sym-
metrical (i.e., the peaks have identical amplitudes). To complete the whole picture, in this
section we discuss the situation when the two peaks are distorted and asymmetrical. This
asymmetrical phase distribution can be observed when both coherent drive and squeezing
are present with a difference of phase, as shown in Figure 10.
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Figure 10. Asymmetrical phase distribution and synchronization measures plotted against squeezing
η. Fixed parameters: ∆ = 0, γ1 = 1, γ2 = 10, γ3 = 0.
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Interestingly, both FI-based measures are shown to be insensitive to the change in
symmetry by varying the phase of squeezing ϕ in Figure 10. Meanwhile, all the other
measures have great dependence on the phase of squeezing ϕ. This is another convenient
trait of FI-based measures, being tolerant to phase mismatch. As the phase of squeezing is
usually determined by the specific experiment setup, such as the properties of cavity in the
cQED platform [55] and nonlinear crystals in the optical platform [56,57].

8. Concluding Remarks

In conclusion, this research provides a comprehensive analysis of quantum phase
synchronization measures. Our work proposes a novel approach to measure the degree of
synchronization by deploying classical and quantum Fisher information. Significantly, both
measures demonstrate success in characterizing both the 1-to-1 and 2-to-1 synchronization
regimes, where other existing methods fail to yield reliable results in one or another.

Our comparative study of the classical and quantum Fisher information measures with
existing measures highlights the advantages and limitations of each method. Our study
offers valuable guidance for future investigations and practical implementations. Our
analysis of the impact of noise on the synchronization measures reveals the robustness and
susceptibility of each method in the presence of decoherence. Furthermore, the correlations
between these measures provide insight into the similarities and differences between
different measures of quantum synchronization.

Our findings contribute significantly to the characterization of quantum phase syn-
chronization, particularly in the 2-to-1 synchronization regime. These results pave the
way for further research in the field, such as the development of more efficient and robust
quantum communication and computing protocols. Future work could explore other syn-
chronization regimes, investigate the impact of various types of noise, and assess potential
applications of our proposed measures in real-world quantum systems.
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Appendix A. Analytical Solutions Using Density Matrix Ansatz

In the deep quantum regime (γ2 � γ1), the 3× 3 density matrix ansatz in noiseless
limit (γ3 = 0) is given in the Fock basis [31]:

ρ =

ρ00 ρ01 0
ρ10 ρ11 0
0 0 ρ22

, (A1)
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with

ρ00 =
γ2(12E2 + 18)

12E2 + 9 + 3γ2(8E2 + 9)
, (A2)

ρ11 =
γ2(12E2 + 9)

12E2 + 9 + 3γ2(8E2 + 9)
, (A3)

ρ01 = ρ∗10 =
6iγ2E

12E2 + 9 + 3γ2(8E2 + 9)
, (A4)

ρ22 =
12E2 + 9

12E2 + 9 + 3γ2(8E2 + 9)
. (A5)

This amounts to restricting the number of excitations to 2, and neglecting all coherences
involving the state 2. Further assuming γ2 → ∞, ρ22 vanishes and we can even reduce it to
a two-level system,

ρ′ =

(
ρ′00 ρ′01
ρ′10 ρ′11

)
, (A6)

with

ρ′00 =
4E2 + 6
8E2 + 9

, (A7)

ρ′11 =
4E2 + 3
8E2 + 9

, (A8)

ρ′01 = ρ′∗10 =
2iE

8E2 + 9
. (A9)

Higher-order coherences are discarded because they can be seen as small in numerical
simulations, and removing them makes analytical calculations much more efficient and
insightful. Under these assumptions, the mean photon number is simply 〈a†a〉 = ρ′11.

Thus, the phase coherence in Equation (9) can be calculated as Spcoh = |ρ′01|/
√

ρ′11. MRL(1)

in Equation (7) is identified to be the coherence |ρ′01|. QFI in Equation (8) can be easily
obtained using Equation (5).

The phase distribution in Equation (10) is obtained using the Susskind–Glogower
formalism [60]:

P(φ) =
1

2π
〈φ|ρ′|φ〉 = 1

2 ∑
m,n={0,1}

ei(n−m)φρ′mn. (A10)

Substituting Equation (10) into the definition of Speak Equation (3) gives the solution
for Speak in Equation (11). Finally, the solution for CFI in Equation (12) is obtained by taking
the phase distribution Equation (10) as a classical probability distribution in Equation (6).

In Figure A1, we compare the analytical solutions to the numerical simulation, re-
vealing that the validity of the solutions lies in the range when coherent driving is small
(E � 1). With larger driving E, the oscillator will be excited to higher levels beyond the
assumption of the 3× 3 ansatz.
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Figure A1. Numerical results vs. analytical results for (a) bounded measures and (b) unbounded
measures. The oscillator is assumed in deep quantum regime (γ2 = 300). Fixed parameters:
∆ = 0, η = 0, γ1 = 1, γ3 = 0. Analytical results are accurate only when E� 1.
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