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Abstract: Accurate time series forecasting is of great importance in real-world scenarios such as
health care, transportation, and finance. Because of the tendency, temporal variations, and periodicity
of the time series data, there are complex and dynamic dependencies among its underlying features.
In time series forecasting tasks, the features learned by a specific task at the current time step
(such as predicting mortality) are related to the features of historical timesteps and the features
of adjacent timesteps of related tasks (such as predicting fever). Therefore, capturing dynamic
dependencies in data is a challenging problem for learning accurate future prediction behavior. To
address this challenge, we propose a cross-timestep feature-sharing multi-task time series forecasting
model that can capture global and local dynamic dependencies in time series data. Initially, the
global dynamic dependencies of features within each task are captured through a self-attention
mechanism. Furthermore, an adaptive sparse graph structure is employed to capture the local
dynamic dependencies inherent in the data, which can explicitly depict the correlation between
features across timesteps and tasks. Lastly, the cross-timestep feature sharing between tasks is
achieved through a graph attention mechanism, which strengthens the learning of shared features
that are strongly correlated with a single task. It is beneficial for improving the generalization
performance of the model. Our experimental results demonstrate that our method is significantly
competitive compared to baseline methods.

Keywords: multi-task learning; cross-timestep feature sharing; dynamic dependency; attention
mechanism; graph neural network

1. Introduction

Time series generally refers to a set of random variables derived from the observation
of the development and change process of something and collected at a certain frequency,
with characteristics of time dependency, seasonality, trend, and randomness. Time series
forecasting is vital in many real-world scenarios, such as traffic forecasts [1,2], air quality
prediction [3–5], and water quality monitoring [6]. Especially in the field of healthcare, the
forecasting of future incidence and mortality rates among patients enables effective control
and prevention of diseases [7,8]. However, it is challenging to improve model prediction
accuracy by effectively capturing dynamic dependencies in time series data.

Each data point in a time series is influenced by all preceding data points [9], which
signifies a prevalent yet significant global dynamic dependency. Disregarding this global
dependency can result in substantial bias in current predictions. Particularly when pre-
dicting mortality in ICU patients, it is crucial to consider the features of the patients at all
timesteps, as they are temporally correlated. Numerous efficient machine learning methods
have been developed to capture the global dependency of time series. Traditional machine
learning models, such as ARIMA [10], as well as machine learning-based methods such as
Neural Networks [11] and SVM [12], are proposed to deal with it, yielding encouraging
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performance. Nevertheless, these methods may not effectively capture long-term depen-
dencies in the data and treat all historical data as equally important without thoroughly
considering dynamic dependencies within the data.

Innovative achievements have been attained with deep time series prediction methods
supported by recurrent neural network (RNN) architectures, specifically long and short-
term memory (LSTM) [13] units, which exhibit better capabilities in capturing dynamic
dependencies within the data. However, its sequential nature hampers parallelized compu-
tation, especially when dealing with lengthy sequences. Recent work by Vaswani et al. [14]
demonstrates that the attention mechanism proves effective in modeling long-term depen-
dencies in sequences unbound by distance constraints. The attention mechanism assigns
weights to historical data based on the current input and has been shown to effectively
capture global dependencies between inputs and outputs. Wu et al. [15] propose a dual
self-attentive network (DSANet) specifically for dynamic periodic or acyclic multivariate
time series forecasting. The temporal fusion Transformer [16] specifically incorporates a
temporal self-attention decoder to learn any long-term dependencies present within the
dataset, further demonstrating the advantages of the attention mechanism in time sequence
forecasting.

To improve the accuracy of prediction tasks, numerous models have incorporated the
concept of multi-task learning (MTL) from the domain of machine learning. Multi-task
learning aims to learn multiple interconnected tasks together to improve the learning of a
model for each task by using the knowledge contained in all or some of the other tasks [17].
For instance, the knowledge gained during the initial phases of heightened infection risk can
act as a precursor for later stages marked by elevated mortality risk. Skillfully harnessing
this temporal relationship between tasks holds the potential to significantly augment the
predictive precision of the model. Harutyunyan et al. [18] demonstrate that the proposed
multitask learning architecture allows to extract certain useful information from the input
sequence that single-task models could not leverage, which explains the better performance
of multitask LSTM in some settings. Durichen [19] explores the potential of a multi-task
Gaussian process (MTGP) model for physiological time series analysis, with the objective
of learning correlations between and within tasks simultaneously. While these methods
have improved the performance of models through knowledge sharing during the process
of multi-task learning, the temporal dynamics of shared features and the strong correlation
between tasks have not been considered.

In the context of time series forecasting tasks, acquiring knowledge from a specific
timestep for one task (e.g., predicting sepsis onset) may facilitate learning for another task
at a later timestep, such as predicting mortality rate. However, the relevance of the acquired
shared knowledge to the tasks depends on the similarity of these cross-timestep features
between tasks, and this similarity also varies dynamically over time (as a form of local
temporal dependency). Consequently, designing sharing strategies that enable models
to effectively capture the local dynamic dependency of shared features across timesteps
between tasks while strengthening their strong correlation with each individual task poses
a significant challenge.

Generally, graph neural networks (GNNs) [20] assume that the state of a node is
influenced by the states of its neighboring nodes. They can enhance learning accuracy
and speed by leveraging both spatial and temporal information on the graph structure.
Consequently, capturing the spatiotemporal dynamic dependencies among time series
features using GNNs has gained significant attention in recent years in the field of time
series forecasting research [21]. GNNs can be categorized into two types based on the
aggregation of node features: Graph Convolutional Networks (GCNs) [22] and Graph
Attention Networks (GATs) [23]. GCN-based methods rely on knowing the topology in
advance and assigning equal weights to neighbors during aggregation. However, they do
not fully consider the dynamic changes in dependencies between features.

In contrast, GATs introduce a self-attentive mechanism that can dynamically capture
the correlations of spatial features and adaptively learn the weights of each node over time.
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This enhances the inductive learning capability of graph models. STNN [24] utilizes GATs
to model complex and dynamic spatial correlations without requiring expensive matrix
operations or relying on predefined road network topologies. On the other hand, You [25]
captures dynamic spatial correlations through spatial attention networks but only considers
the correlation between spatial features at the same timestep, neglecting the influence of
spatial features at earlier timesteps. Taking inspiration from GATs, we propose a strategy
for sharing cross-timestep features, where potential features from other tasks at the same
or different timesteps are aggregated through attention-based fusion to achieve feature
sharing. In our approach, the edges representing the inter-task feature correlations are
initially unknown and are learned based on the similarity between cross-timestep features
to capture strongly correlated shared features.

To summarize our approach’s motivation: (1) The attention mechanism is capable of
capturing long-term dependencies in time series data. Hence, we leverage this mechanism
to capture global dynamic dependencies between different timestep features within each
task. (2) In time series prediction tasks, learning a specific timestep feature from a related
task (e.g., disease onset) can be beneficial for predicting a later timestep feature from
another specific task (e.g., predicting death). Leveraging the powerful representation
capabilities of graph structures in capturing complex nonlinear correlations, we learn a
graph structure based on the feature correlations across different timesteps and tasks to
model the local dynamic dependencies in the data. (3) GAT is particularly effective in
handling dynamic and non-uniform graph features by adaptively determining the input
weights of each node using an attention mechanism. Therefore, we propose a sharing
strategy to effectively capture the dynamic dependencies among features across timesteps
in time series prediction and enhance the accuracy of the model predictions.

In the G-MTL framework, as illustrated in Figure 1, we first employ an attention mech-
anism to capture the global dynamic dependencies among potential features at different
timesteps within each task. Subsequently, we identify strongly correlated cross-timestep
features across tasks and learn a graph structure to capture the local dynamic dependen-
cies of shared features. Finally, we utilize a graph attention network to aggregate the
cross-timestep features across tasks for enhanced feature sharing. Our experimental results
demonstrate the competitiveness of our approach compared to the current state-of-the-
art methods.

The main contributions of this paper can be summarized as follows:

(1) The present paper introduces G-MTL, a novel method for multi-task time series pre-
diction. G-MTL employs the self-attention mechanism to capture the global dynamic
dependencies of task-specific features and utilizes the graph attention mechanism to
capture the local dynamic dependencies of inter-task features. This approach effec-
tively captures the temporal dynamics inherent in time series data, thereby improving
the accuracy of time series forecasting.

(2) G-MTL presents an adaptive cross-timestep feature-sharing strategy. It incorporates
GATs in a flexible manner to adaptively weigh and aggregate the node features of each
task with those of its neighboring nodes. This strategy updates the features of each task
at every timestep, facilitating feature sharing across tasks. Throughout the learning
process, this sharing strategy acquires shared features that exhibit strong correlations
with each task, thereby further augmenting the model’s generalization ability;

(3) A series of experiments were conducted on three real multivariate time series datasets
to evaluate the predictive performance of G-MTL in comparison to several state-of-
the-art time series forecasting models. The results consistently demonstrated that
G-MTL outperformed the other models in terms of predictive accuracy.

The remaining sections of this paper are structured as follows. Section 2 provides a
brief overview of the existing research literature on the problem of time series forecasting.
Section 3 presents a detailed description of the G-MTL model proposed in this paper. To
demonstrate the efficacy of our approach, Section 4 presents experimental results obtained
from multiple public benchmark datasets and compares them against baseline methods.
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Finally, in Section 5, we summarize the key findings of this paper and propose future
research directions.

Figure 1. Model general framework diagram.

2. Related Work
2.1. Multi-Task Time Series Forecasting

Multi-Task Learning (MTL) has emerged as a promising approach for enhancing model
representation and generalization by simultaneously learning multiple tasks. Historically,
multi-task learning models have focused on what to share, as the jointly learned models
could share instances, parameters, or features. Existing MTL studies have predominantly
focused on two approaches: parameter-based and feature-based [17].

(1) Parameter-based MTL leverages model parameters, such as coefficients in a linear
model or weights in a deep model, from one task to assist in learning model parameters
for other tasks. This is commonly achieved through techniques such as regularization.
For example, MasterGNN [26] introduces a multitask adaptive training strategy that
automatically balances the multitasking adversarial learning discriminant loss to improve
overall accuracy. DeepTTE [27] learns a multitasking loss function by considering the
trade-off between individual and collective estimation. Meanwhile, MultiTL-KELM [28]
employs a multi-task learning algorithm to transfer knowledge learned from previous data
to the current prediction task for multi-step ahead time series prediction. These models
exploit the sharing of model parameters among tasks to mitigate overfitting risks during
training but heavily rely on prior task relationships as a source of information.

(2) Feature-based MTL approaches aim to extract common features across tasks to
facilitate knowledge sharing. Given the interrelated nature of tasks, it is reasonable to
assume that different tasks share certain common features derived from the original feature
set. AECRNN [29] enhances the learning of robust features for the master task by incorpo-
rating auto-encoders into each time series, thereby creating a multitask learning framework.
MTL-Trans [30], based on transformers, introduces two attention-sharing architectures for
sharing self-attention features among different tasks. TP-AMTL [31] enables feature transfer
within and between tasks across different timesteps, leveraging feature-level uncertainty.
While these feature-based MTL methods effectively learn task-general features, they can
be vulnerable to the presence of outlier tasks, leading to a degradation in performance.
Hence, when enhancing prediction accuracy through multi-task learning feature sharing, it
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is crucial to consider the robust correlation between the shared features and the specific
task at hand.

2.2. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) offer a promising approach for modeling multivariate
time series data, thanks to their ability to handle arrangement invariance, local connectivity,
and combinatorics [32]. This methodology leverages the correlations among time series
while preserving their temporal trajectories, leading to enhanced prediction accuracy
in time series forecasting tasks. Recent studies have demonstrated the effectiveness of
GNNs in addressing relational dependencies. GCNs aggregate the features of neighboring
nodes to model the feature nodes efficiently. In the context of time series data, specialized
architectures such as GCRN [33], STGCN [34], and T-GCN [35] have been developed,
combining recurrent units with GCNs. These architectures have exhibited promising results
in various time series forecasting tasks, demonstrating how GNNs effectively capture both
the temporal and spatial dependencies of time series data.

Although GCNs excel in learning complex topological structures to capture spatial
dependence, they have a limitation in that they aggregate neighbor nodes without con-
sidering the varying importance of different neighbors. GATs introduced a self-attention
mechanism that assigns different weights to each node in the graph based on its neigh-
bor node features while computing its representation. For instance, frameworks such as
GAT-LSTM [36], TC-GATN [37], and GCAR [38] utilize attention graph networks to model
intricate and dynamic spatial correlations, leading to improved prediction performance.
The advantage of GATs lies in their ability to train without requiring knowledge of the
entire graph structure; only the neighboring nodes of each node are considered, leading
to parallel computation on different nodes and fast computation speed. GATs adaptively
capture the correlation between the current node and its neighboring nodes based on their
features. Inspired by this, we model the graph structure of different timesteps in the model
and then dynamically capture the local dynamic dependence of the feature through the
self-attention mechanism.

2.3. Attention Mechanism

In time series prediction, one direction of deep learning models is to capture temporal
patterns in dynamic time series data [39], and recurrent neural network (RNN)-based
prediction models have started to gain popularity, such as DeepAR [40]. Although LSTMs
overcome the problem of gradient disappearance or explosion to some extent, RNN-based
models still do not model long-term dependencies well [13].

Attention mechanisms have emerged as a highly successful approach in the field
of deep learning, particularly for tackling sequence-to-sequence problems. The goal of
attention is to prioritize and focus on the most relevant information for the current task
while reducing attention to other less significant information. Within academic research,
there exist various variants of attention mechanisms, including soft attention, self-attention,
and Transformer.

Soft attention is a widely used type of attention mechanism. For instance, the two-stage
attention mechanism-based RNN (DARNN) proposed in [41] is designed to capture long-
term time-dependent relationships and select pertinent driving sequences for prediction.
Another model called MARNN [42], based on the attention mechanism, not only captures
dependencies and weights within the driving sequence but also incorporates temporal
correlations across timesteps.

Self-attention, a variant of soft attention, allows for associating different positions
within a single sequence to calculate the representation of that sequence. In the [43], a spatial
self-attention structure is developed to capture spatial information of high-dimensional
variables, while a temporal self-attention structure captures the temporal evolution of
the target variable. The LSTM-based model SAnD [44] employs a masked self-attentive
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mechanism to overcome the limitation of sequential processing and improve efficiency
when dealing with long sequences.

Among all the attention-based variants, the Transformer model has emerged as one
of the most efficient paradigms for handling long-term sequence modeling. It introduces
several enhancements to soft attention [45], enabling sequence-to-sequence modeling
without the need for recurrent network units. For instance, the MTL-Trans model [30]
employs Transformer to capture long-term temporal dependencies between shared and
private features separately. At the same time, TFT [16] utilizes a self-attentive mechanism
to learn long-term dependencies across different timesteps. An improved Transformer
model called Informer is proposed in [46], which incorporates the ProbSparse self-attentive
mechanism to address the challenges of high time complexity and memory consumption
associated with the Transformer model. This enhancement significantly improves the
efficiency of long-time series prediction. Additionally, [47] introduces the LogSparse
Transformer, specifically designed to alleviate the memory bottleneck encountered in long
sequence modeling.

3. Our Method

In this section, we propose the G-MLT model for multi-task time series forecasting,
which incorporates feature sharing across timesteps. The model framework is illustrated
in Figure 1. We initiate the discussion with the problem formulation in Section 3.1. Subse-
quently, in Section 3.2, we elucidate how the self-attention mechanism effectively captures
the global dynamic dependency of intra-task features. Furthermore, in Section 3.3, we
leverage Graph Attention Networks (GATs) to capture the local dynamic dependencies of
inter-task temporal steps and adaptively share features. Finally, we define the objective
function for optimization in Section 3.4.

3.1. Problem Formulation

We are given M tasks {Ti}M
i=1, and corresponding multivariate time series training

dataset Di =
{
(Xi, yi)

}
=
{

xi
k, yi

k
}Ni

k=1 with Ni training samples, xi
k ∈ RT×d and its associ-

ated label yi
k ∈ {1, 2, · · · , ci}, where ci is the number of classes in the dataset Di. Assuming

that there are M task networks
{

NTi

}M
i=1 and L layers of feedforward neural networks for

each task, where the input feature map of task Ti in the l(1 ≤ l ≤ L) layer is denoted as
Fl−1
Ti

=
{

f l−1
Ti1

, f l−1
Ti2

, · · · , f l−1
TiT

}
, and f l−1

Tit
∈ Rd is the timestep t input feature. The corre-

sponding output is Fl
Ti
∈ RT×d. The proposed model is discussed by taking any two tasks

Ti, Tj (i 6= j) as examples. In single-task learning, NTi is used to make predictions for the
task Ti. In a multi-task learning framework, we improve task generalization performance
by sharing useful features learned from other tasks. Specifically, the features learned from
other tasks Fl

Tj
(∀j 6= i) are used with the features FT l

i
of task Ti to construct the graph

structure A and use it to assist task Ti in making predictions.

3.2. Intra-Task Feature Global Dynamic Dependencies

In time series data, the features of each timestep undergo changes, and the degree of
correlation also varies accordingly. To capture this dynamic dependence, we leverage a
self-attention mechanism to capture the inter-dependency of features across the different
timesteps involved in the task. The specific process is depicted in Figure 2.

For any given task Ti, i ∈ {1, 2, · · ·M}, perform a linear transformation of the input
feature Fl−1

Ti
with Q, K, V:

Ql
Ti
= Q(Fl−1

Ti
) (1)

Kl
Ti
= K(Fl−1

Ti
) (2)

V l
Ti
= V(Fl−1

Ti
) (3)
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where Ql
Ti

, Kl
Ti

, V l
Ti
∈ RT×drepresent the output of the feature map of task Ti after linear

transformation, and then Ql
Ti

, Kl
Ti

are subjected to a multiplication operation of the matrix
to calculate the correlation weights between different timesteps and scored with a so f tmax
operation. Finally, the attention feature vectors are calculated by weighted summation:

F l
Ti
= so f tmax

(
Ql
Ti

(
Kl
Ti

)T
)

V l
Ti

(4)

where F l
Ti

represents the feature matrix of task Ti after attention. To compensate for the
information lost when the attention mechanism captures feature correlation, we fuse the
attention feature vector F l

Ti
with the input feature vector Fl−1

Ti
,calculated as follows:

C l
Ti
= Fl−1

Ti
+F l

Ti
(5)

where C l
Ti

represents the fusion feature of the output, and the features on each timestep
are Cl

Ti1
, Cl
Ti2

, · · · , Cl
TiT

, + represents the addition of the corresponding elements of the

two matrices. We use Cl
Ti1

, Cl
Ti2

, · · · , Cl
TiT

as the input features of the following graph

structure nodes.

Figure 2. Intra-task feature sharing.

3.3. Inter-Task Feature Local Dynamic Dependencies

The model has the important objective of capturing local dynamic feature dependen-
cies across timesteps between tasks. To achieve this, we employ a directed graph structure,
where the nodes represent timesteps, and the edges represent the feature dependencies
between them. However, we establish edges only between timesteps that exhibit strong
correlations. Through the utilization of the graph attention mechanism, we learn shared
features that exhibit strong correlations with each task.

3.3.1. Graph Structure Learning

To effectively model the complex and nonlinear correlations between tasks, which
involve multiple cross-timestep features, we learn a graph structure that represents the
nodes as timesteps and encodes their correlations as the edges in the graph. Considering
the asymmetrical back-and-forth dependency between time series timesteps, we utilize a
directed graph to accurately represent this pattern of dependency. The edges from node
s to node t (s < t) indicate that the timestep s is utilized to model the dependencies on
timestep t. An adjacency matrix A is employed to encode this directed graph, where Al

s,t



Entropy 2023, 25, 1136 8 of 21

represents the presence of directed edges from node s to node t in layer l. Refer to Figure 3
for a visualization of the graph learning process.

Figure 3. Graph structure learning.

Since the learned features for different tasks may have distinct representations, con-
structing a graph structure between tasks may not be optimal. To address this, the task-
specific features are transformed into a shared potential space using an additional network
G. For each task Ti (i = 1, 2, · · · , M), this transformation is denoted as:

C̃l
Tit

= G
(

Cl
Tit

)
(6)

where G(·) is a linear function and C̃l
Tit
∈ Rd.

When learning the structure of the graph neural network on layer l, firstly, the correla-
tions of cross-timestep features between different tasks are calculated. For tasks Ti and Tj:

µl
Tjs ,Tit

=
C̃l
Tjs
· C̃l
Tit

‖C̃l
Tjs
‖‖C̃l

Tit
‖

, i 6= j (7)

µTjs ,Tit
reflects the dependency of the timestep t feature of task Ti on the timestep s feature

of task Tj.
Furthermore, considering that there exists a certain level of dependency between the

current timestep features of each task and only the same or earlier timesteps of another
task, our model explores the similarity between the first t timestep features of task Ti and
all timestep features before the first s timestep of the task Tj.

From these comparisons, the strongly correlated timestep features are selected to
construct the graph structure.

Al
Tjs ,Tit

= I
{

js ∈ TopK
({

µl
Tjs ,Tit

: s ≤ t
})}

(8)

Specifically, the TopK strongly correlated edges are chosen, where TopK represents the
indices of the first K values. This process allows the graph neural network Al to be learned
at layer l. Subsequently, the graph attention mechanism is employed to facilitate feature
sharing between different tasks on the graph neural network Al .

3.3.2. Cross-Timestep Feature-Sharing

In our multi-task learning model, we propose a cross-timestep feature-sharing strategy
to enable feature sharing among tasks and obtain shared features that are highly relevant
to the tasks during the learning process. Through the graph attention mechanism, features
across timesteps between tasks are aggregated and shared.

As depicted in Figure 4, in order to transfer knowledge from task Tj to time-dependent
task Ti, we enable the feature C̃l

Tit
of task Ti at timestep t to gather strongly correlated
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information from previous timesteps of task Tj, we then aggregate these correlations into a
new feature Zl

Tit
:

Zl
Tit

= αl
Tit ,Tit

WC̃l
Tit

+
M

∑
j 6=i

∑
Al
Tjs ,Tit

>0

αl
Tjs ,Tit

WC̃l
Tjs

(9)

Here, C̃l
Tjs

represents the input feature of timestep s in the task Tj, and W ∈ Rd′×d denotes
a trainable shared weight that linearly transforms each node feature into a higher-level
representation for enhanced expressiveness. It is worth noting that the coefficients are
calculated according to the following process:

βl
Tjs ,Tit

= σ
(

aT
(

WC̃l
Tit
||WC̃l

Tjs

))
(10)

where βTjs ,Tit
denotes the importance of the node s to the node t. || denotes concatenate

operation, which yields a vector of length 2d′. a ∈ R2d′ is a vector of learnable coefficients.
·T denotes transpose, and σ is the nonlinear activation function LeakyReLU used to compute
the attention coefficients βTjs ,Tit

.

Figure 4. Inter-task feature sharing across timesteps.



Entropy 2023, 25, 1136 10 of 21

To make the coefficients easily comparable across nodes, we used the so f tmax function
to score attention to obtain the final attention coefficient αTjs ,Tit

:

αl
Tjs ,Tit

=
exp
(

βl
Tjs ,Tit

)
∑Al

Tjk
,Tit

(
exp
(

βl
Tjk

,Tit

)) (11)

αTjs ,Tit
indicates the importance of node s to node t, i.e., the importance of the first s timestep

feature of task Tj to the first t (t > s) timestep feature of task Ti.
Then, in task Ti layer l, the output feature for each timestep is:

f l
Ti
= σ

(
Zl
Ti

)
(12)

σ is a nonlinear activation function. Then the graph neural network on the l layer output
feature is:

Fl
Ti
=
{

f l
Ti1

, f l
Ti2

, · · · , f l
TiT

}
(13)

After the network propagates forward L layers, the task Ti the output feature matrix is:

FL
Ti
=
{

f L
Ti1

, f L
Ti2

, · · · , f L
TiT

}
. (14)

Concatenate the results of all nodes as inputs to the fully connected layer for prediction.
For task Ti, the predicted value of the k-th input instance is:

ŷi
k = fθ

([
f L
Ti1

, f L
Ti2

, · · · , f L
TiT

])
(15)

3.4. Objective Function

In the G-MTL network, the objective function for task Ti can be formulated as the
cross-entropy loss:

LTi = −
Ni

∑
k=1

yi
k(logŷi

k) (16)

Finally, we define the total objective function of the whole network as:

LTotal =
M

∑
i=1

λi

Ni

∑
k=1
LTi (ŷ

i
k, yi

k) (17)

(·) and λi are the losses to be weighted and their balancing factors, respectively.

4. Experiment

In this section, we present the results obtained from several datasets to validate the
effectiveness of the proposed method. For our analysis, we defined clinical risks as the
occurrence of events (such as Heart Failure, Respiratory Failure, Infection, or Mortality)
that may contribute to the deterioration of a patient’s health condition within a specific
time window, typically 48 h [31].

4.1. Datasets and Tasks

Accurate forecasting of time series data is of significant importance, especially in
predicting mortality risk in clinical risk forecasting. Although our method is applicable to
various time series forecasting tasks, this paper primarily focuses on clinical time series
analysis. Several benchmark datasets in the clinical domain, such as MIMIC-III [48], and
PhysioNet [49], have been published and made publicly available. Furthermore, recent
studies have proposed clinical prediction benchmarks accompanied by openly accessible
datasets [18,50–53].
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MIMIC-III [48] (‘Medical Information Mart for Intensive Care’) is a comprehensive
database from a large tertiary care hospital that contains information pertaining to patients
admitted to critical care units. The dataset includes vital signs, medications, laboratory
measurements, observations and care provider notes, fluid balance, procedure codes,
diagnostic codes, imaging reports, hospital length of stay, survival data, and more. It serves
as a valuable resource for academic research, industrial applications, quality improvement
initiatives, and higher education coursework. The publicly available PhysioNet Challenge
2012 dataset [49] consists of de-identified records from 8000 Intensive Care Unit (ICU)
patients. Each record comprises approximately 48 h of multi-variate time series data,
encompassing up to 37 features recorded at different time points during the patient’s
hospital stay. Examples of these features include respiratory rate, blood glucose levels,
and others.

We used three multivariate time series datasets publicly available in the literature [31],
which compile for clinical risk prediction from the two open-source EHR datasets. Every
dataset used in this paper contains tasks with clear temporal dependencies between them.
We briefly describe all the used datasets as follows.

(1) MIMIC-III Infection. A collection of 1921 records of patients over the age of 15
admitted to the ICU, where hourly samples were used to construct 48 timesteps from
the first 48 h of admission. We selected 12 infection-related variables for the features at
each timestep, including Heart Rate (HR), Systolic/Diastolic Blood Pressure (SBP/DBP),
Intubation /Unplanned Extubation, Albumin, etc.

(2) PhysioNet. A total of 4000 ICU admission records were included, each containing
48 h of records (sampled hourly) and 29 infection-related variables for the features available
at each timestep. The features Systolic arterial blood pressure (SBP), Diastolic arterial blood
pressure (DBP), Body Temperature (BT), Fractional inspired Oxygen (FiO2), and others
were used for comparing the performance of the models in our study.

(3) MIMIC-III Heart Failure. Hourly sampled data from heart failure patients, a total
of 3557 data points with a sufficient amount of features were selected, which included
16 variables at each timestep. In our study, we have selected heart failure-related variables
such as Hemoglobin (Hb), Red Blood Cells (RBC), White Blood Cells (WBC), and Platelets
for our model selection.

Table 1 summarizes all the experimental data, along with the corresponding statistics
for each dataset. After preprocessing, each dataset was divided into a training set and a test
set. The model was then trained using all the data up to a specific timestep as the training
set, while the test set consisted of data after the last time point seen in the training set.

Table 1. Summary of the used datasets.

Datasets Samples Dimension Frequency Training

MIMIC-III
Infection 1921 12 hourly 1500

PhysioNet 4000 29 hourly 3000
MIMIC-III Heart

Failure 3557 16 hourly 2500

To thoroughly validate the efficacy of the proposed method, we conducted experiments
on various tasks, each with detailed settings as follows.

Exp 1 Tasks considered for the MIMIC-III Infection dataset were the clinical events
before and after infection, Fever (Task 1) as the sign of infection with elevated body
temperature, Infection (Task 2) as the confirmation of infection by the result of microbiology
tests, and finally, Mortality (Task 3) as a possible outcome of infection.
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Exp 2 Task used in the PhysioNet dataset includes four binary classification tasks,
namely, (1) Stay < 3: whether the patient would stay in ICU for less than three days,
(2) Cardiac: whether the patient is recovering from cardiac surgery, (3) Recovery: whether
the patient is staying in Surgical ICU to recover from surgery, and (4) Mortality predic-
tion (Mortality).

Exp 3 MIMIC-III Heart Failure contains four different tasks, i.e., (1) Ischemic: an
ischemic heart disease, (2) Valvular: a valvular heart disease refers to the abnormal function
of the heart valves, (3) Heart Failure, and (4) Mortality.

4.2. Experimental Settings

For each experimental trial, we employed cross-entropy as the target function for
training. We utilized the Adam optimizer with a learning rate of 0.001 for joint training
over 600 epochs. The batch size for the input dataset was set to 256, and we employed a
2-layer LSTM network to extract task-specific features. The sparsity metric Topk, used for
graph structure learning, was set at 20%.

4.3. Baselines

To assess the effectiveness of our model, we compared it with both single-task and
multi-task learning baselines. Multi-task learning (MTL) involves simultaneously acquiring
knowledge across multiple tasks, enhancing the model’s generalization capabilities through
information sharing. In contrast, single-task learning (STL) entails the design of a dedicated
network for each individual task, with each task being learned independently.
Single-task learning (STL) baselines:
(1) STL-LSTM, (2) STL-Transformer, (3) STL-RETAIN [54], (4) STL-UA [55], (5) STL-
SAnD [54], (6) STL-AdaCare [56].
Multi-task learning baselines:
(7) MTL-LSTM, (8) MTL-Transformer (9) MTL-RETAIN, (10) MTL-UA, (11) MTL-SAnD,
(12) AdaCare, (13) AMTL-LSTM [57], (14) TP-AMTL [31].

Multi-task learning (MTL) setting with (7) MTL-LSTM, (8) MTL-Transformer [14], (9) RE-
TAIN [54], (10) UA [55], (11) SAnD [54], (12) AdaCare [56] as the base network, respectively.

4.4. Comparison Results

We conducted an evaluation of the baseline single-task learning (STL) and multi-task
learning (MTL) models, as well as our proposed model, to assess their prediction accuracy
on three clinical time series datasets. The evaluation was performed by measuring the Area
Under the ROC curve (AUROC). The test accuracy of each comparison method is reported
in Tables 2–4. From the experimental results, several observations can be made:

• Overall, most MTL methods outperform STL methods, demonstrating the effectiveness
of joint learning of multiple tasks by exploring the relationship between them. Notable
examples of such methods include RETAIN and UA.

• However, it is worth noting that MTL models perform relatively poorly on the MIMIC-
III infection dataset, which exhibits clear temporal relationships between tasks. In
the MTL-Transformer model, the accuracy achieved in each task using the multi-task
learning approach is comparatively lower than that attained by the corresponding
single-task models. Additionally, AdaCare with dilated convolution displays severely
degraded performance, except for one task. Therefore, it is important to consider not
only the temporal dependency of intra-task features but also the temporal dependency
of inter-task features. Our proposed model, G-MTL, addresses this concern and leads
to significant improvements.

• We have observed that while MTL models outperform STL models on certain tasks,
they suffer from performance degradation on others. This can be clearly observed
from the task ranking presented in Tables 2–4. The self-attention-based model, SAnD,
demonstrates impressive performance on some tasks in the PhysioNet dataset. How-
ever, it also experiences performance degradation when used in an MTL setting,
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resulting in lower overall performance. Although our proposed model, G-MTL,
improves model performance, this phenomenon persists. We attribute this to the
imbalance of tasks in our setting, leading to unique loss scales for each task.

• In contrast, our model outperforms the majority of MTL models on all three datasets in
terms of performance. This superiority can be attributed to the incorporation of feature
sharing across timesteps, which effectively enhances the acquisition of shared knowl-
edge. Consequently, our model exhibits improved task generalization performance
by establishing strong correlations with each task. It is worth noting that the G-MTL
model surpasses the remarkable TP-AMTL [31] model in the majority of tasks. Under
our cross-timestep sharing strategy, which considers the correlation of both intra-task
and inter-task features, the model demonstrates superior overall performance.

Table 2. Task performance on the MIMIC-III Infection dataset. We report average AUROC and
standard error over five runs, where the optimal performances are bold.

Models Fever Infection Mortality Average

STL

LSTM 0.6738 ± 0.02 0.6860 ± 0.02 0.6373 ± 0.02 0.6657 ± 0.02
Transformer 0.7110 ± 0.01 0.6500 ± 0.01 0.6766 ± 0.01 0.6792 ± 0.01

RETAIN 0.6826 ± 0.01 0.6655 ± 0.01 0.6054 ± 0.02 0.6511 ± 0.01
UA 0.6987 ± 0.02 0.6504 ± 0.02 0.6168 ± 0.05 0.6553 ± 0.02

SAnD 0.6958 ± 0.02 0.6829 ± 0.01 0.7073 ± 0.02 0.6953 ± 0.01
AdaCare 0.6354 ± 0.02 0.6256 ± 0.03 0.6217 ± 0.01 0.6275 ± 0.08

MTL

LSTM 0.7006 ± 0.03 0.6686 ± 0.02 0.6261 ± 0.03 0.6651 ± 0.02
Transformer 0.7025 ± 0.01 0.6479 ± 0.02 0.6420 ± 0.02 0.6641 ± 0.02

RETAIN 0.7059 ± 0.02 0.6635 ± 0.01 0.6198 ± 0.05 0.6630 ± 0.02
UA 0.7124 ± 0.01 0.6489 ± 0.02 0.6325 ± 0.04 0.6646 ± 0.02

SAnD 0.7041 ± 0.01 0.6818 ± 0.02 0.6880 ± 0.01 0.6913 ± 0.01
AdaCare 0.5996 ± 0.01 0.6163 ± 0.02 0.6283 ± 0.01 0.6148 ± 0.00

TP-AMTL 0.7081 ± 0.01 0.7173 ± 0.01 0.7112 ± 0.01 0.7112 ± 0.01

G-MTL(ours) 0.7577 ± 0.01 0.6485 ± 0.01 0.7316 ± 0.03 0.7126 ± 0.03

Table 3. Task performance on the PhysioNet dataset. We report average AUROC and standard error
over five runs, where the optimal performances are bold.

Models stay < 3 Cardiac Recovery Mortality Average

STL

LSTM 0.7673 ± 0.09 0.9293 ± 0.01 0.8587 ± 0.01 0.7100 ± 0.01 0.8163 ± 0.03
Transformer 0.8953 ± 0.01 0.9283 ± 0.02 0.8721 ± 0.01 0.6796 ± 0.02 0.8380 ± 0.01

RETAIN 0.7407 ± 0.04 0.9236 ± 0.01 0.8148 ± 0.04 0.7080 ± 0.02 0.7968 ± 0.03
UA 0.8556 ± 0.02 0.9335 ± 0.01 0.8712 ± 0.01 0.7283 ± 0.01 0.8471 ± 0.01

SAnD 0.8965 ± 0.02 0.9369 ± 0.01 0.8838 ± 0.01 0.7330 ± 0.01 0.8626 ± 0.01
AdaCare 0.7508 ± 0.06 0.8610 ± 0.01 0.7700 ± 0.03 0.6595 ± 0.02 0.7603 ± 0.07

MTL

LSTM 0.7418 ± 0.09 0.9233 ± 0.01 0.8472 ± 0.02 0.7228 ± 0.01 0.8088 ± 0.03
Transformer 0.8532 ± 0.03 0.9291 ± 0.01 0.8770 ± 0.01 0.7358 ± 0.01 0.8488 ± 0.01

RETAIN 0.7613 ± 0.03 0.9064 ± 0.01 0.8160 ± 0.04 0.6944 ± 0.03 0.7945 ± 0.03
UA 0.8573 ± 0.03 0.9348 ± 0.01 0.8860 ± 0.01 0.7569 ± 0.02 0.8587 ± 0.02

SAnD 0.8800 ± 0.03 0.9410 ± 0.00 0.8607 ± 0.01 0.7612 ± 0.02 0.8607 ± 0.06
AdaCare 0.8746 ± 0.01 0.7211 ± 0.01 0.6348 ± 0.02 0.7457 ± 0.03 0.7440 ± 0.08

AMTL-LSTM 0.7600 ± 0.08 0.9254 ± 0.01 0.8066 ± 0.01 0.7167 ± 0.01 0.8022 ± 0.03
TP-AMTL 0.8953 ± 0.01 0.9416 ± 0.01 0.9016 ± 0.01 0.7586 ± 0.01 0.8743 ± 0.01

G-MTL (ours) 0.8520 ± 0.01 0.9780 ± 0.00 0.9300 ± 0.01 0.8480 ± 0.01 0.9020 ± 0.02
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Table 4. Task performance on the MIMIC-III Heart Failure dataset. We report average AUROC and
standard error over five runs, where the optimal performances are bold.

Models Ischemic Valvular Heart Failure Mortality Average

STL
LSTM 0.7072 ± 0.01 0.7700 ± 0.02 0.6899 ± 0.02 0.7169 ± 0.03 0.7210 ± 0.01

RETAIN 0.6573 ± 0.03 0.7875 ± 0.01 0.6850 ± 0.01 0.7027 ± 0.02 0.7081 ± 0.01
UA 0.6843 ± 0.01 0.7728 ± 0.02 0.7090 ± 0.01 0.7191 ± 0.01 0.7213 ± 0.01

MTL

LSTM 0.6838 ± 0.02 0.7808 ± 0.02 0.6965 ± 0.01 0.7093 ± 0.02 0.7254 ± 0.02
Transformer 0.6801 ± 0.01 0.7693 ± 0.01 0.7098 ± 0.02 0.7008 ± 0.02 0.7150 ± 0.02

RETAIN 0.6649 ± 0.01 0.7532 ± 0.03 0.6868 ± 0.02 0.7023 ± 0.03 0.7018 ± 0.02
UA 0.6917 ± 0.01 0.7868 ± 0.01 0.7073 ± 0.01 0.7029 ± 0.01 0.7222 ± 0.01

AMTL-LSTM 0.6963 ± 0.01 0.7997 ± 0.02 0.7006 ± 0.01 0.7108 ± 0.01 0.7268 ± 0.01
TP-AMTL 0.7113 ± 0.01 0.7979 ± 0.02 0.7103 ± 0.01 0.7185 ± 0.02 0.7345 ± 0.01

G-MTL (ours) 0.7666 ± 0.02 0.7845 ± 0.01 0.7271 ± 0.00 0.7540 ± 0.01 0.7581 ± 0.02

4.5. Analysis of the Interpretability and Effectiveness of the Sharing Strategy

In this section, we aim to provide a comprehensive explanation and validation of the
efficacy of the proposed strategy for sharing features across different timesteps.

The tasks in our selected datasets, namely MIMIC-III Infection, PhysioNet, and MIMIC-
III Heart Failure, exhibit evident temporal dependencies. Upon examining Tables 2–4, it
becomes apparent that certain multi-task learning (MTL) models demonstrate an overall
average performance inferior to that of single-task learning models, such as LSTM. This
disparity stems from the utilization of a hard parameter-sharing mechanism in these
MTL models, wherein shared parameters are employed across multiple tasks, potentially
leading to information confusion. Different tasks may possess unique feature representation
requirements, and the adoption of shared parameters may impede the model’s ability to
distinguish between the features of distinct tasks, consequently resulting in performance
degradation or mutual interference among tasks. For example, in the MIMIC-III Infection
dataset, although LSTM’s performance on the “Fever” task exhibits relative improvement
compared to single-task learning, it noticeably deteriorates performance on the “Infection”
and “Mortality” tasks. This pattern is similarly observed in the other two datasets.

To tackle this issue, we propose the introduction of a task-interdependent temporal
feature-sharing mechanism that captures the dynamic correlations among tasks over time.
Moreover, by utilizing GTAs for adaptive feature aggregation and enhanced sharing, our
approach strengthens the learning of shared features that display strong correlations. The
outcome is a clear improvement in the overall average performance of the model.

Based on the aforementioned comparative analysis results, we conducted an effec-
tive analysis of the cross-timestep feature-sharing mechanism based on GATs, which was
proposed by us. Firstly, during the process of learning the graph structure, we estab-
lished a sparse graph structure by selecting features that exhibit strong correlations among
tasks. The underlying rationale behind this choice was that only a limited number of past
observations are relevant to future predictions, necessitating the disregard of irrelevant
timesteps. As a result, in the subsequent self-attention process, the softmax mapping no
longer assigns scores to these timesteps, and the feature aggregation no longer incorporates
features from these timesteps. This reduction in the inclusion of irrelevant timesteps not
only diminishes the time required for learning the graph structure but also accelerates
the attention process. Moreover, we opted to perform feature selection across timesteps
prior to the softmax operation to prevent the loss of valuable features. To substantiate
the effectiveness of our cross-temporal step feature-sharing strategy, we compared the
predictive results of the model employing this sharing strategy (G-MTL) with those of the
model based on our proposed strategy without feature sharing (Nonshared-MTL) using
MIMIC-III Infection dataset. Figure 5 clearly illustrates that, in nearly all cases, G-MTL
outperforms Non-shared MTL in terms of testing accuracy, thereby confirming the efficacy
of our proposed cross-temporal step feature-sharing strategy.
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Figure 5. Illustration of the effectiveness analysis of a cross-timestep feature-sharing strategy.

4.6. Ablation Study

To assess the necessity of each component in our approach, we conducted experiments
where we excluded each component individually to observe the degradation in model per-
formance. Firstly, we replaced the learned graph with a static complete graph, connecting
all nodes to the current node. This was done to investigate the importance of the graph
structure. Secondly, we disabled the intra-task self-attention mechanism by assigning equal
weights to all timestep features, meaning that each timestep feature contributed equally
to the prediction result. Finally, we only considered feature sharing at the same timestep,
eliminating the graph structure and the existence of attention-based feature sharing across
timesteps between tasks. From Figure 6 and Table 5, it is evident that removing these com-
ponents significantly lowers the prediction accuracy of the corresponding model (p < 0.001,
MANOVA) compared to G-MTL.

Complete Graph Intra-task SA Same timestep FS G-MTL

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
Task1
Task2
Task3

Figure 6. Comparison of the impact of each model component on model accuracy.
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Table 5. Multivariate Variance Analysis (MANOVA) of each component on MIMIC-III Infec-
tion dataset.

Models Value Num DF Den DF F Value Pr > F

Wilks’ lambda 0.0825 9.0000 34.2229 6.7977 0.0000
Pillai’s trace 1.1296 9.0000 48.0000 3.2211 0.0039

Hotelling–Lawley trace 8.5662 9.0000 19.0526 12.7611 0.0000
Roy’s greatest root 8.2586 3.0000 16.0000 44.0461 0.0000

The results are summarized in Figure 7, Table 6, and provide the following findings:

Complete Graph Intra-task SA Same timestep FS G-MTL

0.55

0.60

0.65

0.70

0.75

0.80
Task 1
Task 2
Task 3
Task 1
Task 2
Task 3

Figure 7. Ablation test results of G-MTL on MIMIC-III Infection dataset.

• Substituting the acquired graph structure with the complete graph led to a decline
in prediction performance across all tasks. This observation serves as evidence that
learning the graph structure enhances model performance, especially for datasets
with temporal dependencies. The fundamental explanation behind this phenomenon
can be attributed to the restricted relevance between a small subset of past observed
outcomes and future predictions. As a result, we have diligently selected the most
highly correlated timestep features among tasks, with the constraint of retaining only
the top K, to construct a sparse graph.

• In our experiments, the exclusion of the intra-task self-attention mechanism exhibited
the most detrimental impact on the model’s performance. This outcome arises from the
fact that the correlations between features at distinct timesteps dynamically fluctuate
and contribute disparately to the prediction of future outcomes. Treating all features
at each timestep uniformly introduces noise and misleads the model. Hence, it
becomes evident that relying solely on the dynamic dependencies between features
across tasks within a multi-task learning framework is insufficient for accurate time
series prediction.

• Furthermore, considering the variant model that only incorporates same-step feature
sharing, it is evident that the model’s performance is significantly inferior to that
of cross-timestep feature sharing. Cross-timestep feature sharing fully accounts for
the correlation between different task features and enhances the learning of shared
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features associated with each task. This observation further validates the importance
of the cross-timestep feature-sharing strategy.

Table 6. Ablation test results of G-MTL on MIMIC-III Infection dataset, the optimal performances
are bold.

Methods Fever Infection Mortality

Complete Graph 0.7050 ± 0.01 0.5960 ± 0.01 0.6996 ± 0.01
Intra-Task SA 1 0.7185 ± 0.02 0.5863 ± 0.01 0.7071 ± 0.01

Same Timestep FS 2 0.7157 ± 0.04 0.5872 ± 0.03 0.6967 ± 0.01

G-MTL (ours) 0.7577 ± 0.01 0.6485 ± 0.01 0.7316 ± 0.03
1 Intra-task Self-Attention; 2 Same Timestep Feature-sharing.

4.7. Hyper-Parameter Analysis

We demonstrate the influence of hyperparameters on the performance of G-MTL.
Figure 8 illustrates how the sparsity indicator of the graph structure (TopK) and the
number of hidden layers greatly affect the forecasting precision for each task in the model.
Furthermore, Table 7 quantitatively verifies that the accuracy of each task significantly
differs (p < 0.001, MANOVA) for different TopK values. Similar findings are observed for
different hidden layers (Table 8, p < 0.001, MANOVA). We verify the key hyper-parameters,
i.e., the indicator of graph structure sparsity (TopK) and the number of hidden layers.
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Figure 8. Illustration of the impact of hyper-parameters on the accuracy of each task on the MIMIC-III
Infection dataset. (a) Comparison of the accuracy of each task on different Top K. (b) Comparison of
the accuracy of each task on different hidden layers.

Table 7. Multivariate Variance Analysis (MANOVA) of the number of Top K on MIMIC-III Infec-
tion dataset.

Top K Value Num DF Den DF F Value Pr > F

Wilks’ lambda 0.0385 18.0000 74.0244 8.8931 0.0000
Pillai’s trace 1.7761 18.0000 84.0000 6.7720 0.0000

Hotelling–Lawley trace 7.5641 18.0000 18.0000 10.5407 0.0000
Roy’s greatest root 4.9715 6.0000 28.0000 23.2002 0.0000
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Table 8. Multivariate Variance Analysis (MANOVA) of the number of hidden layers on MIMIC-III
Infection dataset.

Hidden Layers Value Num DF Den DF F Value Pr > F

Wilks’ lambda 0.0079 9.0000 34.2229 23.9178 0.0000
Pillai’s trace 1.9403 9.0000 48.0000 9.7658 0.0000

Hotelling–Lawley trace 23.3231 9.0000 19.0526 34.7447 0.0000
Roy’s greatest root 18.9611 3.0000 16.0000 101.1259 0.0000

Therefore, it is crucial to carefully select the hyperparameters that best suit our model.
Figure 9a presents the accuracy performance of our model on the MIMIC-III Infection
dataset. In this plot, we test TopK in {10%, 15%, 20%, 25%, 30%, 35%, 40%}. In multi-task
learning, some tasks may underperform due to task imbalance, as depicted by the line
graph in Figure 9a. The histogram highlights how the accuracy of all three tasks on the
dataset improves or decreases to varying degrees with changes in TopK. For instance, the
accuracy of Task 3 significantly improves at TopK = 15%, while Task 1 shows a significant
improvement at TopK = 30%. However, both changes significantly compromise the accu-
racy of the corresponding other tasks, particularly Task 2. Considering the overall model
performance, the task imbalance issue is alleviated when TopK is set to 20%. Figure 9b
indicates that the number of hidden layers also affects the accuracy of different tasks. For
optimal overall performance, the model performs better when the number of hidden layers
is set to 2.

10% 15% 20% 25% 30% 35% 40%

0.55

0.60

0.65

0.70

0.75

0.80 Task 1
Task 2
Task 3
Task 1
Task 2
Task 3

(a)

Layers=1 Layers=2 Layers=3 Layers=4

0.55

0.60

0.65

0.70

0.75

0.80
Task 1
Task 2
Task 3
Task 1
Task 2
Task 3

(b)

Figure 9. Each task forecasting accuracy of G-MTL with different hyper-parameters on MIMIC-III
Infection dataset. (a) shows the effect of Top K on the accuracy of each task. (b) shows the effect of
the number of hidden layers on the accuracy of each task.

5. Conclusions

In this paper, we propose G-MTL, a graph-based multi-task time series prediction
framework that effectively captures both global dynamic dependencies within tasks and
local dynamic dependencies across timesteps between tasks. Although existing multi-
task learning models enhance predictive performance by sharing features between tasks,
the dependencies between task-specific features and shared features may vary across
timesteps. Furthermore, the correlation of shared features with tasks also changes at
different timesteps. To address these challenges and model the dynamic dependencies
across timesteps and tasks, we propose a novel multi-task time series prediction framework
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for feature sharing across timesteps. This framework incorporates an adaptive learning
approach to capture the dynamic dependencies between tasks using sparse graph structures.
It explicitly models the correlation between features across different timesteps and tasks.
Moreover, we introduce a flexible cross-timestep feature-sharing strategy based on graph
attention to enhance the learning of features strongly correlated with each task. To evaluate
the effectiveness of G-MTL, we conducted experiments on three commonly used datasets
and demonstrated its superiority compared to existing models.

In summary, our work enriches research in multi-task time series forecasting in three
key aspects: (1) A new multi-task time series prediction model that can simultaneously
capture the dynamic dependencies of intra-task and inter-task features. (2) A novel method
for capturing the dynamic feature dependencies between tasks through adaptive learning
of sparse graph structures. It explicitly models the correlation between features across
different timesteps and tasks. (3) A flexible cross-timestep feature-sharing strategy based
on graph attention can enhance the learning of features strongly correlated to each task. In
the future, we are committed to two more realistic scenarios, including unbalanced and
interpretable shared learning among multiple tasks.
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