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Abstract: Federated learning (FL) is an effective method when a single client cannot provide enough
samples for multiple condition fault diagnosis of bearings since it can combine the information
provided by multiple clients. However, some of the client’s working conditions are different; for
example, different clients are in different stages of the whole life cycle, and different clients have
different loads. At this point, the status of each client is not equal, and the traditional FL approach
will lead to some clients’ useful information being ignored. The purpose of this paper is to investigate
a multiscale recursive FL framework that makes the server more focused on the useful information
provided by the clients to ensure the effectiveness of FL. The proposed FL method can build reliable
multiple working condition fault diagnosis models due to the increased focus on useful information
in the FL process and the full utilization of server information through local multiscale feature
fusion. The validity of the proposed method was verified with the Case Western Reserve University
benchmark dataset. With less local client training data and complex fault types, the proposed method
improves the accuracy of fault diagnosis by 23.21% over the existing FL fault diagnosis.

Keywords: federated learning; multiple working condition; multiscale recursive; fault diagnosis

1. Introduction

As a critical component of the motor, rolling bearings are susceptible to failure due
to overload, aging, complex working conditions, and other factors [1–3]. When the data
quality is better, the spectrum analysis can find the characteristic frequency of the fault and
realize fault diagnosis. However, when the data quality is poor, the feature frequency of
the fault is difficult to present on the spectrum [4,5].

As an effective data feature extraction tool, deep learning can extract features from
raw data collected by sensors without relying on information about the remaining lifetime
of critical components, and achieve end-to-end fault diagnosis by classifiers, and without
the constraints of an exact physical model. Therefore, deep learning-based fault diagnosis
research has received attention [6–10].

The amount of high-quality labeled data is a key factor limiting the effectiveness of
deep learning fault diagnosis, but high-quality labeled data is difficult to obtain in the
industry. When the operating load of the equipment changes, the statistical characteristics
of the data collected by the monitoring sensors changes significantly, and this situation
where the statistical characteristics change with the load is called multiple working condi-
tions. The training samples collected from multiple working conditions violate the basic
assumption of Independently Identically Distribution (i.i.d) required by the deep learning
training mechanism, which affects the effectiveness of deep learning-based fault diagnosis
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and leads to unreliable fault diagnosis results. Therefore, it is necessary to carry out research
on multiple working conditions fault diagnosis based on deep learning.

In fact, it is difficult to obtain multiple working condition samples, and the multiple
working condition samples from a single client are not enough to build an accurate deep
learning multiple working condition fault diagnosis model since the effectiveness of deep
learning depends on the amount of data. On the other hand, the working conditions of
the data may be different from one client to another, and the data of the client is usually
confidential. Therefore, it is a worthwhile research problem to develop an effective multiple
working condition fault diagnosis method jointly with multiple clients without sharing
client data directly.

FL has received much attention from experts in the field of fault diagnosis in recent
years due to its ability to accomplish collaborative training of multiple clients while ensur-
ing data privacy. FL-based fault diagnosis aims to obtain a global model with satisfactory
performance using information provided by multiple clients [11–14].

FL does initial feature mining on private data through local clients before sharing
the mined information to the server for aggregation. The model parameters, gradients,
and features of the client can be uploaded to the server as information for aggregation.
Traditional FL-based fault diagnosis methods aggregate the information uploaded by the
client to the server by averaging [15–18]. However, influenced by the different local data
working conditions and model performance differences, the information uploaded by the
clients contains both useful and useless information. The traditional FL method ignores the
differences in the information provided by clients and assigns the same weight to different
clients, which inevitably affects the fault diagnosis effect of all clients participating in the
federation and makes the data of clients not fully utilized. Therefore, assigning different
aggregation weights to different clients to make the server pay more attention to the useful
information provided by the clients is a problem worth investigating.

Remark 1. Useful information from the client refers to information that contributes positively to
the fault diagnosis results, and useless information refers to information that contributes negatively
to the fault diagnosis results.

This paper designs a multiscale recursive attention gate federation method for mul-
tiple working conditions fault diagnosis from the perspective of inter-client federation
aggregation and local client feature extraction, including inter-client multiscale recursive
federation strategy, and intra-client multiscale recursive fusion strategy. When the local
model of the client receives new information, it continues training on the original model,
which makes the feature representation of the neural network more powerful and thus
makes the network output features more distinguishable. The purpose of optimizing
local client feature extraction by using features from other clients is thus achieved. The
method proposed in this paper can obtain a more powerful multiple working condition
fault diagnosis model since useful information is better focused on both local client feature
extraction and federal feature aggregation.

The contribution of this paper is as follows:

• A multiscale recursive attention-gate federation for multicondition fault diagnosis is
designed, which can improve the accuracy of the inter-client federation and optimize
the local multiple working conditions fault diagnosis effect by making full use of other
client features.

• A multiscale recursive federation strategy for inter-client and a multiscale recursive
fusion strategy for local clients are designed. A multiscale recursive federation policy
located at the server can focus more on useful information uploaded by the client and
improve the accuracy of the global features of the server. The locally located multiscale
recursive fusion strategy can make the local client features and global features fully
fused to achieve the purpose of optimizing the local multiple working condition fault
diagnosis effect by making full use of the information from other clients.
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• When there are differences in working conditions between data from different clients,
using the method designed in this paper, satisfactory accuracy of multiple working
conditions fault diagnosis can be achieved.

2. Related Work

Deep learning has received a lot of attention from experts in the field of fault diagnosis
due to its ability to extract features from the raw signals monitored by sensors. Ref. [6,7]
pointed out through their investigation that deep learning-based fault diagnosis does not
depend on expert knowledge and accurate physical models and can achieve high-accuracy
fault diagnosis. Wu et al. [8] designed a DNN-based adaptive bearing fault diagnosis archi-
tecture to enhance the generalization capability of the fault diagnosis model. Zhao et al. [9]
designed a transfer learning approach for multiple working conditions fault diagnosis,
which avoids the training of deep learning neural networks from scratch. Zhao et al. [10]
designed a data-driven fault diagnosis method under data imbalance to improve the ac-
curacy and robustness of the fault diagnosis model. However, the effectiveness of deep
learning-based fault diagnosis depends on the number and quality of labeled samples,
which is difficult to guarantee in a single client. Therefore, the research of fault diagnosis
based on FL has been favored by experts.

FL is a distributed machine learning approach where clients use private data to
train local models and then aggregate them at the model level without involving data
sharing. In this way, FL combines the information of multiple clients without sharing data,
which protects the privacy of local client data. The schematic diagram of FL is shown
in Figure 1 [18,19]. FL-based fault diagnosis research aims to federate information from
multiple clients to build global fault diagnosis models with powerful performance [20,21].
Throughout the parameter space of the neural network, the gradient descent method is
used to find the optimal values of the parameters according to the direction of the gradient
descent. Therefore, Wu et al. [22] used the gradient as information provided by the client
to the server, which aggregated the information using averaging, and the aggregated
information was fed back to the client for the next round of federation. The method realizes
the joint training of multiple clients and improves the fault diagnosis accuracy of the
global model. Zhang et al. [23] The model parameters of the client are uploaded to the
server as client information for aggregation, which realizes the collaborative training of
multiple clients and improves the fault diagnosis accuracy of the client. However, the above
methods are affected by the accuracy of the local information on the client side. Therefore,
some researchers are more concerned about whether the information uploaded by the
client is useful or not. Zhang et al. [24] use the client’s local loss as the basis for judgment,
and when the loss is greater than a specific threshold value, the client’s information is
judged as useless and does not participate in the information aggregation of the round.
This somewhat allows the server to aggregate more useful information, so the federation
model outperforms traditional federation methods. Paragliola et al. [25] argue that as the
number of layers of the network model deepens, the model information becomes more
abstract, which is not conducive to the server focusing on the useful information of the
model. Therefore, an efficient federation learning method is proposed, which sends not the
complete model but a part of the client model from the local client to the federation center
in each round of federation.
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Figure 1. FL schematic.

The above research method achieves collaborative optimization of multiple clients
through different federation approaches, and the federation centers all use traditional
federation averaging, giving the same weight to different clients. However, there are
differences in the useful information provided by each client due to local data work and
model performance, and Federated Averaging, (FedAvg) ignoring such differences will
not fully exploit the advantages of FL. Therefore, this paper designs a multiscale recursive
federation strategy among clients, which makes the server’s aggregation more focused on
the useful information provided by the clients, and thus makes full use of the data from the
clients. At the same time, the client local multiscale recursive fusion strategy is designed to
fuse the global information into the local client feature extraction process, so that the local
client features and global features are fully fused to achieve the purpose of using other
client information to optimize the current client fault diagnosis effect.

3. Multiple Working Conditions Fault Diagnosis Method Based on Multiscale
Recursive Attention Gate Federation

The purpose of FL-based fault diagnosis is to federate multiple clients to train a
powerful global model, but the information uploaded to the server contains both useful
and useless information when the local clients have different data conditions and model
performance. The traditional FedAvg method ignores the differences in client information
and assigns the same weight to different clients, which inevitably affects the fault diagnosis
effect of all clients participating in the federation. Therefore, this section designs a multiscale
recursive attention gate federation fault diagnosis method, which uses attention gates to
give more attention to the useful information uploaded by the client, thus improving the
accuracy of the client’s multiple working conditions fault diagnosis.

3.1. Multiscale Recursive Attention Gate Federation Method

Neural networks abstract features to higher scales through layer-by-layer feature
representation, where features at different layers represent features at different scales. The
feature representation of the same set of signals at different layers is different, and the
distinguishability of features is also different.
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On the other hand, it is difficult to obtain multiple working conditions data from local
clients, so it is especially important to develop a multiple working conditions fault diagnosis
method jointly with multiple clients. The simplest way to jointly develop multi-client fault
diagnosis models is to share data, but sharing data involves the privacy information of
clients. Therefore, the FL approach is that the clients locally do preliminary feature mining
on private data first and then share the mined information, thus enabling multiple clients to
jointly develop fault diagnosis models for multiple operating conditions. However, existing
FL approaches do not take into account the differences in information uploaded by clients
due to differences in local data and model performance. Therefore, a multiscale recursive
attentional gate FL model (MAGFL) is designed in this section to improve the accuracy
of multicondition fault diagnosis for the federation’s later client. The algorithm steps are
as follows:

Remark 2. Shallow scale information is more comprehensive but coarser and less distinguishable.
Deep-scale features are more accurate, but there is information loss. Therefore, the comprehensive
use of multiscale features can improve the fault diagnosis accuracy of rolling bearings.

Step 1: Designing a multiscale recursive FL framework between clients.

The traditional FL method gives the same weight to the information uploaded by the
client, which leads to the waste of useful information and thus affects the effectiveness of
FL-based fault diagnosis. Therefore, a multiscale recursive FL framework among clients is
designed as shown in Figure 2, which enables the FL model to focus more on the useful
information provided by the clients.

Figure 2. Multiscale recursive FL method.

For multiple clients Client1, ..., Clienti, ..., Clientk, X1 denotes the local data of Client1,
Xi denotes the local data of Clienti, and Xk denotes the local data of Clientk. In fact,
each client may run in multiple working conditions, and each client may not run in
exactly the same working condition. The server initializes the global model parameters
W0

global = [θ1, ..., θj, ..., θn] and sends them down to the client, where θ denotes the network
parameters of the model and n denotes the number of network layers. θj = [wj, bj] denotes
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the weight wj and bias bj of the j-th layer. Clienti starts local training using the model
parameters inherited from the server as initial values.

Clienti uses AutoEncoder (AE) for layer-by-layer feature extraction. Firstly, the first
scale feature hi,1 is extracted by the first AE, and then the first scale feature hi,1 of each
client is uploaded to the server for the first scale feature federation to obtain the server
aggregated feature Fg,1 as shown in Equations (1) and (2).

Fg,1 = AttGate(h1,1, ..., hi,1, ..., hk,1)

= (1 − Z1)⊗ h1 + Z1 ⊗ h1
(1)

Z1 = σ(h1Wgate,s,1 + bgate,s,1) (2)

where AttGate(•) denotes the operator function of the attention gate, h1 denotes the splicing
feature of each client’s uploaded feature, splicing features means splicing of features by
rows, from multiple features to one feature, h1 = [h1,1, ..., hi,1, ..., hk,1], and Wgate,s,1, bgate,s,1
denotes the aggregation parameters of the server’s attention gate. σ denotes the Sigmoid
activation function of the neural network, and Z1 is the weight assignment mechanism
of the attention gate, obtained through a single layer of the neural network. ⊗ denotes
the multiplication of the elements in the corresponding positions in the tensor. By using
attention gates, it is possible to make the server’s aggregation more focused on the useful
information in the features provided by each client, rather than giving equal weight
to information from different clients. Attention gates achieve more attention to useful
information by assigning different weights to the corresponding neurons. If the output
of the attention gate is larger, it means that the corresponding neuron corresponding to
the information is given a larger weight. The usefulness of the information depends on
the contribution of the information output from the neuron to the fault diagnosis result,
whether it is positive or negative.

Then, Fg,1 is distributed to each client for local multiscale feature fusion to obtain the
client fusion feature Ff ,i,1 as shown in Equation (3).

Ff ,i,1 = MsFusion(hi,1, Fg,1) (3)

where MsFusion(•) denotes the client’s local multiscale feature fusion strategy, which will
be described in detail in step 2. Then, unsupervised feature extraction is performed on
Ff ,i,1 using AE to obtain the second-scale feature hi,2. The hi,2 is uploaded to the server for
second-scale federal aggregation to obtain Fg,2 as shown in Equation (4).

Fg,2 = MsFed(h1,2, ..., hi,2, ..., hk,2) (4)

Fg,2 is then distributed to each client for local multiscale feature fusion. In such a way,
the aggregated features Fg,n at the n-th scale are obtained, and Fg,n is sent down to the
client for local multiscale feature fusion to obtain the fused features Ff ,i,n, as shown in
Equation (5).

Ff ,i,n = MsFusion(hi,n, Fg,n) (5)

Ff ,i,n is then fed to the client’s Softmax classifier for local multiple working condition
fault diagnosis.

Step 2: Multiscale recursive fusion within the client.

The local layer-by-layer recursive use of global features provided by the server can
make the global features better serve the current client. The information flow relationship
of the proposed method is shown in Figure 3.



Entropy 2023, 25, 1165 7 of 18

Figure 3. Information flow diagram of the proposed method.

Remark 3. The features are essentially the outputs of the neurons in the hidden layer of the neural
network. The mapping of information from data space to feature space is actually the transformation
of the neural network from input to output. The reason is that the distinguishability of fault
information in data space is not strong, and the purpose of transforming it to feature space by the
neural network is to train the parameters of the neural network to make the distinguishability of
fault information in feature space stronger.

Remark 4. The client uses private data to train a local neural network model without requiring
the sequential order of time series. In the process of FL, if the working conditions of each client are
the same, then even the traditional FL method can obtain good fault diagnosis results. However,
when it faces the problem of multiple working conditions, the fault diagnosis effect of the traditional
FL method is not guaranteed. This paper focuses on fusing multiscale features of the client using a
multiscale recursive federation approach, with attention gates used to focus on information useful to
the client, thus solving the problem of multiple working conditions.

For the t-th round of federation, the features hi,1 at the first scale are first extracted
locally at the client using AE, and then hi,1 is uploaded to the server for aggregation
to obtain Fg,1. The server sends Fg,1 down to the client locally for multiscale recursive
fusion. Clienti use the local multiscale recursive fusion of the inherited Fg,1 to obtain the
fused features Ff ,i,1. The fusion strategy uses the attention gate approach as shown in
Equations (6) and (7).

Ff ,i,1 = AttGate(hi,1, Fg,1)

= (1 − Zi,1)⊗ hi,1 + Zi,1 ⊗ Fg,1
(6)

Zi,1 = σ(hi,1Wgate,l,1 + bgate,l,1) (7)
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By local multiscale recursive fusion of Fg,1 and hi,1, the aggregated features can be
better served for local client feature extraction, and the information from other clients can
be used to optimize the effectiveness of multiple working conditions fault diagnosis for the
current client.

Then, hi,1 is mapped to a higher feature scale by AE to obtain hi,2. The hi,2 is uploaded
to the server for federal aggregation at the second scale to obtain the aggregated feature
Fg,2. Fg,2 contains useful information about all clients participating in the federation, which
can be used to optimize the client’s local client feature extraction, so the client performs
local recursive feature fusion of the inherited server features Fg,2 as shown in Equation (8).

Ff ,i,3 = MsFusion(hi,3, Fg,3) (8)

In such a way, the client locally performs n times of multiscale recursive fusion to
obtain the top-level fused features Ff ,i,n.

Ff ,i,n contains the features of all clients participating in the federation, and local
multiscale recursive fusion can make the multiscale recursive federation work better so that
the information from other clients can be used to improve the accuracy of local multiple
working condition fault diagnosis.

In fact, different types of failures may occur when the client is working under different
working conditions. The role of the attention gate is to selectively utilize the multiple
working conditions information according to the local needs of the client. When different
clients do not learn the same fault type information, the local client’s attention gate selects
the information that is useful for their own fault diagnosis. The performance of the models
differs from client to client when the length of the training set varies, which requires more
attention to useful information, so attention gates are crucial to ensure the effectiveness of
federal learning.

3.2. Multiple Working Condition Fault Diagnosis Based on MAGFL

When the clients participating in the federation are running in different working
conditions, they receive different useful information from the client to the server due to
the difference in the quality of the client data. Traditional FedAvg methods ignore this
difference in information and unselective averaging can lead to the propagation of useless
information through the federation process, which does not guarantee the validity of the
FL. The MAGFL-based fault diagnosis method is given in this section, and its flowchart is
shown in Figure 4.

Remark 5. Traditional criteria for evaluating data quality include whether the data contains noise,
whether there is an imbalance in the data, and whether the data is under network attack, etc.
In deep learning, data quality is good if the data are conforming to independent homogeneous
distribution. Because the data conform to independent homogeneous distribution is a prerequisite
for the effectiveness of deep learning, and the effective features can be extracted by neural networks.
If the data does not conform to the independent homogeneous distribution, then the quality of the
data is poor.

As shown in Figure 4, the fault diagnosis process based on the proposed method is
divided into two parts: model training of multiscale recursive federation and client fault
diagnosis of multiple working conditions. The left side of the figure indicates the model
training part, and the red dashed box indicates the multiscale recursive federal process.
When the training process is complete, each client saves their model parameters for fault
diagnosis. Using the trained client parameters, features are extracted from the fault samples,
and then the features are fed into the classifier to output the fault diagnosis results.
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Figure 4. Flow chart of MAGFL-based fault diagnosis.

4. Experiment and Analysis

This section validates the effectiveness of the proposed method through experimental
analysis using a benchmark dataset from Case Western Reserve University (CWRU) [26].

4.1. Description of Experimental Data

The CWRU vibration data used in this section is collected by an accelerometer mounted
on the drive side of the motor with loads including 0, 1, 2, and 3 HP. The EDM technique
was used to reintroduce single-point faults on the test bearings with fault sizes of 0.007,
0.014, and 0.021 inches. Vibration data are collected by an accelerometer, which is fixed to
the drive and fan side of the motor housing using a magnetic base. The fault types and
labels for the data used in this section are listed in Table 1. The 10 labels in Table 1 indicate
the 10 types of faults.

Table 1. Details of experimental data.

Fault Type Fault Size (inch) Label

Ball fault 0.007 1
Inner race fault 0.007 2
Outer race fault 0.007 3

Ball fault 0.014 4
Inner race fault 0.014 5
Outer race fault 0.014 6

Ball fault 0.021 7
Inner race fault 0.021 8
Outer race fault 0.021 9

Normal 0 10
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4.2. Experimental Design

In order to verify the effectiveness of the proposed method, this section designs
multiple working conditions fault diagnosis experiments, as listed in Table 2. Column 2
in Table 2 indicates the load of the device. 0/1/2/3 indicates that it contains four kinds
of loads, which are 0 HP, 1 HP, 2 HP, and 3 HP. This section conducts experiments with
different clients having different loads as an example to verify the effectiveness of the
proposed method. Experiments 1–3 represent the experiments for fault diagnosis of 4 fault
types with a fault size of 0.007 inches. Experiment 4–6 indicates the experiments of fault
diagnosis for 10 fault types with fault sizes of 0.007, 0.014, and 0.021 inches. The models
involved in the experimental comparison are listed in Table 3.

Remark 6. This paper starts the experimental verification with four clients, each containing one
kind of load as an example. In fact, the equipment is in different stages of the life cycle, when
the normal characteristics of the equipment will change, which is also a kind of multiple working
conditions, and in addition, when the load or the working environment changes, the statistical
distribution characteristics of the data will also change.

Table 2. Experimental design.

Experiment Load of Client (HP) Number of Training
Set Samples

Number of Test
Set Samples

Experiment 1 0/1/2/3 4 × 1000 4 × 100
Experiment 2 0/1/2/3 4 × 500 4 × 100
Experiment 3 0/1/2/3 4 × 100 4 × 100
Experiment 4 0/1/2/3 10 × 1000 10 × 100
Experiment 5 0/1/2/3 10 × 500 10 × 100
Experiment 6 0/1/2/3 10 × 100 10 × 100

Table 3. Relevant experimental models.

Model Model Explanation

DNN DNN without federation.

MCNN [9] A method for multiple working condition fault diagnosis using multiple
convolutional kernels to obtain multiscale features.

BNCNN [10] Adding batch normalization (BN) after the convolutional layer is used to
eliminate the distributional differences in multiple cases.

FedAvg [21] Aggregate the information provided by the client using averaging.

FedDv [24] A portion of the clients’ information is participating in the federation instead
of all of them.

FedLayer [25] A part of the client’s information is involved in the federation and not
all of it.

Proposed method Multiscale recursive attention-gate federation method with local use of
multiscale recursive fusion.

This section uses a sliding window to process the raw vibration data to obtain the
samples used in the experiment, with a window length of 900 and a sliding step size of 20.
The sampling frequency of the data is 12 khz and the sampling period is 1/12,000 s.
The length of the sliding window is 900 sample periods for 3/40 s. The sliding step is
20 sample periods for 1/600 s. If the sampling period is too small, the variability between
two adjacent samples is small and can almost be regarded as the same sample, which
contains less distinguishable information and will affect the results of fault diagnosis. This
paper uses a DNN model with 3 hidden layers as the backbone model, the number of
hidden layer neurons is 1200/1000/500, and the learning rate is 0.001. Local training is
completed when the local training loss is less than the threshold, and the features are
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uploaded to the server with a loss threshold is 0.00001. The number of rounds in the
federation is 100 rounds.

The running environment for the experiments is Python 3.7.11, Tensorflow 2.3.0 GPU.
The computer is configured with an 11th generation Intel(R) Core(TM) i9-11900K 3.50 GHz,
and it is manufactured by Intel Corporation, United States. and a NVIDIA GeForce RTX3090
GPU manufactured by NVIDIA in the United States. The operating system is Windows
10 Home.

4.3. Experimental Analysis

Different quality of data from clients provides different useful information to the server,
and focusing on the useful information provided by clients will affect the effectiveness of
federal learning fault diagnosis. The experimental results are listed in Tables 4–9. Both
Tables 4 and 9 contain 7 rows and 6 columns, with the rows indicating the model and the
columns indicating the fault diagnosis accuracy. This paper first designed experiment 1 for
four types of faults with a fault size of 0.007 inches, and the experimental results are listed
in Table 4.

Table 4. Fault diagnosis accuracy for four types of faults with a sample size of 1000 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 79.00% 78.75% 78.75% 74.00% 77.63%
MCNN 81.25% 79.75% 80.25% 75.00% 79.06%
BNCNN 83.00% 82.25% 83.00% 79.75% 82.00%
FedAvg 84.25% 84.25% 84.75% 85.00% 84.56%
FedDv 86.75% 86.25% 86.25% 87.25% 86.63%

FedLayer 88.00% 89.00% 88.50% 89.50% 88.75%
Proposed method 99.00% 99.00% 99.25% 99.25% 99.13%

Table 5. Fault diagnosis accuracy for four types of faults with a sample size of 500 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 72.25% 71.00% 72.50% 73.50% 72.31%
MCNN 75.00% 75.75% 74.25% 75.25% 75.06%
BNCNN 76.25% 77.50% 76.75% 77.00% 76.88%
FedAvg 78.75% 78.75% 77.00% 78.75% 78.31%
FedDv 80.25% 80.50% 79.25% 81.25% 80.31%

FedLayer 82.75% 81.25% 81.25% 82.00% 81.81%
Proposed method 96.88% 96.75% 97.50% 97.76% 97.22%

Table 6. Fault diagnosis accuracy for four types of faults with a sample size of 100 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 57.25% 61.00% 60.00% 61.75% 60.00%
MCNN 60.25% 62.00% 62.75% 63.50% 62.13%
BNCNN 63.75% 64.25% 64.00% 64.75% 64.19%
FedAvg 66.50% 65.25% 66.00% 66.50% 66.06%
FedDv 70.00% 71.75% 70.25% 70.50% 70.63%

FedLayer 74.50% 75.75% 75.25% 75.00% 75.13%
Proposed method 92.00% 91.00% 91.50% 93.00% 91.88%
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Table 7. Fault diagnosis accuracy for ten types of faults with a sample size of 1000 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 66.56% 67.62% 66.27% 66.83% 66.82%
MCNN 67.46% 68.04% 67.75% 67.24% 67.62%
BNCNN 68.56% 68.41% 68.63% 69.23% 68.71%
FedAvg 70.04% 69.62% 69.32% 70.15% 69.78%
FedDv 74.57% 74.96% 75.73% 74.86% 75.03%

FedLayer 81.30% 80.41% 81.62% 80.68% 81.00%
Proposed method 92.25% 93.60% 93.00% 93.43% 93.07%

Table 8. Fault diagnosis accuracy for ten types of faults with a sample size of 500 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 56.55% 59.13% 58.12% 59.10% 58.23%
MCNN 58.36% 60.38% 59.53% 60.28% 59.64%
BNCNN 59.57% 60.85% 60.47% 60.95% 60.46%
FedAvg 61.32% 61.54% 61.21% 60.45% 61.13%
FedDv 65.63% 65.35% 65.74% 65.38% 65.53%

FedLayer 69.73% 69.27% 69.93% 69.02% 69.49%
Proposed method 88.90% 88.89% 89.50% 89.40% 89.17%

Table 9. Fault diagnosis accuracy for ten types of faults with a sample size of 100 for each type
of fault.

Client 1 Client 2 Client 3 Client 4 Mean

DNN 35.19% 37.55% 37.90% 36.72% 36.84%
MCNN 40.35% 41.39% 42.85% 40.37% 41.24%
BNCNN 42.78% 43.20% 43.63% 44.63% 43.56%
FedAvg 47.43% 48.50% 48.04% 47.47% 47.86%
FedDv 55.57% 56.24% 55.82% 56.35% 56.00%

FedLayer 60.39% 61.46% 62.19% 61.45% 61.37%
Proposed method 83.60% 83.40% 85.50% 85.80% 84.58%

Comparing the mean fault diagnosis accuracies of DNN and MCNN in Table 4, it can
be seen that the accuracy of MCNN is 1.43% higher than that of DNN, which is due to
the fact that MCNN uses different convolutional kernels to utilize the features of different
scales of neural networks. Whereas DNN uses only the features of the last layer as input to
the fault diagnosis classifier. A comparison of BNCNN and MCNN shows that the mean
accuracy of multiple working condition fault diagnosis of BNCNN is 2.94% higher than
that of MCNN, which is due to the fact that BNCNN uses BN to normalize the features
after the convolutional layer, which is used to eliminate the effect of the difference in the
distribution of multiple working condition data. Although the above-mentioned multiple
working condition fault diagnosis methods do not need to preprocess the data in advance,
the multiple working condition data from a single client is often insufficient to train an
accurate deep learning fault diagnosis model. Therefore, joint training of multiple clients
can be realized by FL.
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Comparing FedAvg and BNCNN in Table 4, it can be seen that the mean fault diagnosis
accuracy of FedAvg is 2.56% higher than that of BNCNN, which is due to the fact that
FedAvg utilizes information from multiple clients in a comprehensive manner. Comparing
the mean accuracy of DNN and FedAvg in Table 4, it can be seen that the average fault
diagnosis accuracy of FedAvg is 6.93% higher than that of DNN due to the joint optimization
between different clients implemented by FedAvg. However, the approach of treating all
clients participating in the federation equally does not effectively utilize the information
provided by the client. Comparing the mean accuracy of FedAvg and FedDv in Table 4,
we can see that FedDv’s federation method obtains information from some clients for
federation at a time, which reduces the interference of other clients and makes efficient use
of the information provided by the clients, so FedDv’s diagnostic accuracy is 2.07% higher
than FedAvg. However, FedDv still uses the average aggregation method, which causes the
propagation of useless information. Comparing the mean accuracy of FedDv and FedLayer
in Table 4, it can be seen that FedLayer has 2.12% higher accuracy than FedDv for multiple
working condition fault diagnosis, and the utilization of the information provided by the
client is improved due to the fact that a portion of the client information is aggregated
each time.

However, the above approach does not take into account that the information pro-
vided by the client contains both useful and useless information, and the direct average
aggregation approach does not take into account the propagation of useless information.
At the same time, the client in the above method directly inherits the information of the
global model as the initial value of the local optimization, without fully integrating the
global information with the local information. The proposed method locally uses multiscale
recursive feature fusion to utilize global information and fuses global features into the local
client feature extraction process, which makes more full use of global information, so the
multiscale recursive federation between clients and the local multiscale recursive feature
fusion makes the proposed method achieve 99.09% fault diagnosis accuracy, and the fault
diagnosis accuracy of each client is higher than existing methods.

Since the proposed approach allows the federation model to focus more on the useful
information provided by the client, Experiment 2 and Experiment 3 were designed with a
small amount of data from the client, and the results are listed in Tables 5 and 6.

Comparing Tables 4 and 5, it can be seen that the accuracy of multiple working
condition fault diagnosis of each model decreases after the reduction in training data
on the client side, which is due to the fact that less data means less useful information,
so highlighting the use of useful information can improve the fault diagnosis accuracy.
Comparing the mean accuracy of FedLayer and the proposed method in Table 5 shows that
the proposed method is 15.41% higher than the existing method due to the highlighted
utilization of useful information and also the local use of recursive fusion to optimize the
local model using federal information.

This helps us to conclude that the proposed approach is clearly superior to existing
methods, especially when the available data on the client side is relatively small, as the
utilization of useful information from limited data becomes particularly important at this
point. In order to improve the readability of the experimental results, the confusion matrix
of the experimental results of Experiment 3 is given in this section as shown in Figure 5.
The rows of the confusion matrix in Figure 5 indicate the predicted label values of the
model and the columns indicate the true label values of the samples. The diagonal lines
indicate the number of samples with correct fault diagnosis results. As can be seen from
Figure 5, the number of correct samples diagnosed by the proposed method is higher than
all other methods, which reflects the superiority of the proposed method.
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(a) (b)

(c) (d)
Figure 5. Confusion matrix of the proposed method in Experiment 3. (a) Confusion matrix of client 1.
(b) Confusion matrix of client 2. (c) Confusion matrix of client 3. (d) Confusion matrix of client 4.

Comparing Tables 5 and 6, it can be seen that the multiple working condition fault
diagnosis accuracy of each model at a training sample size of 100 per class is lower than that
at a training sample size of 500 per class. The difficulty of acquiring fault-labeled sample
data in industrial sites has increased the need for an effective way of using the information
to make full use of the useful information in existing data. The same conclusion can be
drawn by comparing Tables 4–6. Therefore, in the fault diagnosis of multiple working
conditions, making full use of the useful information provided by the clients participating
in the federation and improving the effectiveness of the federation is an effective way to
solve the difficulties in fault diagnosis of multiple working conditions. On the other hand,
for the federal information inherited from the client, how to make it better optimize the local
model is also an important means to improve the accuracy of client-side fault diagnosis.

To verify the effectiveness of the proposed model when the fault diagnosis task is
more complex, experiments 4–6 were designed by increasing the fault types, and the fault
diagnosis results when the fault types are ten classes and the number of training samples
for each class is 1000 are listed in Table 7.

For a certain client, the complexity of the fault diagnosis task means that the types
of faults to be diagnosed increase, but the number of samples in the training set remains
the same, which will lead to a more difficult task of fault diagnosis. Therefore, comparing
Tables 4 and 7, it can be seen that although the number of training samples for each type
of fault is 1000 for both clients, the more complex the fault diagnosis task is, the more
difficult the diagnosis is, and the corresponding fault diagnosis accuracy is lower. In order
to improve the fault diagnosis accuracy for multiple working conditions, it is necessary to
improve the effectiveness of the federation on the one hand, and to make full use of the
global information provided by the server on the other hand locally. When performing the
fault diagnosis task with 10 classifications, the fault diagnosis accuracy of each model after
reducing the number of training samples to 500 for each class is listed in Table 8.

Comparing Tables 7 and 8, it can be seen that decreasing the number of training
samples with the same number of fault types, the fault diagnosis accuracy of each model
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decreases, indicating that the useful information in the training samples decreases and
obtaining usable fault information from a small number of samples becomes a key factor
for accurate fault diagnosis. Comparing Tables 5 and 8, we can see that although the
number of training samples for each category is 500, the more types of faults need to be
diagnosed, the more difficult the fault diagnosis is, so the fault diagnosis accuracy of ten
categories is lower than that of four categories. However, the degradation of fault diagnosis
accuracy is minimal for the method proposed in this paper, which indicates that the method
proposed in this paper has stronger information extraction ability. To further test the
effectiveness of the proposed method, the number of training samples was continued to be
reduced to 100 per class, and the experimental results are listed in Table 9. To improve the
readability of the experimental results, a confusion matrix of the experimental results is
given in this section as shown in Figure 6. The rows of the confusion matrix in Figure 6
indicate the predicted label values of the model and the columns indicate the true label
values of the samples. The diagonal lines indicate the number of samples with correct fault
diagnosis results.

(a) (b)

(c) (d)
Figure 6. Confusion matrix of the proposed method in Experiment 6. (a) Confusion matrix of client 1.
(b) Confusion matrix of client 2. (c) Confusion matrix of client 3. (d) Confusion matrix of client 4.

Comparing Tables 7–9, it can be seen that the existing FL fault diagnosis method can
accomplish effective federated learning fault diagnosis jointly with multiple clients under
the premise that the clients have sufficient training samples. However, it is difficult to
label the data in industrial sites, and the data with fault labels are often less, so the method
proposed in this paper is more superior when there are more fault types and less training
sample data. The histogram of the experimental results is shown in Figure 7. The Y-axis in
the figure indicates the fault diagnosis accuracy.
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Figure 7. Histogram of experimental results.

This paper takes Experiment 1 as an example to analyze the variance and standard
deviation of the fault diagnosis accuracy of each model. Each model performs fault
diagnosis 20 times, and the variance and standard deviation of the fault diagnosis results
are calculated from the fault diagnosis results 20 times. The experimental results are shown
in Table 10.

Table 10. Variance and standard deviation of model fault diagnosis results.

DNN MCNN BNCNN FedAvg FedDv FedLayer Proposed Method

Variance 1.6 × 10−3 1.3 × 10−3 6.46 × 10−3 1.83 × 10−4 1.96 × 10−4 1.346 × 10−4 7.1 × 10−5

Standard Deviation 0.0396 0.0362 0.0254 0.0135 0.014 0.0116 0.0084

From Table 10, it can be seen that the standard deviation of the fault diagnosis results
of MCNN and BNCNN is less than that of DNN due to the use of multiscale features.
The standard deviation of the algorithms for fault diagnosis through federated learning
is smaller than that of the method without federation, indicating that FL is more robust.
The proposed method has the smallest standard deviation of 0.0084 for the fault diagnosis
results due to the multiscale recursive federation, indicating the good robustness of the
proposed method.

5. Conclusions and Future Work

The purpose of FL is to accomplish joint optimization of multiple clients without
sharing data directly, and the information uploaded to the server by each client is given
the same aggregated weight. However, the information uploaded to the server by each
client is not equal due to the change in working conditions, and directly assigning equal
weights to all clients’ information will ignore the attention to useful information and affect
the effect of federal learning fault diagnosis for multiple working conditions. Therefore,
the multiscale recursive FL framework aims to make the server pay more attention to the
useful information provided by the model and ignore the useless information through
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attention gates to ensure that the information provided by the client is fully utilized during
each federation. On the other hand, for the global information aggregated by the server,
the client uses the designed multiscale recursive fusion, which can effectively fuse the
global information into the local client feature extraction process and achieve the effect of
using other client information to optimize the current client information. The designed
multiscale recursive federation among clients and the multiscale recursive fusion method
locally by clients can complete the joint optimization of each client in the case of obvious
differences in client work conditions, and make full use of the useful information provided
by clients. The experimental results show that the proposed method is 23.21% higher
than the existing FL fault diagnosis method when the client faces a complex multiple
working condition fault diagnosis task and the available training data is relatively small.
The experimental results show that the use of the proposed method can give more attention
to the useful information provided by the client in the process of federation.

This study used a small amount of labeled data from a single customer and did not
consider the large amount of unlabeled data collected during the operation of the device.
Therefore, future work should design a semi-supervised federal learning mechanism for
the case of small amounts of labeled data.
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