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Abstract: A novelty signal processing method is proposed for a technical vision system (TVS).
During data acquisition of an optoelectrical signal, part of this is random electrical fluctuation of
voltages. Information theory (IT) is a well-known field that deals with random processes. A method
based on using of the Shannon Entropy for feature extractions of optical patterns is presented. IT
is implemented in structural health monitoring (SHM) to augment the accuracy of optoelectronic
signal classifiers for a metrology subsystem of the TVS. To enhance the TVS spatial coordinate
measurement performance at real operation conditions with electrical and optical noisy environments
to estimate structural displacement better and evaluate its health for a better estimation of structural
displacement and the evaluation of its health. Five different machine learning (ML) techniques are
used in this work to classify optical patterns captured with the TVS. Linear predictive coding (LPC)
and Autocorrelation function (ACC) are for extraction of optical patterns. The Shannon entropy
segmentation (SH) method extracts relevant information from optical patterns, and the model’s
performance can be improved. The results reveal that segmentation with Shannon’s entropy can
achieve over 95.33%. Without Shannon’s entropy, the worst accuracy was 33.33%.

Keywords: machine learning; data augmentation; sensor data processing; technical vision system;
optical patterns; random process; entropy

1. Introduction

Modern society requires infrastructure to perform indispensable activities such as
transportation, communication, power grid, and water supply systems. These urban
infrastructures (UI) are necessary to sustain a city’s economy. The rapid urban growth
allows testing the strengths of the civil infrastructure (CI). Traffic loads and natural hazards
are factors that can cause deterioration of the UI. To pursue sustainable development goals,
it is necessary to consider the monitoring and control of current infrastructure. Urban
sensing deals with collecting relevant information about the urban environment to develop
early warning systems to make sustainable urban systems through technology. Different
types of data sets of large amounts of information can be gathered, like air quality [1], traffic
patterns [2], and CI [3], just to mention a few examples.

The most common variables studied in CI that need adequate maintenance are related
to energy, transportation, and building. The datasets taken from CI are urban area, popula-
tion density, energy utilization by each consumer, etc. All this information is collected and
used to understand complex problems that are hard to solve, like the challenge of aging

Entropy 2023, 25, 1207. https://doi.org/10.3390/e25081207 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081207
https://doi.org/10.3390/e25081207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1477-7449
https://orcid.org/0000-0003-4270-6872
https://orcid.org/0000-0002-1830-0226
https://orcid.org/0000-0003-0618-0455
https://orcid.org/0000-0002-0055-4797
https://doi.org/10.3390/e25081207
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081207?type=check_update&version=1


Entropy 2023, 25, 1207 2 of 21

infrastructure. To face this challenge, a TVS is proposed to capture optical signals to create
datasets from particular behaviors of the laser beam reflected from a CI.

Optimizing maintenance activities of a key UI is an important task that should be
adopted to ensure good performance under challenging conditions. Sustaining key in-
frastructures requires constant monitoring for the safety of citizens. These elements must
follow strict safety requirements to avoid stopping the economy. Adequate maintenance
of these infrastructures can save lives. For these reasons, preserving civil and industrial
infrastructures through programmed maintenance is important. The field of structural
health monitoring (SHM) is a convenient and organized way to address the current chal-
lenges. The methodologies addressed by SHM are designed to develop technologies for
monitoring and analyzing data to prevent damage to infrastructure. SHM can help us to
evaluate the risks and manage assets better.

Nowadays, many engineers have implemented technologies to solve problems related
to damage detection. The current technology improved diagnostic accuracy by identifying
problems to make decisions objectively. On the other hand, sensor information is one
of the most important elements in quantifying risk. This allows for defining strategies
to minimize the likelihood of critical damage. To collect the information from structures
there are different technologies based on materials such as fiber Bragg grating (FBG) for
strain sensor applications in road [4], piezoelectric nanofiber membranes sensor based
on PAN/BaTiO3 (polyacrylonitrile and flexible barium titanate) [5], Carbon nanotubes
(CNTs) [6]. FBG is a technology based on optical fiber that reflects certain wavelengths and
transmits others. This material also be used for sensing applications. PAN/BaTiO3 is a
novel nanomaterial proposed for electromechanical conversion in SHM tasks due to its
strong piezoelectricity capacity. A CNT is a tiny hollow tube made of cylindrical molecules
of carbon that is widely used in many fields of science due to its electromechanical and
thermal properties. In the field of SHM, the CNT is used for measuring the strain, stress,
load, temperature, displacement, and pressure.

Recent literature based on numerical and experimental models to address classification
problems can be solved using supervised and unsupervised machine learning techniques.
These can be described as follows. The following authors [7] proposed a methodology
based on the acceleration and shear time histories evaluated on the rails. The work is treated
as a binary classification. The methodology proposed could automatically distinguish a
defective wheel from a healthy one. The development of an easy-to-implement, low-cost
monitoring system is a relevant contribution. The continuous wavelet transform (CWT)
model was used as a feature extractor from acquired responses.

A general ML framework to deal with the railway wheel flats identification can be
consulted in [8]. They deal with damage identification based on the acceleration mea-
surements on the rails. A numerical approach was performed to evaluate whether the
number of sensors used to detect and classify wheel flats. An autoregressive (AR) model
was performed as a feature extractor to take meaningful information from measurements.

The following research [9] studies the different vibration-based damage detection meth-
ods, such as fundamental modal examination, local diagnostic method, non-probabilistic
methodology, and the time series method.

A Singular spectrum analysis (SSA) is a nonparametric method for analyzing time
series. This tool can enhance the sensitivity of the acceleration signals. SSA uses time history
data obtained from each sensor separately, and the singular value decomposition (SVD) is
performed on the Hankel matrix formed [10]. The work [11] was focused on detecting and
identifying damage in a structure in an online framework. They proposed a methodology
for real-time based on recursive singular spectrum analysis (RSSA). According to the
findings, RSSA facilitates the monitoring of structural systems and real-time data processing
through acceleration data using single and multiple sensors. The exact damage instant can
be identified by extracting damage-sensitive features from measurements.

The authors [12] give a broader discussion of first-order perturbation (FOP) techniques
that solve SHM problems in online real-time structural damage detection for vibrating
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systems. The following authors performed a novel framework by applying Recursive
Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive
Modeling (TVAR) for an online damage detection method for real time processes [13].

A literature review of next-generation smart sensing technology in SHM, such as
smartphones, unmanned aerial vehicles (UAVs), cameras, and robotic sensors, are used in
acquiring and analyzing the vibration data [14]. A LiDAR (Light Detection and Ranging)
device is an instrument that has significant potential for damage detection based on laser
scanning providing geometric information about the structures [15].

Although a Light Detection and Ranging (LiDAR) system is highly precise and reliable,
the cost of its implementation for SHM tasks can be expensive in the case of a 64-beam
model that can cost around $75,000 (USD) [16]. Despite their high cost, LiDAR is mainly
used for perception and localization tasks at most high level [17]. The advantage of these
systems is that the performance of the system can be determined by using non-destructive
techniques (NDT).

This work is focused on a TVS system for displacement measurements. The current
TVS has the patent number MX2014000647, which uses a dynamical triangulation method
to get angular position and 3D coordinates from objects or surfaces. This system can also
perform the same tasks as cameras and LiDAR for SHM tasks. But with advantages like high
accuracy, low computational cost, and low volume of data requirement for measurements.

A laser source obtains the geometrical coordinates of a surface under study. A photo-
sensor detects the laser beam reflected. However, in a real operation, interferences of other
radiation sources can affect the information collected with a TVS. For example, sunlight is
the main interference that should be filtered. For this reason, the reflected laser beam is
mixed up with undesired signals.

A novelty signal processing method is proposed for a technical vision system (TVS).
A method based on the use of the Shannon entropy for feature extractions of optical
patterns in the context of SHM to augment the accuracy of optoelectronic signal classifiers
implemented in the metrology subsystem of the TVS. To enhance the TVS spatial coordinate
measurement performance at real operation conditions with electrical and optical noisy
environments to estimate structural displacement better and evaluate its health.

The following research faces the same problem in reconstructing the real returning
signal shape, and its problem is exacerbated by the presence of strong solar background
illumination [18]. Using optical filters and higher-power lasers would be a solution. How-
ever, these increase the cost of manufacturing a TVS and increase larger usage risks and
augment energy consumption. An alternative solution is to apply Artificial intelligence
(AI) to detect what signal corresponds to the laser beam. ML can solve the interference
issue as a recognition pattern problem. To enhance the accuracy of ML models, Shannon’s
entropy is proposed to remove parts that contain random signals and isolate them from the
optical patterns.

In this work the following novelty signal processing method is proposed to enhance
the TVS accuracy.

A method based on the use of the Shannon entropy for feature extractions of optical
patterns in the context of SHM to augment the accuracy of optoelectrical signal classifi-
cations implemented in the metrology subsystem of the TVS. To enhance the TVS spatial
coordinate measurement performance at real operation conditions with electrical and
optical noisy environments to estimate structural displacement better and evaluate its
health.

Relevant procedures in the method are:

1. Using a phototransistor with black daylight filter as a photosensor of a TVS to reduce
the influence of solar radiation as much as possible.

2. Calibrating the TVS with a turned-off laser and obtaining raw signals (Class 1).
3. Calibrating the TVS with a turned-on laser and obtaining raw signals (Class 2).
4. Creating a Class 3 with data augmentation to create robust ML models.
5. Comparing the performance of five different ML models with LPC and ACC.
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6. Comparing the performance of five different ML models with LPC and ACC and
Shannon’s entropy as a segmentation process.

This work aims to find the configuration that enhances the performance of ML models
to discriminate against sunlight interference. One of the main goals is to implement a
pipeline that can recognize the reflected laser beam pattern. For that reason, this research
compares the accuracy of five different ML techniques with LPC, ACC, and Shannon’s
entropy. The following classifiers such as Naïve Bayes (NB), support vector machines (SVM),
linear discriminant analysis (LDA), K-Nearest Neighbors (KNN), and neural network
(NN), were used. Data augmentation was implemented to enhance the accuracy of these
classifiers.

This paper is organized as follows. Section 2 gives details about the problem state-
ment. Section 3 describes the operational principle of a TVS and the latest improvements.
Section 4 provides a brief overview of the feature extractions used. Section 5 summarizes
the ML methods used in this work. Section 6 presents the proposed ML pipeline to solve
the problem of interference. Section 7 discusses the results and highlights of the experi-
ments carried out in this work. Finally, some conclusions and recommendations from the
experiments are shared in Section 8.

2. Problem Statement

Recent studies were conducted outdoors and compared with experimentation under
indoor (Laboratory) conditions, from which the results showed that undesired signals
affected the performance of the TVS. This was primarily due to the conditions of intense
radiation [19–21]. Consequently, a laser beam cannot be captured by a TVS system. The
solar radiation spectrum shows that infrared light is reflected more than ultraviolet (UV) or
visible light due to its longer wavelength. This is important to consider because several
devices can work with these wavelengths, such as phototransistors (PT) and photodiodes
(PD).

PT is more sensitive to light than PD due to high gain. Another advantage of PT over
PD is that it can be obtained at low-cost. The PT used in this work minimizes outside
interference thanks to its daylight filter. Although PT was chosen, TVS is still detecting low
interference outdoors. The interference can be discriminated against using ML models to
address this issue. Particular optical patterns only can appear in three different scenarios.
The first scenario corresponds to when TVS is turned off. The second scenario appears
when TVS is turned on. Finally, the third scenario represents a saturation of a signal
captured.

Figure 1, shows raw signals detected with the PT. Figure 1a corresponds to the back-
ground or possible interferences found outdoors; at that moment, TVS is turned off. This
optical pattern has a peak voltage of 2.5 Volts, labeled class 1. The reason is to create an ML
model that can discriminate between the interferences and laser scanning of the TVS system.
Figure 1b shows a particular pattern at the moment the TVS is turned on. Thanks to laser
power, this signal can be captured by the PT. This signal has a peak voltage of 4.5 Volts and
is labeled class 2. Note that the peak of voltage of class 1 and class 2 is different. Figure 1c
is class 3 created by a data augmentation stage (synthetic signal). This signal represents a
random signal created by external factors.

The three classes contain low voltages, captured when radiation is not detected. These
are a part of the optical patterns that can be regarded as a problem because there is no
relevant information. Random voltage variations are redundant information that needs to
be addressed.
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Figure 1. Raw signals mixed up with interference are used for pattern recognition. (a) The solid red
line represents TVS is turned off. (b) Blue color shows the signal captured when TVS is turned on.
(c) The solid green line signal represents an unknown pattern (this signal was created as a synthetic
pattern). Note that an important part of the signal is random electrical information.

3. Operational Principle of TVS

In this section, a brief overview of evolution and operational principles of TVS are
given.

TVS system is a device that can solve real-time tasks to measure three-dimensional
(3D) coordinates. These tasks are needed in many contexts of SHM, such as displacement
measurements or surface estimation. This system has two main parts to realize depth
measurements. The first component of a TVS is the positioning laser (PL) that uses an
active laser in conjunction with mechanical elements, such as a step/servo motor and
gears, whereby the space of interest can be radiated. The second component is the scanning
aperture (SA), which contains photosensors to receive the radiation reflected from objects
under study.

The distance between PL and SA is known, and can be identified as a which is
illustrated in Figure 2. Angular position of the PL can be controlled by a step motor or
servo motor. PL is an angle known by the user that corresponds to Ci,j. The angular position
of SA is measured by knowing the peak time of the Gaussian signal and period of the DC
motor with a speed constant, this is denoted by Bi,j.

Figure 2 explains how to determine the angular position of SA when a Gaussian signal
appears. This signal has the shape of a normal distribution bell (Gaussian). A rotational
mirror at an angle of 45° reflects the radiation of an object to the photosensor placed on
SA. As a consequence, the Gaussian shape of a signal is formed. The capacitance of a
photosensor and signal processing can smooth the Gaussian signal.

Since TVS is scanning at a constant angular velocity, the time elapsed between the start
of the first pulse and the second pulse can be used to estimate the angular position. For
instance, the angular position β of the PT can be calculated as follows with Equation (1).

β = 2π
tα

T2π
(1)

where the time tα is defined as the interval between the signal m1 and the position of the
energy center is m2.
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Figure 2. Graphical aid to visualize the main parts of TVS in operation. Bi,j is the angular position
according to a frame reference. The oscilloscope shows the pulse and a laser beam (Gaussian Signal)
without interference.

The local maximum of the Gaussian signal is related to the energetic center of the
radiation reflected on the surface studied. A complete revolution of a motor is the period of
time used to know the angular position of a local maximum of a Gaussian signal, and this
is called Bi,j. Opto-interrupters or Hall sensors are usually used to calculate the pulses per
revolution of a DC motor. In this paper, ITR8102 (Everlight Electronics, New Taipei City,
Taiwan) was implemented to know the position of the motor on SA. This opto-interrupter
sends pulses for every revolution of the rotational mirror. For each revolution of a DC
motor, a Gaussian shape will appear during the scanning, as illustrated in Figure 2.

Knowing the scanning frequency makes it possible to calculate Bi,j. With this infor-
mation, the object position is estimated at two different times. If Bi,j moves, di,j can be
determined in real-time. Note that distance di,j corresponds to depth. According to sine
theorems and the values of the angles Bi,j and Ci,j depth information di,j is estimated with
Equation (2).

di,j = a
sin(Bi,j)sin(Ci,j)

sin[180◦ − (Bi,j + Ci,j)]
(2)

Figure 3, details relevant information about different TVS prototypes.
To extend the information of a TVS, the following work [22] shows typical laser scanner

constructions and their constraints.
The following researchers [23–25] worked with the first version of the TVS prototype

number one. They used the TVS for remote sensing and obstacle detection in an unknown
environment. This prototype presented simplicity, versatility, and economic accessibility to
realize 3D coordinates measurements. An inconvenience of this prototype is that it could
only scan in a discontinuous way. In other words, point clouds give shape to the object
studied. The next work [26] involved the substitution of the previous (prototype No. 2)
and changed the stepper-motor by servo-motors to achieve a continuous laser scan (newly
developed prototype No. 3).

A complete mathematical apparatus for processing digital information inside the
system and for determining the distances and angle measurements in the system proposed
is developed [27].
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Figure 3. Comparison of different TVS systems developed for measuring 3D coordinates.

4. Feature Extraction Methods

Feature extractors are mathematical algorithms that recover relevant information
(attributes) from a phenomenon like our raw signals captured with a PT. This process is
known as feature engineering, and the main purpose is to use representative data with less
information. These features enhance the ML models, and redundant data are minimized.
There are several methods, such as Autoregressive (AR) Modelling, Linear Predictive
Coding (LPC), Autocorrelation coefficients (ACC), Mel Frequency Cepstral Coefficients
(MFCC), Fast Fourier transform (FFT), Hilbert transform, just to mention a few. Trends and
a zoomed-in perspective of feature extraction methodologies can be consulted in [28].

This work implements ACC and LPC as feature extractors. However, Shannon’s
entropy is used to segment only the optical pattern from the electrical signal and remove
the rest of the signal.

The description of these techniques are detailed as follows.

4.1. Autocorrelation Function

The autocorrelation function (ACF) vector can be used for extract the features (ACC)
of the TVS system by measuring the correlation between yt and yt+k where x = 0, . . . , k
and yt is a stochastic process.

The correlation for lag k can be estimated by applying Equation (3). For more details,
see the following work [29].

rk =
ck
c0

(3)

where c0 represents the sample variance of the time series and ck can be estimated by
Equation (4).

ck =
1
T

T−k

∑
t=1

(yt − ȳ)(yt+k − ȳ) (4)

Figure 4 shows the feature space of ACC as a feature extractor from a raw signal.
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Figure 4. Feature space of ACC as a feature extractor of a raw signal.

Figure 5 shows the feature space of ACC with the Shannon entropy. Note that the
segmentation with the Shannon entropy separates each class in comparison with Figure 4.
The coefficients 1,2,3 represent the first three features of ACC or LPC. For this study, we
extracted 11 features for each optical pattern. These figures differences rely on the useful
features extracted with the Shannon entropy as a segmentation process. The ideal case is
when the feature extraction process can separate all classes.

Figure 5. Feature space of ACC and the Shannon entropy as a segmentation process.

4.2. Linear Predictor Coefficients

The procedure to calculate the LPC coefficients can be described as follows. First,
Equation (5) was applied to calculate the FFT of a desired signal to compute the autocorre-
lation vector.

xk =
N

∑
n=1

xne−j2π(k−1)(n−1)/N (5)

After obtaining FFT Xk, the inverse discrete Fourier transform of the absolute value of
Xk value is taken and squared to compute the autocorrelation vector R by Equation (6).

Xj =
1
n

n

∑
k=1

Yke2iπ(j−1)(k−1)/n (6)
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A scaling is applied to the output and the bias of the autocorrelation is estimated
B = R./m, where m represents the number of the length of the vector or signal segment
under study.

The Hermitian Toeplitz system of equations is built as follows:
B(1) B(2)∗ . . . B(n)∗

B(2) B(1) . . . B(n− 1))∗
...

. . . . . .
...

B(n) . . . B(2)) B(1))




A(2)
A(3)

...
A(n + 1)



=


−B(2)
B(3)

...
−B(n + 1)


(7)

This system of equations Equation (7) can be solved by Levinson-Durbin, recursion
and the real coefficients A for the predictor are taken.

Figure 6 illustrates the feature space of LPC as a feature extractor from a raw signal.
Figure 7 shows how the classes were separated with Shannon’s entropy segmentation
process.

Figure 6. Feature space of LPC as a feature extractor of a raw signal.

Figure 7. Feature space of LPC and the Shannon entropy as a segmentation process.
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4.3. Entropy as an Optical Feature

Entropy is a broad concept that measures the disorder in a random system. According
to Shannon, a non-linear measurement in dynamic signals, measures the average informa-
tion contents associated with the data randomness encountered in a signal or event [30].
The relevance of SHM is that SE is a useful tool to show changes in the measured signals
associated with the structure condition.

Given a source of random events from the discrete set of possible events a1, a2, . . . , an,
with associated probability distribution P(a1), P(a2), . . . , P(an), the average information
per source output can be called as the entropy of the source, see Equation (8)

H = −
N

∑
n=1

P(an)logP(an) (8)

H may alternatively be understood as a measure of unpredictability of information
content [31].

In the case of this work, Shannon’s entropy is used as a segmentation process. As
mentioned before, part of the optical patterns are random electrical signals that increase the
size of the dataset. It measures the entropy of a signal divided into frames with 80 samples
of window length and with 30 samples of overlap.

5. Machine Learning Classifiers

The power of ML techniques is based on the algorithm chosen to solve a complex
problem. The following ML classifiers, such as NB, SVM, LDA, KNN, and NN, were
selected to discriminate between the reflected laser beam and sunlight or other radiation
sources. These techniques are described below.

5.1. Naives Bayes

NB is a probabilistic classifier that works well as most distributions of related features
follow probabilistic nature [32]. This classifier assumes that the properties of the features
on a given class are independent of the values of the other features. By knowing our class
labels and training data set as T = (x1, y1), . . . (xN , yN). Each instance from the data set is
represented by n-dimensional feature vector, X = x1, x2, . . . , xn. Each label is represented
by y ∈ {1, . . . , K}, where K is the number of a class. In this work there are three classes,
C1, C2 and C3.

According to [33], given a sample X, NB will predict that X belongs to the class having
the highest a posteriori probability, which is conditioned on X. X is predicted to belong to
the class Ci if and only if.

P(Ci
∣∣ X
)
> P(Cj

∣∣ X
)

f or 1 ≤ j ≤ m, j 6= i (9)

Based on Bayes’ theorem,

P(Ci
∣∣ X
)
=

P(X
∣∣ Ci
)

P(Ci)

P(X
) (10)

where P(Ci
∣∣ X
)

is the class prior probability and posteriori probability. P(X
∣∣ Ci

)
is the

likelihood, which is the probability of the predictor given class.

5.2. Support Vector Machines

A SVM classifier starts with a construction of a decision function f (x, ω) = sign(h(x, ω))
with outputs {±1}, where h(x, ω)) is a separating hyperplane that can be expressed as
follows:

h(x, ω) = 〈ω + φ(x)〉+ b (11)

where ω defines a direction perpendicular to the hyperplane.
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Although SVM was initially designed for binary classification, several methods have
been proposed to create a multiclass classifier. One-versus-rest (1VR) and one-versus-one
(1V1) are representative ensemble schemes for discrimination for more than two categories.
This approach’s main issue is constructing a good Error Correcting Output Codes (ECOC)
matrix [34]. This work is based on 1V1 that fits K(K− 1)/2 by individual binary classifiers
SVM models.

One of the main problems of applying multi-class classification is usually solved
by a decomposing and reconstruction procedure when two-class decision machines are
implied [35].

5.3. Linear Discriminant Analysis

An extension of Fisher’s linear discriminant for n classes can be represented as an
intra-class matrix according to [36].

Σ̂w = S1 + · · ·+ Sn =
n

∑
i=1

∑
x∈ci

(x− x̄i)(x− x̄i)
′

(12)

where x̄ is the mean value and x̄i corresponds to the mean for each class.
The inter-class matrix can be represented as follows:

Σ̂b =
n

∑
i=1

mi(x̄i − x̄)(x̄i − x̄)
′

(13)

where mi represents the number of training samples for each class.

5.4. K-Nearest Neighbors

KNN is one of the most popular algorithms to be used as a multi-class ML technique.
This technique is a non-probabilistic classifier as well as SVM. It is well known as lazy
learning because it does not carry out a training phase [37]. The latest trends and applica-
tions of KNN in Big Data [38] are used in the context of smart cities [39]. This algorithm
compares the k nearest neighbors to be used as a decision rule to classify a new distance
as belonging to a class. Furthermore, KNN can be applied for regression problems. KNN
algorithm is a distance-based classifier, and the main functions employed by this algorithm
are Euclidean, Mahalanobis, Hamming, and Citiblock. The Euclidean distance is used in
this work. This metric can be expressed as follows.

d(x, y) =
N

∑
i=1

√
x2

i − y2
i (14)

where, N is the total number of samples.

5.5. Neural Network

Learning and memory are complex processes that AI tries to imitate or understand.
An artificial NN is a computational tool inspired by human brain behavior to perform these
tasks. Recent development in neural networks profoundly showed incredible results in
object classification, pattern recognition, and natural language processing [40].

A NN can be classified into two categories such as feed-forward (FNN) and feed-
backward or recurrent (RNN), according to their interconnection between the neuron
layers.

Convolutional neural networks (CNN) are another type of NN well-known by machine
vision designers. The NN classifier used in this work is based on FNN.

Weight matrix and activation functions are important parts of designing a NN. The
activation function transforms an input signal into an output signal. The functions such
as Rectified Linear Unit (RELU), SoftMax, Binary Step Function, Linear, Sigmoid, Tanh,
Exponential Linear Unit, and Swish are commonly used.
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A RELU function has the main goal of establishing a threshold operation for input,
and this can be expressed as follows:

f (x) =
{

0 i f x < 0
x i f x ≥ 0

(15)

The SoftMax activation function regularly is applied to the final fully connected layer.
This function can be implemented as follows:

so f tmax(zi) =
exp(zi)

∑K
j=1 exp(zi)

(16)

where z are the real values of the output layer and K is the number of classes. SoftMax
functions convert these values into probabilities (classification scores).

The parameters of activation functions applied in this work are to create a NN classifier
using two fully connected layers, each with three outputs. The RELU activation function
was implemented for every fully connected layer of the NN model. As an output layer of
the NN classifier, a SoftMax activation function was used.

The following authors [41], implemented an FNN application to evaluate sustainable
urban environmental quality to deal with air pollution. Ref. [42] reviews on the basic
theories and recent algorithms for optimizing NN.

6. Proposed Classification Schemes

This section gives an overview of a practical implementation of ML with different
techniques. Figure 8, shows the complete procedure for classifying the laser beam. This
procedure starts with inputting of raw signal captured with a phototransistor (peak wave-
length 940 nm). A data augmentation process was used to enhance the performance of the
ML models. In that stage, time scale modification (TSM) is applied on the input raw signals
by applying different speedup factors. In the literature, this is known as alpha. Then, a
white Gaussian noise is added to a raw signal. Finally, the signal is filtered a mean filter
by using 14 coefficients. Different signals were created with this procedure to make more
robust predictions. The normalization process is realized to work with uniform data with
values between 0 and 1. The main goal of the segmentation process is to divide the input
signal into several windows, and each segment should also be meaningful. Particular fea-
tures of each window are evident thanks to this process. As shown in Figure 8, a Hamming
window of a 240-point is created to convolve with each segment. The following process
shows that ACC or LPC are estimated and stored in a feature matrix. This matrix is split
into two data sets. Training and test data sets are used in the learning process. Finally, the
classification process gives the accuracy of the feature vectors tested. Figure 9, shows the
procedure of how the optical patterns were collected. Each frame has an entropy value
representing the optical pattern’s randomness level. Smaller values of total entropy are
removed. Note that in Figure 9 the size of the feature matrix with Shannon’s entropy is
reduced in comparison with Figure 8. Appendix A shows the pseudocode of two proposed
classification schemes, as described previously.
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Figure 8. Flow chart of the reflected laser beam classification without Shannon’s entropy for removing
frames.

Figure 9. Flow chart of the laser beam classification based on Shannon’s entropy segmentation.

7. Results and Discussion

This section explains how the results of this study were obtained to classify the optical
patterns into class 1, class 2 and class 3 (see Figure 1 as reference for each kind of class).

7.1. Results without Entropy Segmentation

Table 1 shows the percentages of correctly and incorrectly classified instances for each
true class carried out in this experiment. True positives of class 1, class 2, and class 3 were
1386, 1970 and 1495, respectively. The confusion matrix shows that 1746 measurements were
misclassified. The class precision reached for class 1, class 2, and class 3 was 63%, 89.6%,
and 68%, respectively. The accuracy of correct classifications overall test optoelectrical
signals was 73.53% while the test error was 26.47%. In the case of NB-ACC the accuracy of
correct classifications overall test optoelectrical signals was 57.48% while the test error was
42.52%. The confusion matrix shows that 2805 measurements were misclassified.
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Table 1. Performance of NB-LPC and NB-ACC.

Predicted Class NB-LPC Predicted Class NB-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 1386 0 813

Tr
ue

Class1 1253 894 52
Class2 0 1970 229 Class2 17 2182 0
Class3 704 0 1495 Class3 730 1112 357

Table 2 indicates the percentages of correctly and incorrectly classified instances for
each true class in this experiment. True positives of class 1, class 2, and class 3 were
2199, 2199, and 2172, respectively. All the measurements belonging to classes 1 and 2 are
classified correctly. The confusion matrix shows that 27 measurements were misclassified.
The classification accuracy reached for class 1, class 2, and class 3 was 100%, 100%, and
98.8%, respectively. The accuracy of correct classifications overall test optoelectrical signals
was 99.59% while the test error was 0.41%. In the case of NB-ACC, the accuracy of correct
classifications overall test optoelectrical signals was 74.40% while the test error was 25.60%.
The confusion matrix shows that 1689 measurements were misclassified.

Table 2. Performance of SVM-LPC and SVM-ACC.

Predicted Class SVM-LPC Predicted Class SVM-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0
Tr

ue
Class1 1212 987 0

Class2 0 2199 0 Class2 23 2176 0
Class3 27 0 2172 Class3 228 451 1520

Table 3 shares the percentages of correctly and incorrectly classified instances for each
true class and predicted class in this experiment. True positives of class 1, class 2, and class
3 were 2198, 2199, and 2181, respectively. All the measurements belonging to class 2 are
classified correctly. The confusion matrix shows that 19 measurements were misclassified.
The class precision reached for class 1, class 2, and class 3 was 99.99%, 100%, and 99.2%,
respectively. The accuracy of correct classifications overall test optoelectrical signals was
99.71% while the test error was 0.29%. In the case of NB-ACC, the accuracy of correct
classifications overall test optoelectrical signals was 99.51% while the test error was 0.49%.
The confusion matrix shows that 32 measurements were misclassified.

Table 3. Performance of LDA-LPC and LDA-ACC.

Predicted Class LDA-LPC Predicted Class LDA-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2198 1 0

Tr
ue

Class1 2197 2 0
Class2 0 2199 0 Class2 9 2190 0
Class3 18 0 2181 Class3 1 20 2178

Table 4 indicates the percentages of correctly and incorrectly classified instances for
each true class and predicted class carried out in this experiment. The configurations
KNN-LPC and KNN-ACC achieved the same results. True positives of class 1, class 2,
and class 3 were 2199, 2199, and 2199, respectively. The classification accuracy reached for
class 1, class 2, and class 3 was 100%, 100%, and 100%, respectively. All the measurements
belonging to each class were classified correctly. The accuracy of correct classifications
overall test optoelectrical signals was 100% while the test error was 0%.



Entropy 2023, 25, 1207 15 of 21

Table 4. Performance of KNN-LPC and KNN-ACC.

Predicted Class KNN-LPC Predicted Class KNN-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0

Tr
ue

Class1 2199 0 0
Class2 0 2199 0 Class2 0 2199 0
Class3 0 0 2199 Class3 0 0 2199

Table 5 shows the percentages of correctly and incorrectly classified instances for each
true class and predicted class carried out in this experiment. The configuration NN-LPC
achieved the following results. True positives of class 1, class 2, and class 3 were 2199,
0, and 0, respectively. The classification accuracy reached for class 1, class 2, and class
3 was 100%, 0%, and 0%, respectively. All the measurements belonging to classes 2 and
3 were classified incorrectly. The confusion matrix shows that 4398 measurements were
misclassified. The accuracy of correct classifications overall test optoelectrical signals was
33.33% while the test error was 66.67%.

Table 5. Performance of NN-LPC and NN-ACC.

Predicted Class NN-LPC Predicted Class NN-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 2199 0 0
Tr

ue
Class1 2199 0 0

Class2 2199 0 0 Class2 0 2199 0
Class3 2199 0 0 Class3 0 0 2199

In the case of NN-ACC the accuracy of correct classifications overall test optoelectrical
signals was 100% while the test error was 0%. All the measurements belonging to each
class were classified correctly.

7.2. Results Entropy Segmentation

Table 6 shows the percentages of correctly and incorrectly classified instances with NB-
SH-LPC model. The accuracy of correct classifications overall test optoelectrical signals was
95.33%, while the test error was 4.67%. The confusion matrix shows that 21 measurements
were misclassified.

Table 6. Performance of NB-SH-LPC and NB-SH-ACC.

Predicted Class NB-SH-LPC Predicted Class NB-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 143 7 0

Tr
ue

Class1 144 6 0
Class2 0 150 0 Class2 0 150 0
Class3 12 2 136 Class3 3 2 145

In the case of SHH-NB-ACC, the accuracy of correct classifications overall test opto-
electrical signals was 97.56% while the test error was 2.44%. The confusion matrix shows
that 11 measurements were misclassified.

Table 7 shows the percentages of correctly and incorrectly classified instances with
the SVM-SH-LPC model. All the measurements belonging to each class were classified
correctly. The accuracy of correct classifications overall test optoelectrical signals was 100%
while the test error was 0%.
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Table 7. Performance of SVM-SH-LPC and SVM-SH-ACC.

Predicted Class SVM-SH-LPC Predicted Class SVM-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 148 0 2
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

In the case of SVM-SH-ACC, the accuracy of correct classifications overall test opto-
electrical signals was 99.56% while the test error was 0.44%. The confusion matrix shows
that two measurements were misclassified.

Tables 8 and 9 show the percentages of correctly and incorrectly classified instances
with LDA-SH-LPC, LDA-SH-ACC models, KNN-SH-LPC, KNN-SH-ACC models. All the
measurements belonging to each class were classified correctly. The accuracy of correct
classifications overall test optoelectrical signals was 100% while the test error was 0%.

Table 8. Performance of LDA-SH-LPC and LDA-SH-ACC.

Predicted Class LDA-SH-LPC Predicted Class LDA-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 150 0 0
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Table 9. Performance of KNN-SH-LPC and KNN-SH-ACC.

Predicted Class KNN-SH-LPC Predicted Class KNN-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 150 0 0
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Table 10 shows the percentages of correctly and incorrectly classified instances with the
NN-SH-LPC model. All the measurements belonging to each class were classified correctly.
The accuracy of correct classifications overall test optoelectrical signals was 100% while the
test error was 0%. In the case of NN-SH-ACC, the accuracy of correct classifications overall
test optoelectrical signals was 99.33% while the test error was 0.67%. The confusion matrix
shows that three measurements were misclassified.

Table 10. Performance of NN-SH-LPC and NN-SH-ACC.

Predicted Class NN-SH-LPC Predicted Class NN-SH-ACC

Class1 Class2 Class3 Class1 Class2 Class3

Tr
ue

Class1 150 0 0

Tr
ue

Class1 147 1 2
Class2 0 150 0 Class2 0 150 0
Class3 0 0 150 Class3 0 0 150

Figure 10, summarizes the performance of the ML models with ACC, LPC, and
Shannon’s entropy. Without Shannon’s entropy segmentation, the overall misclassification
reached was 10710. This pipeline needed better results in terms of accuracy for NB-LPC,
NB-ACC, SVM-ACC, and NN-LPC. The worst accuracy was 33.33%.

With Shannon’s entropy as a segmentation process, the overall misclassification was
37. The accuracy of the ML classifiers was superior to the previous pipeline.



Entropy 2023, 25, 1207 17 of 21

Figure 10. A summary of machine learning model’s performance. The first results do not include the
Shannon entropy (SH) as a segmentation process. The second results show the performance of ML
models with the SH segmentation method.

8. Conclusions

Optical sensors can be viewed as an effective transducer to collect data without
physically contacting the object under study. Significant value added for remote sensing,
such as quantitative or qualitative information, can be gathered. Accessing this information
enables us to study the optimal UI parameters, measure many variables, and design early
warning systems. Using a phototransistor as a transducer leads to reasonable results in
detecting laser beams. The advantage of using this sensor is the internal daylight-blocking
filter, which can be bought at low-cost. The main contribution of this study is related to the
electronic and physical aspects of sensors in urban sensing systems for SHM tasks and the
application of ML methods for its enhancement.

In this paper, we have shown how a TVS can be enhanced using an IT approach. The
proposed approach of using an ML framework was implemented to solve the problem
related to interference in a real environment. Feature extraction methods were used as
a preprocessing stage, and various classifiers were reviewed. The windowing process
was integrated into the ML pipeline to split the input signal into temporal segments. The
Shannon entropy was used to remove and extract meaningful information from optical
patterns.

Results showed significantly better accuracy using Shannon’s entropy as a segmen-
tation process. Relevant information was extracted from signals, and ML models were
created. Accuracy reached using SVM, LDA, KNN, and NN was over 99%. The accuracy of
NB-SH was 95.33% and 97.56% with LPC and ACC, respectively. These results demonstrate
Shannon entropy superiority in extracting the optical patterns over frames of complete
segments. Without Shannon’s entropy segmentation, the worst accuracy was 33.33%.

Practical implementation of this frame can avoid outdoor interferences. In addition,
these findings provide additional information about the type of ML techniques that can
be used in outdoors environments. This work can be extended to other applications.
Three different ECG signals were classified to validate these configurations with Shannon’s
entropy and LPC-ACC, showing satisfactory results. This indicates that the ML framework
with LPC-ACC and the Shannon entropy can solve pattern recognition problems.
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Appendix A. Pseudocode for the Important Parts of the Experimental Design

Figures A1–A4 show a general framework for classifying optical patterns. These
procedures were adopted to conduct the experiments.

Appendix A.1. Feature Extraction Pseudocodes

Figure A1. Example of pseudocode to extract features with the Shannon Entropy method. This code
is for one-dimensional digital signal processing.

Figure A2. Example of pseudocode to extract features with a Hamming Window applied to each
frame. This is for one-dimensional signals. This code is for one-dimensional digital signal processing.
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Appendix A.2. Pseudocodes for Machine Learning Classifiers

Figure A3. This code shows the procedures to build the ML models. ML designers should select LPC
or ACC to conduct the experiments. Note that this pseudo code needs the function of SH f eat.

Figure A4. This code shows the procedures to build the ML models. ML designers should select LPC
or ACC to conduct the experiments. Note that this pseudo code needs the function of Seg f eat.
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