Analysis of Weather Factors on Aircraft Cancellation using a Multilayer Complex Network
Abstract
:1. Introduction
2. Methods and Materials
2.1. Aircraft Cancellation Criteria
2.2. Complex Network
- Determine the threshold value for a time series of nodes, which represents the standard at which the target event occurs.
- At two different nodes A and B, calculate the occurrence time of the target events for each point, and then estimate the time intervals between the events. Select the shortest interval () as the time interval of the target events for calculating event synchronization.
- Identify the events in node B that occur within of the events at node A. If the events occur simultaneously at nodes A and B, they are assigned a weight of 0.5.
- Calculate the event synchronization value between nodes A and B:
2.3. Multilayer Complex Network Analysis
2.4. Network Analysis
2.4.1. Degree Distribution
2.4.2. Rich-Club Coefficient
2.4.3. Clustering Coefficient
2.4.4. Network Assortativity Coefficient
2.4.5. Centrality Analysis
- Calculate an adjacency degree (). The adjacency degree considers the nearest neighbor nodes.
- Calculate a selection probability (). From the viewpoint of information theory, a certain node in a network takes charge of the information source point, and its neighboring nodes are taken as the target points. In the process of information transmission, the source point will select a target point among its neighboring nodes for transmission. The probability that the target nodes are selected is the selection probability. It considers the importance of the selected nodes.
- Calculate an adjacency information entropy (). The adjacency information entropy shows how much importance each node has in the network.
2.5. Study Area and Data Collection
3. Results
3.1. Construction of the Multilayer Complex Network
3.2. Network Analysis of the Multilayer Complex Network
3.2.1. Degree and Strength Distribution
3.2.2. Rich-Club Coefficient
3.2.3. Clustering Coefficient
3.2.4. Network Assortativity Coefficient
3.3. Centrality Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Oliveria, M.; Eufrásio, A.B.R.; Guterres, M.X.; Murca, M.C.R.; Gomes, R.A. Analysis of airport weather impact on on-time performance of arrival flights for the Brazilian domestic air transportation system. J. Air Transp. Manag. 2021, 91, 101974. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport; Korea Transport Institute. Air Traffic Services Report 2022; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2022; pp. 22–180. [Google Scholar]
- Ryley, T.; Baumeister, S.; Coulter, L. Climate change influences on aviation: A literature review. Transp. Policy 2020, 92, 55–64. [Google Scholar] [CrossRef]
- Gössling, S.; Neger, C.; Steiger, R.; Bell, R. Weather, climate change, and transport: A review. Nat. Hazards 2023. [Google Scholar] [CrossRef]
- Sasse, M.; Hauf, T. A study of thunderstorm-induced delays at Frankfurt Airport, Germany. Meteorol. Appl. 2003, 10, 21–30. [Google Scholar] [CrossRef]
- Park, J.K.; Jung, W.S.; Lee, J.W.; Choi, H.J.; Kwon, T.S.; Back, J.H. Analysis of the Economic Disaster Scale for Fog Case occurred at the Incheon International Airport. Korean Soc. Aviat. Aeronaut. 2007, 15, 40–47. [Google Scholar]
- Lee, J.W.; Ko, K.K.; Kwon, T.S.; Lee, K.K. A Study on the Critical Meteorological Factors Influencing the Flight Cancelation and Delay: Focusing on Domestic Airports. J. Korean Soc. Aeronaut. Sci. Flight Oper. 2011, 19, 29–37. [Google Scholar]
- Schultz, M.; Lorenz, S.; Schmitz, R.; Delgado, L. Weather Impact on Airport Performance. Aerospace 2018, 5, 109. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C.B.; Onyejiri, E.C. Effect of Adverse Weather on Air Transport: Port Harcourt International Airport in Focus. Innov. Sci. Technol. 2022, 1, 1–17. [Google Scholar]
- Lee, H.; Kim, K.; Hwang-Bo, J.G.; Kim, S. Projection of Flight Cancellation and Economic Losses Caused by Future Climate Change. J. Korean Soc. Hazard Mitig. 2022, 22, 33–45. [Google Scholar] [CrossRef]
- Joo, H.; Lee, M.; Kim, J.; Jung, J.; Kwak, J.; Kim, H.S. Stream gauge network grouping analysis using community detection. Stoch. Environ. Res. Risk Assess. 2021, 35, 781–795. [Google Scholar] [CrossRef]
- Mata, A.S.D. Complex Networks: A Mini-review. Braz. J. Phys. 2020, 50, 658–672. [Google Scholar] [CrossRef]
- Dalelane, C.; Winderlich, K.; Walter, A. Evaluation of global teleconnections in CMIP6 climate projections using complex networks. Earth Syst. Dyn. 2023, 14, 17–37. [Google Scholar] [CrossRef]
- Porta, S.; Crucitti, P.; Latora, V. The Network Analysis of Urban Streets: A Primal Approach. Environ. Plan. B Plan. Des. 2006, 33, 705–725. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Zhang, S.; Tang, J.; Wang, X. Understanding characteristics in multivariate traffic flow time series from complex network structure. Phys. A Stat. Mech. Its Appl. 2017, 477, 149–160. [Google Scholar] [CrossRef]
- Ding, R.; Ujang, N.; Hamid, H.B.; Manan, M.S.A.; Li, R.; Albadareen, S.S.M.; Nochian, A.; Wu, J. Application of Complex Networks Theory in Urban Traffic Network Researches. Netw. Spat. Econ. 2019, 19, 1281–1317. [Google Scholar] [CrossRef]
- Parongama, S.; Subinay, D.; Amab, C.; Sreeram, P.A.; Mukherjee, G.; Manna, S.S. Small-world properties of the Indian railway network. Phys. Rev. E 2003, 67, 036106. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Feng, X.; Jia, J.; Zhang, H. Characterizing the Structure of the Railway Network in China: A Complex Weighted Network Approach. J. Adv. Transp. 2019, 2019, 3928260. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Chen, Z.; Liu, F.; Zhu, H. How urban metro networks grow: From a complex network perspective. Tunn. Undergr. Space Technol. 2023, 131, 104841. [Google Scholar] [CrossRef]
- Lordan, O.; Sallan, J.M.; Simo, P. Study of the topology and robustness of airline route networks from the complex network approach: A survey and research agenda. J. Transp. Geogr. 2014, 37, 112–120. [Google Scholar] [CrossRef]
- Klophaus, R.; Lordan, O. Codesharing network vulnerability of global airline alliances. Transp. Res. Part A Policy Pract. 2018, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bombelli, A.; Santos, B.F.; Tavasszy, L. Analysis of the air cargo transport network using a complex network theory perspective. Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101959. [Google Scholar] [CrossRef]
- Bombelli, A.; Sallan, J.M. Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach. J. Transp. Geogr. 2023, 107, 103541. [Google Scholar] [CrossRef]
- Mikko, K.; Alex, A.; Marc, B.; James, P.G.; Yamir, M.; Mason, A.P. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Yang, G.; Hou, D.; Luo, Z. An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method. Entropy 2022, 24, 1147. [Google Scholar] [CrossRef]
- Cardillo, A.; Zanin, M.; Gomez, G.J.; Romance, M.; Garcia, A.A.J.; Boccaletti, S. Modeling the Multi-layer Nature of the European Air Transport Network: Resilience and Passengers Re-scheduling under random failure. Eur. Phys. J. Spec. Top. 2013, 215, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Cozzo, E.; Kivelä, M.; De Domenico, M.; Solé-Ribalta, A.; Arenas, A.; Gomez, S.; Porter, M.A.; Moreno, Y. Structure of Triadic Relations in Multiplex Networks. New J. Phys. 2013, 17, 073029. [Google Scholar] [CrossRef]
- Du, W.B.; Zhou, X.L.; Lordan, O.; Zhao, C.; Zhu, Y.B. Analysis of the Chinese Airline Network as multi-layer networks. Transp. Res. Part E Logist. Transp. Rev. 2016, 89, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Gaggero, A.A.; Piazza, G. Multilayer networks and route entry into the airline industry: Evidence from the U.S. domestic market. Res. Transp. Econ. 2021, 90, 101044. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, M.; Guo, Y. The Construction of an Aircraft Control Multilayer Network and Its Robustness Analysis. J. Adv. Transp. 2022, 2022, 7904892. [Google Scholar] [CrossRef]
- Cardillo, A.; Gomez, G.J.; Zanin, M.R.M.; Papo, D.; Pozo, F.; Boccaletti, S. Emergence of network features from multiplexity. Sci. Rep. 2013, 3, 1344. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Huang, S.; Zhu, X.; Pan, W.; Han, S.; Gong, T. Research on the multilayer structure of flight delay in China air traffic network. Phys. A Stat. Mech. Its Appl. 2023, 609, 128309. [Google Scholar] [CrossRef]
- Korea Aviation Meteorological Agency (KAMA). Manual for Aerodrome Warnings and Wind Shear Warnings; KAMA: Incheon, Republic of Korea, 2020; pp. 1–16. [Google Scholar]
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks: Principles, Methods, and Application; Cambridge University Press: Cambridge, UK, 2017; pp. 1–216. [Google Scholar]
- Kim, K.; Joo, H.; Han, D.; Kim, S.; Lee, T.; Kim, H.S. On Complex Network Constructions of Rain Gauge Stations Considering Nonlinearity of Observed Daily Rainfall Data. Water 2019, 11, 1578. [Google Scholar] [CrossRef] [Green Version]
- Malik, N.; Bookhagen, B.; Marwan, N.; Kurths, J. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn. 2012, 39, 971–987. [Google Scholar] [CrossRef]
- Quain, Q.R.; Kreuz, T.; Grassberger, P. Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E. 2002, 66, 041904. [Google Scholar] [CrossRef] [Green Version]
- Michael, P. Sampling properties of random graphs: The degree distribution. Phys. Rev. 2005, 72, 036118. [Google Scholar] [CrossRef] [Green Version]
- Collizza, V.; Flammini, A.; Serrano, M.; Vespignani, A. Detecting rich-club ordering in complex networks. Nat. Phys. 2006, 2, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Cisgi, M.; Kórosi, A.; Biró, J.; Heszberger, Z.; Malkov, Y.; Gulyas, A. Geometric explanation of the rich-club phenomenon in complex networks. Sci. Rep. 2017, 7, 1730. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Liang, B. Analysis of the weighted Chinese air transportation mutliayer network. In Proceedings of the 12th World Congress on Intelligent control and Automation (WCICA), Guilin, China, 12–15 June 2016. [Google Scholar]
- Saramäki, J.; Kivelä, M.; Onnela, J.P.; Kaski, K.; Kertézm, J. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef] [Green Version]
- Noldus, R.; Piet, V. Assortativity in complex networks. J. Complex Netw. 2015, 3, 507–542. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, C.; Wang, Q.; Zhu, X.; Zhou, Y. Identifying vital nodes in complex networks by adjacency information entropy. Nat. Sci. Rep. 2020, 10, 2691. [Google Scholar] [CrossRef] [Green Version]
- Ghalmane, Z.; Cherific, C.; Cherific, H.; Hassouni, M. Centrality in Complex Networks with Overlapping Community Structure. Sci. Rep. 2019, 9, 10133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.U.; Kim, B.J.; Nam, H.G.; Jung, J.H.; Shim, J.K. Climatological Spatio-Temporal Variation of Strong Wind in Korea. Atmos. Korean Meteorol. Soc. 2020, 30, 47–57. [Google Scholar] [CrossRef]
Type | Criteria |
---|---|
Tropical cyclone | Strong winds or heavy rainfall due to tropical cyclones are expected to reach warning levels. |
Thunder and lighting | Thunder and lightning occur or are expected at the airport. |
Heavy snowfall | Snowfall occurs or is expected to be more than 3 cm/24 h. |
Gust | Gale (10 min mean surface wind speed with 25 kt or more, or gusts with 35 kt or more) occurs or is expected. |
Ceiling | A ceiling occurs or is expected to be at a level below a criterion agreed upon by the local meteorological authority, air traffic services authority, and aircraft operations at the aerodrome. |
Heavy rainfall | Rainfall occurs or is expected to be at 30 mm/h or more, or 50 mm/3 h or more. |
Yellow dust | Yellow dust (1 h mean concentration of fine dust () with more than 400 μg/m3 or visibility less than 5000 m) occurs or is expected. |
When the following phenomena are observed or predicted: (1) Hoar frost or rime, (2) freezing precipitation, (3) frost, (4) blowing sand or dust, (5) dust or sand storm, (6) squall, (7) volcanic ash, (8) hail, (9) volcanic ash deposit, and (10) toxic chemicals. |
Airport | Rainfall (>30 mm/h) | Wind Speed (>25 kt) |
---|---|---|
KWJ | 158 | 3 |
KUC | 141 | 25 |
TAE | 121 | 0 |
MWX | 144 | 120 |
PUS | 231 | 76 |
GMP | 160 | 2 |
YNY | 167 | 2 |
RSU | 196 | 338 |
USN | 146 | 2 |
WJU | 140 | 0 |
CJU | 169 | 50 |
HIN | 214 | 0 |
CJJ | 149 | 0 |
KPO | 137 | 4 |
Rainfall | Wind Speed | Aircraft | ||||||
---|---|---|---|---|---|---|---|---|
Node | Adjacency Information Entropy | Rank | Node | Adjacency Information Entropy | Rank | Node | Adjacency Information Entropy | Rank |
KWJ | 3.605 | 5 | KWJ | 2.664 | 6 | KWJ | 1.083 | 4 |
KUV | 3.626 | 1 | KUV | 3.094 | 1 | KUV | 0.000 | 12 |
TAE | 3.607 | 4 | TAE | 0.000 | 11 | TAE | 0.148 | 11 |
MWX | 3.584 | 9 | MWX | 3.012 | 4 | MWX | 0.766 | 7 |
PUS | 3.591 | 7 | PUS | 3.068 | 2 | PUS | 1.059 | 5 |
GMP | 3.557 | 12 | GMP | 2.455 | 7 | GMP | 1.587 | 3 |
YNY | 3.615 | 2 | YNY | 2.282 | 10 | YNY | 1.660 | 2 |
RSU | 3.581 | 11 | RSU | 2.853 | 5 | RSU | 0.728 | 8 |
USN | 3.583 | 10 | USN | 2.389 | 9 | USN | 0.594 | 10 |
WJU | 3.546 | 14 | WJU | 0.000 | 11 | WJU | 0.000 | 12 |
CJU | 3.552 | 13 | CJU | 3.048 | 3 | CJU | 2.002 | 1 |
HIN | 3.604 | 6 | HIN | 0.000 | 11 | HIN | 1.036 | 6 |
CJJ | 3.614 | 3 | CJJ | 0.000 | 11 | CJJ | 0.000 | 12 |
KPO | 3.586 | 8 | KPO | 2.439 | 8 | KPO | 0.7226 | 9 |
Layer | Node | Adjacency Information Entropy | Rank |
---|---|---|---|
Rainfall | KWJ | 3.701 | 9 |
KUV | 1.872 | 26 | |
TAE | 2.766 | 20 | |
MWX | 3.728 | 7 | |
PUS | 3.274 | 12 | |
GMP | 3.696 | 10 | |
YNY | 2.879 | 18 | |
RSU | 3.062 | 16 | |
USN | 3.969 | 5 | |
WJU | 4.544 | 3 | |
CJU | 2.853 | 19 | |
HIN | 2.357 | 25 | |
CJJ | 2.475 | 23 | |
KPO | 2.735 | 21 | |
Wind speed | KWJ | 3.115 | 14 |
KUV | 0.074 | 42 | |
TAE | 0.527 | 35 | |
MWX | 4.152 | 4 | |
PUS | 3.708 | 8 | |
GMP | 3.070 | 15 | |
YNY | 2.970 | 17 | |
RSU | 3.641 | 11 | |
USN | 2.359 | 24 | |
WJU | 0.377 | 38 | |
CJU | 3.876 | 6 | |
HIN | 0.514 | 36 | |
CJJ | 0.413 | 37 | |
KPO | 2.511 | 22 | |
Aircraft | KWJ | 1.561 | 27 |
KUV | 0.285 | 39 | |
TAE | 1.033 | 33 | |
MWX | 1.533 | 29 | |
PUS | 1.033 | 34 | |
GMP | 4.842 | 2 | |
YNY | 3.173 | 13 | |
RSU | 1.145 | 30 | |
USN | 1.533 | 28 | |
WJU | 0.285 | 40 | |
CJU | 4.890 | 1 | |
HIN | 1.145 | 31 | |
CJJ | 0.285 | 41 | |
KPO | 1.145 | 32 |
Node | Correlation |
---|---|
KWJ | 0.078 |
KUV | 0.001 |
MWX | 0.129 |
PUS | 0.150 |
GMP | 0.024 |
YNY | −0.003 |
RSU | 0.191 |
USN | 0.007 |
CJU | 0.357 |
KPO | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Lee, H.; Lee, M.; Bae, Y.H.; Kim, H.S.; Kim, S. Analysis of Weather Factors on Aircraft Cancellation using a Multilayer Complex Network. Entropy 2023, 25, 1209. https://doi.org/10.3390/e25081209
Kim K, Lee H, Lee M, Bae YH, Kim HS, Kim S. Analysis of Weather Factors on Aircraft Cancellation using a Multilayer Complex Network. Entropy. 2023; 25(8):1209. https://doi.org/10.3390/e25081209
Chicago/Turabian StyleKim, Kyunghun, Hoyong Lee, Myungjin Lee, Young Hye Bae, Hung Soo Kim, and Soojun Kim. 2023. "Analysis of Weather Factors on Aircraft Cancellation using a Multilayer Complex Network" Entropy 25, no. 8: 1209. https://doi.org/10.3390/e25081209
APA StyleKim, K., Lee, H., Lee, M., Bae, Y. H., Kim, H. S., & Kim, S. (2023). Analysis of Weather Factors on Aircraft Cancellation using a Multilayer Complex Network. Entropy, 25(8), 1209. https://doi.org/10.3390/e25081209