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Abstract: The measurement matrix used influences the performance of image reconstruction in
compressed sensing. To enhance the performance of image reconstruction in compressed sensing,
two different Gaussian random matrices were orthogonalized via Gram–Schmidt orthogonalization,
respectively. Then, one was used as the real part and the other as the imaginary part to construct a
complex-valued Gaussian matrix. Furthermore, we sparsified the proposed measurement matrix to
reduce the storage space and computation. The experimental results show that the complex-valued
Gaussian matrix after orthogonalization has better image reconstruction performance, and the peak
signal-to-noise ratio and structural similarity under different compression ratios are better than the
real-valued measurement matrix. Moreover, the sparse measurement matrix can effectively reduce
the amount of calculation.

Keywords: compressed sensing; measurement matrix; Gaussian matrix; Gram–Schmidt orthogonal-
ization; sparse matrix

1. Introduction

Due to the continuous development of the digital age, massive images have become
increasingly challenging to store and transmit. To effectively address the transmission of
such image data, compressed sensing is widely employed in image transmission to reduce
the bandwidth required for transmission [1–3]. By combining the process of sampling
and compression, compressed sensing can acquire a signal at a lower sampling rate and
accurately recover the original signal, thereby substantially reducing the overhead of data
acquisition and storage. After long-term development, compressed sensing has found
widespread application in numerous domains, including wireless communication [4], med-
ical imaging [5], smart city construction [6], and video codec [7,8]. Compressed sensing
theory primarily consists of three components: the sparse representation of the signal, the
measurement matrix’s design, and the reconstruction algorithm’s design. How to choose
the measurement matrix will directly affect the quality of image reconstruction. At present,
the majority of research on measurement matrix design focuses on real-valued measure-
ment matrices, such as Gaussian random matrix [9], Bernoulli matrix [10], and partial
Hadamard matrix [11], while research using a complex-valued matrix as a measurement
matrix is relatively few. To further enhance image reconstruction quality in compressed
sensing, we used two different Gaussian random matrices to construct a complex-valued
measurement matrix.

1.1. Related Work

In reference [12], the authors first generated a logistic chaotic sequence and then
constructed a measurement matrix through the chaotic sequence. The feasibility of the
measurement matrix was verified via theory and experimental analysis. In reference [13],
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the authors proposed a measurement matrix based on a Chebyshev chaotic sequence
and proved the feasibility of the proposed measurement matrix. In reference [14], the
author proposed using a Chebyshev–Vandermonde-like matrix as the measurement matrix,
which also achieved good results. In reference [15], the authors used a Toeplitz matrix
and a circulant matrix to construct the measurement matrix. This construction method
reduced the difficulty of hardware implementation to a certain extent, but the reconstruction
accuracy was generally not high. In reference [16], the authors used the semi-tensor product
to construct a measurement matrix, which reduced the storage space required for the
measurement matrix and reduced the reconstruction time via parallel reconstruction. In
reference [17], a binarized Chebyshev chaotic map and an improved logistic chaotic map
were used to construct a mixed chaotic sequence through the XOR operation, thereby
improving the reconstructed image’s performance.

Most compressed sensing schemes usually use a real-valued matrix as the measure-
ment matrix. However, in reference [18], the authors used a complex-valued Hadamard
matrix instead of a real-valued measurement matrix and implemented the block method to
reduce the complexity. The authors found that using the complex-valued measurement
matrix resulted in better image reconstruction than the real-valued matrix. In reference [19],
the authors proposed using a complex-valued Zadoff–Chu (ZC) matrix as the measurement
matrix and employed a block measurement scheme to reduce complexity. The simula-
tion results indicated that the Zadoff–Chu matrix yielded better reconstruction than the
real-valued measurement matrix.

1.2. Contributions

To enhance the image reconstruction performance in compressed sensing, as inspired
by references [18,19], a novel complex-valued measurement matrix was proposed in this
work. This work used two Gaussian matrices, which were Schmidt orthogonalized respec-
tively, to form a complex-valued measurement matrix and compared its reconstruction
performance with that of the real-valued measurement matrix. It is found that the orthogo-
nal complex-valued Gaussian matrix has better image reconstruction performance.

The main contributions of this work are as follows:

1. We constructed a complex-valued Gaussian matrix as the measurement matrix using
two real-valued Gaussian matrices. The results illustrate that the reconstructed image
quality is superior when using the complex-valued matrix compared to the real-valued
measurement matrix.

2. To enhance the performance of compressed sensing reconstruction, we performed
Gram–Schmidt orthogonalization on the two real-valued matrices that make up the
complex-valued Gaussian matrix. Based on our experiments, this orthogonalized
measurement matrix can significantly enhance the reconstructed image quality.

3. We applied a sparsification operation to the proposed complex-valued measurement
matrix to save storage space and reduce the calculation amount during image com-
pression. Our analysis indicates that this sparsification operation effectively reduces
the calculation amount required and computational complexity.

2. Concepts and Theoretical Basis
2.1. Compressed Sensing

In the theoretical model of compressed sensing, if x is a non-sparse signal, the signal x
must first be sparsely represented to obtain sparse coefficients. Then, the sparse coefficients
are compressed and reconstructed. The process of compression is to project the signal x into
a low-dimensional space containing the measurement matrixφ of size M×N(M < N) and
obtain the measurement y of length M. This process can be expressed using Equation (1):

y = φψx = φs (1)
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In the above equation, s is a sparse vector that is K-sparse on the transform domain ψ.
There are only K(K � N) non-zero numbers, and ‖s‖0 = K. ψ is also called a sparse basis
of size N × N.

When the compressed signal is reconstructed, Equation (1) is an underdetermined
system with infinite solutions since the length of the measured value y is smaller than the
length of the original signal. If one wants to reconstruct the sparse coefficients s from the
measurements y, then the sensing matrix θ = φψ needs to satisfy the RIP property, which
is expressed as follows:

(1− δk)‖s‖2
2 ≤ ‖θs‖2

2 ≤ (1 + δk)‖s‖2
2 (2)

where 0 < δk < 1, k represents the number of non-zero elements of the sparse coefficient
s. Only when the above properties are satisfied that the reconstruction algorithm can
reconstruct the original signal with high probability. The mathematical model of the
reconstructed signal is as follows:

ŝ = argmin‖s‖0s.t. y = θs (3)

Equation (3) is an l0 optimization problem. However, the l0 optimization problem is an
NP-complete problem. To solve it, it can be transformed into an easy-to-solve l1 optimiza-
tion problem, or to solve the problem by approaching l0. After calculating ŝ according to the
above equation, we can obtain the reconstructed image signal x̂ by computing x̂ = ψ−1ŝ. At
present, some commonly used reconstruction algorithms include the OMP algorithm [20],
SAMP algorithm [21], SL0 algorithm [22], and ISTA algorithm [23]. For reconstruction, we
utilized the SL0 algorithm in this work, which reconstructs the image by approximating
the l0 norm.

2.2. Gaussian Random Matrix

Gaussian random matrix is a widely employed measurement matrix in compressed
sensing. The design method of this matrix is to construct a matrix of size M× N so that
each element of this matrix independently follows a Gaussian distribution with a mean of
zero and variance 1/M as follows:

φ ∼ N(0,
1
M

) (4)

Gaussian random measurement matrix is highly random. It can satisfy the RIP condi-
tion with a high probability when the number of measurements M satisfies the inequality
M ≥ cK log(N/K), where c is a small positive constant and K is the signal sparsity [24].
Therefore, it is highly probable that the compressed image can be reconstructed using a
Gaussian random measurement matrix.

2.3. Gram–Schmidt Orthogonalization

Gram–Schmidt orthogonalization is a classical basis orthogonalization method [25].
Its basic idea is to use the projection principle to construct a new orthogonal basis based
on the existing orthogonal basis. Let Vn be an n-dimensional Euclidean space, α and β be
the vectors in Vn, while (α,β) denotes as the inner product of α and β, the projection of α
onto β is projβα = (α,β)

β,β β, and the subspace spanned by the vector group α1,α2, · · · ,αm
is span{α1,α2, · · · ,αm}. Let α ∈ Vn, Vm be an m-dimensional subspace of Vn with
orthonormal bases α1,α2, · · · ,αm, and α not in Vm. Based on the projection principle, the
difference between α and its projection onto the Vm subspace is as follows:

β = α−
m

∑
i=1

projααi = α−
m

∑
i=1

(α,αi)αi (5)
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Moreover, β is orthogonal to the subspace Vm, that is, orthogonal to the orthogonal basis
α1,α2, · · · ,αm. In this case, β can be obtained via unitization as follows:

αm+1 =
β

|β| =
β√
(β,β)

(6)

Then, α1,α2, · · · ,αm,αm+1 is the orthonormal basis of the subspace span{α1,α2, · · · ,αm}
that is extended by Vm on α.

According to the above analysis, for span{α1,α2, · · · ,αm}, by starting from the one-
dimensional subspace spanned by one of the vectors and repeating the above process of
expanding the construction of an orthogonal basis, a set of orthogonal bases for Vm can
be obtained, which is the idea of Schmidt’s orthogonalization. Schmidt orthogonalization
proceeds as follows for m linearly dependent vectors α1,α2, · · · ,αm of n-dimensional
Euclidean space:

(1) Orthogonalization
β1 = α1 (7)

β2 = α2 −
(α2,β1)

β1,β1
β1 (8)

β3 = α3 −
(α3,β1)

β1,β1
β1 −

(α3,β2)

β2,β2
β2 (9)

βm = αm −
(αm,β1)

β1,β1
β1 −

(αm,β2)

β2,β2
β2 − · · · −

(αm,βm−1)

βm−1,βm−1
βm−1 (10)

(2) Unitization

η1 =
β1
|β1|

,η2 =
β2
|β2|

, · · · ,ηm =
βm
|βm|

(11)

The above steps can provide a set of orthogonal bases β1,β2, · · · ,βm and orthonormal
bases η1,η2, · · · ,ηm on span{α1,α2, · · · ,αm}.

3. Compressed Sensing Scheme
3.1. Design of Measurement Matrix

To construct an orthogonal complex-valued Gaussian measurement matrix, we started
by generating two Gaussian matrices with a mean of zero and a variance of one. We then
applied the Gram–Schmidt orthogonalization to each matrix to orthogonalize them. One
matrix was used as the real part, and the other was used as the imaginary part. Here, the
real part of the measurement matrix was generated as an example, and the imaginary part
was generated in the same way. The pseudocode is described below, where Mtx represents
the Gaussian matrix, Mtx_orth represents the matrix after Gram–Schmidt orthogonalization,
n represents the number of columns of Mtx, and (:, i) represents the ith column of the matrix.
The primary step is to iterate over the first i− 1 columns, compute the projection of the
current column with each of the previous columns, and subtract the projection from the
current column to eliminate the correlation and make them orthogonal (Algorithm 1).
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Algorithm 1: Generate the real part of complex-valued measurement matrix

Input: The size of measurement matrix
Output: The real part of the complex-valued measurement matrix

1 Begin
2 Initialize a Gaussian random matrix Mtx
3 Initialize an all-zero matrix Mtx_orth
4 Mtx_orth(:, 1) = Mtx(:, 1)
5 for i = 2 to n do
6 for j = 1 to i − 1 do
7 Mtx_orth(:, i) = Mtx_orth(:, i) − dot(Mtx(:, i), Mtx_orth(:, j))/

dot(Mtx_orth(:, j), Mtx_orth(:, j)) * Mtx_orth(:, j)
8 end
9 Mtx_orth(:, i) = Mtx_orth(:, i) + Mtx(:, i);
10 end
11 end

The above method can construct the complex-valued measurement matrix by adding
two orthogonal Gaussian matrices. In reference [26], the authors used Gram–Schmidt
orthogonalization to optimize real-valued Gaussian random matrices. In the process of
Gram–Schmidt orthogonalization, each time the βi vector is calculated, the projection of
the first i− 1 vectors on βi is subtracted from the current vector αj. That is, the information
of other column vectors is subtracted. After this operation, the independence of the column
vector βi is gradually enhanced. For the measurement matrix, this method can maximize
the incoherence of the column vectors to improve the performance of compressed sensing
reconstruction.

Compressed sensing can be regarded as extracting features from images for com-
pression purposes. This work constructed a complex-valued measurement matrix using
two orthogonal Gaussian matrices to achieve this. Using this measurement matrix for
image compression is equivalent to extracting double the number of image features of
a real-valued measurement matrix. This approach provides more comprehensive image
information, resulting in better reconstruction performance.

3.2. Compressed Sensing with Complex-Valued Measurement Matrix

Below is an overview of our proposed image-compressed-sensing scheme, which uses
a complex-valued measurement matrix. The diagram below shows the framework of the
scheme (Figure 1):

Step 1: Image sparsification. Use Discrete Cosine Transform (DCT) to make the image
sparse.
Step 2: Construct the measurement matrix. Two Gaussian matrices are orthogonalized via
Gram–Schmidt orthogonalization, respectively. Then, one is used as the real part of the
measurement matrix, and the other is used as the imaginary part.
Step 3: Image compression. Apply the measurement matrix to compress the image.
Step 4: Image reconstruction. Use the SL0 algorithm to reconstruct the sparse signal of the
original image in the DCT domain.
Step 5: Inverse sparsification. Use inverse sparsification operation to obtain the original
image from the sparse signal in the DCT domain.
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4. Experimental Analysis

This work implemented all simulation experiments via Matlab2021a, using a computer
with Intel Core i5-6300HQ CPU at 2.30 GHz, 12 GB memory, and Windows 10 operating
system. We chose images of various sizes for the experiment and used DCT as the sparse
basis. The reconstruction algorithm we utilized was the SL0 [22] algorithm; the source code
can be obtained from the author’s home page (http://ee.sharif.ir/~SLzero/ (accessed on 10
July 2023), and the sigma_min was set to 0.01. In the following section, M and N denote the
original image’s size, and if the compression ratio (CR) is mentioned in the description, M is
the size of the compressed image, that is, M = CR×M. To compare the performance of the
reconstructed images, in this work, the Gaussian matrix [9], Bernoulli matrix [10], partial
real-valued Hadamard matrix [11], mixed chaotic–Bernoulli (MB) matrix [17], sequency-
ordered complex Hadamard transform (SCHT) matrix [27], Zadoff–Chu matrix [19], and
orthogonal complex-valued Gaussian matrix were used as measurement matrices for
comparison. The images used in the experiments are shown in Figure 2.
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4.1. Peak Signal-to-Noise Ratio Analysis

The peak signal-to-noise ratio [28] (PSNR) is a commonly utilized standard for eval-
uating the quality of image reconstruction. Essentially, a higher PSNR value means that

http://ee.sharif.ir/~SLzero/
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the difference between the original and reconstructed images is smaller, which translates
to greater accuracy in reconstruction. The formula for calculating the PSNR for image
reconstruction evaluation is as follows:

PSNR = 10lg
255× 255

( 1
M×N )

M
∑

i=1

N
∑

j=1
(X(i, j)− Y(i, j))2

(12)

where X(i, j) is the value of the pixel at the corresponding position of the original image,
and Y(i, j) is the value of the pixel at the corresponding position of the reconstructed image.

We compared our proposed measurement matrix to other commonly used ones to
analyze its performance. Specifically, we evaluated the effectiveness of our complex-valued
measurement matrix by comparing it to several other matrices, including the Gaussian
random measurement matrix, Bernoulli matrix, partial real-valued Hadamard matrix, MB
matrix, SCHT matrix, and ZC matrix when the compression ratio was 0.2 and 0.5. To ensure
accuracy, we conducted ten experiments and averaged the results, which are presented in
Tables 1 and 2. The tables show the reconstruction performance of the “Lena”, “Peppers”,
“Woman”, and “Boats” images. From the results in Table 1, we observed that the complex-
valued Gaussian matrix performed similarly to the other two complex-valued measurement
matrices and outperformed the real-valued measurement matrices. Compared to the real-
valued matrices, the average PSNR of the complex-valued Gaussian matrix improved by
2~3 dB. It even obtained a 4.35 dB boost on the “Woman” image. After Gram–Schmidt
orthogonalization, the performance of the reconstructed image was greatly improved again.

Table 1. When the compression ratio is 0.2, and under the image size of 256× 256, the PSNR of the
reconstructed image using different measurement matrices is compared. The value in bold is the best.

Measurement Matrix Lena Peppers Woman Boats

Gaussian Matrix [9] 19.15 17.28 19.16 17.78
Bernoulli Matrix [10] 19.32 17.83 19.16 17.88
Partial Real-Valued Hadamard Matrix [11] 19.33 17.84 19.56 17.85
Mixed Chaotic-Bernoulli Matrix [17] 20.23 17.86 18.99 18.51
SCHT Matrix [27] 22.03 20.61 23.35 20.90
Zadoff–Chu Matrix [19] 22.09 20.47 23.55 20.84
Complex-Valued Gaussian Matrix 22.01 20.46 22.93 20.59
Orthogonal Complex-Valued Gaussian Matrix 28.64 27.92 33.95 29.12

Table 2. When the compression ratio is 0.5, and under the image size of 256× 256, the PSNR of the
reconstructed image using different measurement matrices is compared. The value in bold is the best.

Measurement Matrix Lena Peppers Woman Boats

Gaussian Matrix [9] 26.30 25.12 31.04 26.42
Bernoulli Matrix [10] 26.25 25.18 31.01 26.56
Partial Real-Valued Hadamard Matrix [11] 26.34 25.18 31.03 26.56
Mixed Chaotic–Bernoulli Matrix [17] 26.52 25.05 30.88 26.94
SCHT Matrix [27] 30.40 29.16 35.96 32.09
Zadoff–Chu Matrix [19] 30.16 29.01 35.66 32.02
Complex-Valued Gaussian Matrix 30.49 29.34 36.10 32.33
Orthogonal Complex-Valued Gaussian Matrix 36.85 35.38 43.21 42.23

To verify that our proposed measurement matrix has better reconstruction results than
other matrices at varying compression ratios and image sizes, we tested it on images of
“Peppers” and “Woman” with sizes of 256× 256 and 512× 512. The results are presented
in Figures 3–6.
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Figures 3–6 clearly show that all measurement matrices’ reconstruction quality steadily
improves. For instance, Figure 6 illustrates that the reconstruction performance of various
measurement matrices becomes better with an increase in compression ratio. The Gaussian
matrix, Bernoulli matrix, and partial real-valued Hadamard matrices have very similar
reconstruction performance, and the mixed chaotic–Bernoulli matrix has the best perfor-
mance among these real-valued measurement matrices. The SCHT matrix and ZC matrix
improve the reconstruction performance by approximately 3 dB compared to the previous
four real-valued matrices. The complex-valued Gaussian matrix performs similarly to the
SCHT matrix and ZC matrix. After Gram–Schmidt orthogonalization, the complex-valued
Gaussian matrix has an improved reconstruction performance of about 5.7 dB on average
compared to other complex-valued measurement matrices. Figures 3–6 also show that the
orthogonal Gaussian matrix has the best reconstruction performance, whether under the
256× 256 size images or 512× 512 size images.

4.2. Structural Similarity Analysis

In addition to PSNR, structural similarity [29] (SSIM) can also be used to evaluate the
performance of a reconstructed image using the two measurement matrices. The value
of SSIM ranges from 0 to 1, and the larger the value of SSIM, the better the quality of the
reconstructed image. The calculation formula is as follows:

SSIM(a, b) =
(2µaµb + c1)(2σab + c2)

(µa2 + µb
2 + c1)(σa2 + σb

2 + c2)
(13)

Here, µa and µb represent the mean values of X and Y; σa
2 and σb

2 represent the variances
of a and b; σab is the covariance of a and b; c1 = (k1 L)2 and c2 = (k2 L)2 are the constants
used to maintain stability; L is the dynamic range of pixel values, and k1 and k2 are
small constants.

In Figures 7 and 8, we can see the reconstructed images of “Lena” and “Livingroom”
of 256× 256 in size at a compression ratio of 0.5 using different measurement matrices.
These measurement matrices can reconstruct the image well, but the reconstructed image
using the measurement matrices shown in (a) to (d) appears fuzzy in the detailed part.
In contrast, it is hard for the human eye to distinguish the details in the reconstructed
image using the measurement matrices shown in (e) to (h). Therefore, we can assess the
effectiveness of the measurement matrices by computing the SSIM value.
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Figure 8. Comparison of reconstructed details of the “Livingroom” image with size 512× 512 using
different measurement matrices when the compression ratio is 0.5.

Table 3 displays the SSIM values calculated using Equation (13). For instance, when
analyzing the “Lena” image, the first four measurement matrices yield SSIM values be-
tween 0.6 and 0.7. However, using the complex-valued Hadamard matrix, the SSIM value
increases to 0.8378, and the ZC matrix further improves the value. Compared to the ZC
matrix, the SSIM value of the orthogonal complex-valued Gaussian matrix proposed in
this work is further improved, reaching 0.9731. The reconstruction performance of our
measurement matrix is also optimal for several other images.

Table 3. Comparison of SSIM values of different reconstructed images when the original image size
is 256× 256, and the compression ratio is 0.5. The value in bold is the best.

Measurement Matrix Lena Peppers Woman Boats

Gaussian Matrix [9] 0.6628 0.6067 0.7943 0.6865
Bernoulli Matrix [10] 0.6667 0.6084 0.7965 0.6886
Partial Real-Valued Hadamard Matrix [11] 0.6674 0.6120 0.7987 0.6930
Mixed Chaotic–Bernoulli Matrix [17] 0.6817 0.6558 0.8335 0.7271
SCHT Matrix [27] 0.8378 0.7883 0.9232 0.8784
Zadoff–Chu Matrix [19] 0.8529 0.8296 0.9360 0.8936
Complex-Valued Gaussian Matrix 0.8235 0.7814 0.9191 0.8699
Orthogonal Complex-Valued Gaussian Matrix 0.9731 0.9681 0.9879 0.9863
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4.3. Comparison of Different Algorithms

In this work, the Lena image with the size of 256× 256 was used to verify the per-
formance of the proposed orthogonal complex-valued Gaussian matrix under different
reconstruction algorithms, such as SL0, OMP, SAMP, and ISTA. In addition, the recovery
scheme based on the Haar wavelet transform with Noiselet transform, as in reference [8],
was also considered, as shown in Figure 9. It can be seen that different reconstruction
algorithms have almost identical performance when the compression ratio is lower than 0.6.
For a higher compression ratio, the reconstruction performance of OMP becomes worse,
while the other reconstruction algorithms still maintain good performance.
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Figure 9. Performance comparison of reconstructed images using different algorithms. These five
algorithms correspond to references [8], [20], [21], [22], and [23], respectively.

4.4. Sparsity Analysis of the Measurement Matrix

Since the use of a complex-valued measurement matrix would increase the computa-
tional complexity, for the sake of reducing the computational complexity in the measure-
ment process and saving the storage space required for the measurement matrix storage,
we performed a sparsification operation [30] on the measurement matrix. Firstly, we started
by selecting a matrix of the same size as the measurement matrix and set all values to 1.
For each column of the measurement matrix, d(d << M) values were randomly reserved,
and the values of the remaining positions were set to zero to obtain a sparse matrix. Then,
the sparse measurement matrix was obtained by multiplying the measurement matrix with
the corresponding position of the sparse matrix. This work explored the reconstruction
performance of the “Lena” and “Cameraman” images of size 256× 256 and 512× 512 when
the values of d are 3, 4, 8, 12, and 16, respectively.

Figures 10–13 show that the largest performance loss occurs when d is set to 3. The
reconstruction performance improves as the value of d increases to 4, 8, 12, and 16, with
very minimal difference in the PSNR value. Compared to not using sparsification, the
performance loss is less than 1 dB. Assuming the measurement matrix size is M× N(M =
CR×M) and the image size is N × N, compressing the image requires 2× N ×M× N
multiplications and 2(N − 1) × M × N + MN additions if the measurement matrix is
without sparsification. Using the sparsified measurement matrix, when the sparsity is
d(d << M), only 2× N× d× N multiplications and 2× (N− 1)× d× N + MN additions
are needed when performing image compression, so a large part of the computational
complexity is reduced. The loss of less than 1 dB in performance is acceptable relative to
the reduced computational complexity.
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of size 512× 512.

Table 4 shows the addition and multiplication complexity of several different matrices
during the measurement process. In references [7,8], the Haar wavelet transform and
the Noiselet transform were used to realize compression. For these two cases, the Haar
wavelet transform only needs to multiply 1√

2
, which can be realized via a simple shift

operation, and the Noiselet transform only needs addition operations. When using a partial
Hadamard matrix for compression [11], no multiplication operation is needed because the
partial Hadamard matrix is composed of 1 and −1, and the multiplication operation for −1
can be realized via a simple shift operation. For general real-valued measurement matrices,
the matrix operations during compression require (N − 1)MN addition operations and
MN2 multiplications, while the complex-valued measurement matrix requires twice the
number of calculations. However, the computational complexity of the complex-valued
measurement matrix after sparsification can be significantly reduced, and the performance
loss after sparsification is entirely acceptable.

Table 4. Comparison of process complexity of different measurement matrices.

Measurement Matrix Addition Complexity Multiplication
Complexity

Haar + Noiselet [7] O( 17
2 MN + 2MN × log2(MN − 1)− 2(M + N)) 0

Haar + Noiselet [8] O( 7
2 MN + 2MN × log2(MN − 1)) 0

Gaussian Matrix [9] O((N − 1)MN) O(MN2)
Bernoulli Matrix [10] O((N − 1)MN) O(MN2)
Partial Real-Valued Hadamard Matrix [11] O((N − 1)MN) 0
Mixed Chaotic–Bernoulli Matrix [17] O((N − 1)MN) O(MN2)
SCHT Matrix [27] O((2N − 1)MN) O(2MN2)
Zadoff–Chu Matrix [19] O((2N − 1)MN) O(2MN2)
Complex-Valued Gaussian Matrix O((2N − 1)MN) O(2MN2)
Orthogonal Complex-Valued Gaussian Matrix O((2N − 1)MN) O(2MN2)
Sparse Orthogonal Complex-Valued Gaussian Matrix O((2N − 1)dN) O(2dN2)

5. Conclusions

We proposed an orthogonal complex-valued Gaussian measurement matrix con-
structed by using two Gaussian matrices after Gram–Schmidt orthogonalization as the real
and the imaginary parts, respectively. The simulation results demonstrate that using the
complex-valued measurement matrix significantly enhances the reconstruction quality of
images compared to using the real-valued measurement matrix. We then sparsified the
measurement matrix and analyzed its calculation and reconstruction performance. The
results show that the sparsified measurement matrix can effectively reduce the calculation
amount with only a small loss in reconstruction performance. In addition, we compared the
performance of our proposed orthogonal complex-valued Gaussian measurement matrix,
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real-valued measurement matrix, and other complex-valued measurement matrices on
reconstructed images using different compression ratios and image sizes. The results show
that the proposed complex-valued measurement matrix has better reconstruction effects.
This work has implications for using complex-valued matrices as measurement matrices in
compressed sensing.
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