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Abstract: The objective of this study is to evaluate assets’ performance by considering the exit time
within the risk measurement framework alongside Shannon entropy and, alternatively, excluding
these factors, which can be used to create a portfolio aligned with short- or long-term objectives. This
portfolio effectively balances the potential risks and returns, guiding investors to make decisions
that are in line with their financial goals. To assess the performance, we used data envelopment
analysis (DEA), whereby we utilized the risk measure as an input and the mean return as an output.
The stop point probability–CVaR (SPP-CVaR) was the risk measurement used when considering
the exit time. We calculated the SPP-CVaR by converting the risk-neutral density to the real-world
density, calibrating the parameters, running simulations for price paths, setting the stop-profit points,
determining the exit times, and calculating the SPP-CVaR for each stop-profit point. To account for
negative data and to incorporate the exit time, we have proposed a model that integrates the mean
return and SPP-CVaR, utilizing DEA. The resulting inefficiency scores of this model were compared
with those of the mean-CVaR model, which calculates the risk across the entire time horizon and
does not take the exit time and Shannon entropy into account. To accomplish this, an analysis
was conducted on a portfolio that included a variety of stocks, cryptocurrencies, commodities, and
precious metals. The empirical application demonstrated the enhancement of asset selection for
both short-term and long-term investments through the combined use of Shannon entropy and the
exit time.

Keywords: portfolio performance evaluation; data envelopment analysis; Shannon entropy; stop
strategy; risk management; CVaR; SPP-CVaR

1. Introduction

The stop strategy integrates components of both the stop-loss and take-profit strategies.
The stop-loss strategy limits losses by selling a security when it reaches a predetermined
price level below the current market price, while the take-profit strategy locks in profits by
selling a security at a predetermined price level above the current market price (Eiteman,
1966) [1]. Numerous scholarly works have been dedicated to examining the concept of the
stop strategy, such as Tschoegl (1988), Osler (2003), and Bensaid and Olivier (2000) [2–4].
However, the exit time remains uncertain because investors cannot predict when the price
will reach the stopping point due to unpredictable market fluctuations.

The stop strategy is a popular risk management technique used by traders and in-
vestors in the stock market. Research conducted by Osler (2003) indicated that the clustering
of stop-loss and take-profit orders can help elucidate certain patterns observed in finan-
cial markets [3]. These patterns are commonly utilized by traders in technical analysis.
Investors using hedge portfolios and the stop strategy to trade may find that traditional
risk measures are not adequate for accurately measuring the risk of their portfolios. This is
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because hedge portfolios and stop strategies are designed to offset risks and limit losses,
which can result in missed opportunities and increased transaction costs. Investors using
stop strategies are often concerned with limiting their losses, and the stop point is set as a
way to achieve that.

However, since the exit time is uncertain and can be influenced by market conditions,
the investor’s focus is on managing risk before reaching the stop point. Once the transaction
is closed, the risk measures become irrelevant because the investor is no longer exposed
to the market. Traditional risk measures evaluate risk over the entire time horizon, which
does not account for the uncertainty in the exit time caused by the stop strategy. Therefore,
alternative risk measures may be needed to better capture the dynamics of managing risk
with a stop strategy.

Entropy, a term first introduced in 1865 by the German physicist Rudolf Clausius for
studying thermodynamics, has been used to gauge order, disorder, and uncertainty across
diverse disciplines. Its initial application in finance, pioneered by Philippatos and Wilson
for portfolio selection [5], has since broadened to encompass asset pricing and option
pricing, solidifying its role as a key tool in financial research and decision-making. Shannon
entropy can be applied to measure the degree of uncertain of a portfolio’s return [5].
However, it can also be used to measure the degree of diversification of investments [6].

DEA is a nonparametric linear programming technique used to assess the efficiency
and productivity of decision-making units (DMUs). Originally introduced as a manage-
rial and performance measurement tool in the late 1970s, DEA has since seen extensive
application and adaptations across diverse fields and industries. Notably, it has gained
significance in portfolio and asset pricing research, where it aids in measuring the relative
efficiencies and improving portfolios’ performance (Eberlein and Keller, 2023) [7].

The conventional DEA models typically assume that all inputs and outputs are non-
negative; however, in the case of asset returns, both positive and negative values may
be encountered over a certain period. As a solution to this challenge, we utilized the
range directional measure (RDM) model, which has been specifically designed to address
negative rates of return, as recommended by Portela et al. (2004) [8].

Markowitz (1952) developed the modern portfolio theory, which utilizes the expected
return and risk to optimize portfolios and diversify investments [9]. He introduced the
mean-variance model to consider an asset’s anticipated return and risk. Various studies
have investigated the optimization of stock portfolios using the mean-variance model
introduced by Merton (1969, 1971), Magill and Constantinides (1976), and Davis and
Norman (1990) [10–13]. However, the model has faced criticism due to its reliance on
variance as a measure of risk.

The SPP risk measure is a proposed solution to the limitations of the existing risk
measures in capturing the specific risks associated with stop strategies, such as price
volatility and the uncertainty of the exit time [14]. By accounting for these factors, the SPP
risk measure aims to provide a more comprehensive and accurate evaluation of the risk for
investors using stop strategies. This measure could be useful in helping investors make
more informed decisions about their risk management strategies and potentially improve
their overall portfolio performance.

In 1995, Konno and Shirakawa used an optimization approach to find the optimal
stock portfolio with minimum semi-variance [15]. In the 1990s, the “value at risk” measure
was proposed as another risk measure, which expresses the maximum potential losses an
investor could face when choosing different assets or portfolios. The VaR model was first
introduced as a means of managing risk in their own trading and investment portfolios [16].
Baumol (1963) introduced the idea of value at risk (VaR) for the first time, although it was
not widely used until much later [17]. This was used while studying a model named “the
confidence limit criterion of expected earnings,” which attempted to estimate the highest
potential loss with a certain level of certainty. Artzner et al. (1999) introduced the concept of
coherent risk measures, which are alternatives to the value at risk (VaR) measure [18]. They
argued that VaR lacks two important properties: subadditivity and convexity. Mausser and
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Rosen (1998) showed that the VaR measure has multiple local minima in the optimization
process [19].

The problem with local minima is that the optimization algorithm may not find
the optimal combination of assets, leading to suboptimal portfolios and inaccurate risk
estimates. VaR only considers the probability of a loss exceeding a certain threshold, but
it does not account for the magnitude of the loss beyond that threshold or the tail risk
associated with extreme events [18].

Rockafellar and Uryasev (2002) suggested a risk measure called the conditional value
at risk (CVaR) as a way to address the limitations of VaR [20]. CVaR is a consistent risk
measure that satisfies subadditivity and convexity, making it advantageous for dealing with
securities. Its adoption can lead to more reliable risk management in securities markets [21].

Pflug and Swietanowski (2000), Rockafellar and Uryasev (2002), and Ogryczak and
Ruszczynski (2002) have contributed to the development of the CVaR method from different
perspectives [20–22]. Chekhlov, Uryasev, and Zabarankin, (2004) were the first to apply the
CVaR minimization method to optimization problems [23]. An important consideration
often overlooked in existing portfolio optimization methods is the investor’s exit time. To
address this issue, the SPP-CVaR measure was developed by Bin (2015), which builds on
the strengths of the CVaR measure and incorporates the exit time as a key factor [14].

This study investigated evaluations of the performance of assets when investors
implement a stop strategy using the SPP-CVaR measure and Shannon entropy. In evaluating
an asset’s efficacy, we utilized a model inspired by the range directional measure (RDM)
model, which has been intricately adapted to cater to scenarios involving negative rates
of return.

At the outset of our analysis, we computed the efficiency of an asset without consider-
ing its exit time, using the mean-CVaR model. Subsequently, we included the variable of
exit time in our analysis and then added Shannon entropy to further enhance our approach.
Calculation of the SPP-CVaR involves estimating the risk-neutral density using kernel
density estimation, transforming it into the real-world density with a beta distribution, and
calibrating the parameters. Price path simulations were generated, considering genuine
market probabilities and risk. Real and SPP densities for prices and exit times were de-
rived, incorporating predefined stop-profit points. Random entry times were simulated
to improve the accuracy of the distribution of exit time. By applying the density transfer
function, the SPP of the density of exit time was obtained.

Finally, the SPP-CVaR was calculated, focusing on critical investment exit times to
quantify severe financial risk. Similarly, we calculated the mean return until the exit time,
mirroring the process used for the SPP-CVaR. We then utilized the SPP-CVaR as an input
and the mean return as an output in our model, enabling us to calculate the efficiency
score of an asset. By incorporating the exit time and Shannon entropy, we found that
the efficiency was more accurate. This enhancement could lead to several benefits, as we
constructed a variety of portfolios catering to different time horizons, including short-term
options (10 days, 20 days, 1 month, and 90 days), as well as a long-term portfolio.

These portfolios play a significant role in assisting investors and portfolio managers in
their investment endeavors. By providing tailored investment strategies, they empower
individuals to make informed decisions and effectively pursue their financial objectives.
The incorporation of stop-profit points enables investors to secure profits and mitigate risks.
Through the application of SPP-CVaR risk measures, we assessed the downside risk, facili-
tating informed allocation of the risk. Furthermore, incorporation of the exit time and the
integration of Shannon entropy enhanced the decision-making efficiency. Efficiency scores
were then utilized to optimize combinations of asset, aiding in the selection of suitable
options. This comprehensive approach may empower investors to minimize risk, maximize
returns, and make strategic choices aligned with their investment goals. Additionally, these
measures provide valuable insights for company managers for informing risk reduction
strategies and driving overall profitability.
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The rest of this article is structured in the following manner. Section 2 presents
the mathematical definitions and formulas. The methodology is explained in Section 3.
Section 4 includes the experimental testing of the methodology and a comparison of the
two models. Finally, Section 5 presents the conclusion.

2. Mathematical Definitions and Formulas
2.1. Risk Measures (VaR and CVaR)

Given a portfolio of n assets Φ = {1, 2, 3, . . . ., n}, the investment allocation of each as-
set is represented by the position vector X = {x1, x2, x3, . . . xn} T, while the uncertain returns
of the n risky instruments are expressed by the random vector Y =

{
y1, y2, y3, . . . , yn

}
.

XTY can be used as a portfolio return to formulate f (X, Y) = −XTY, which is a more
effective loss function.

Consider a fixed value x belonging to the set X, along with a probability distribution
of y, The probability that the loss is less than or equal to a threshold α is defined as:

ψ(x, α) = p( f (X, Y) ≤ α) =
∫

f (X,Y)≤α
π(x, α)dy (1)

The VaR associated with the portfolio Φ can be expressed, for a confidence level of β
and any x ∈ X, as follows:

VaRβ(x, π) = min{α ∈ R : ψ(x, α) ≥ β} (2)

The conditional value at risk is equal to the average occurrence of losses greater than
VaR at the confidence level of β.

CVaRβ(x) =
1

1− β
E[−XTY | f (X, Y) ≥ VaRβ] (3)

The equivalent definition proposed by Rockafellar and Uryasev (2002) can be given as
follows [20]

CVaRβ(x) = min
α∈R

Fβ(x, α). (4)

where
Fβ(x, α) = α +

1
1− β

∫
y∈RN

[ f (X, Y)− α]+π(y)dy (5)

where π(y) is the notation for the probability distribution associated with Y.

2.2. SPP-CVaR Risk Measure

To calculate the SPP-CVaR, we begin with the price process, which is modeled by
extending the model to include the exit time. The stochastic differential equation (SDE)
used to describe the price process is based on geometric Brownian motion and is given by

dS(t) = µS(t)dt + σS(t)dW(t) (6)

where µ and σ are constants, and W(t) is the Wiener process or Brownian motion.
Let m be the stop-profit point. The exit time for the stop-profit point m, denoted by

γm, is given by the formula

γm = min{t ≥ 0 ; W(t) = m} (7)

where γm is the first time that the price reaches the stop-profit point. In practice, m is the
difference between the buying and selling prices, subject to the investor’s considerations of
the transaction costs and trading profits.
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Theorem 1. Form ∈ R+, the cumulative distribution function of the time at which the price first
reaches the stop-profit point was given by Bin (2015) [14] as follows

p{γm ≤ t } = 2√
2π

∫ ∞

|m|√
t

e−
y2
2 dy t ≥ 0 (8)

The density function is:

fγm(t) =
d
dt

p{γm ≤ t } = |m|
t
√

2πt
e−

m2
2t (9)

The density function of the price process with a stop-profit point can also be obtained as follows:

π(y) =
n

∑
i=1

1√
2πσ2(t− s)

e
− yi

2

2σ2(t−s) (10)

The corresponding unconditional density function can be obtained from the conditional density
function of the price processπ(.)and the density function of the time that first crosses the stop-profit
point fγm(.) as follows:

ν(.) =
∫ T

0
π(.) fγm(.)dt =

k

∑
i=1

1√
2πσ2(t− s)

e
− y2

2σ2(t−s)
|m|

t
√

2πt
e−

m2
2t (11)

Finally, we can solve the arbitrage portfolio optimization problem by minimizing the SPP-
CVaR

Min SPP− CVaR = min
(x,∝)∈χ∗R

α +
1

1− β

∫
y∈RN

[ f (x, y)− α]+ ν(.)dy (12)

where

ν(.) =
∫ T

0
π(.) fγm(.)dt (13)

If the exit time γm follows a discrete distribution over time such as {t1 − k1, . . . . . . . . . , tn − kn},
since t > k and t = k + h, we have:

ν(y) =
n
∑

i=1

n
∑

j=1

1√
2πσ2hj

e
− yi

2

2σ2hj
|m|

t
√

2πt
e
−m2

2tj (14)

2.3. Shannon Entropy

Let η be a discrete random variable taking the values ai at the probabilities pi, i =
1, 2, 3, . . . ., n. Its entropy was defined by Shannon and Weaver [24] as

H(η) = −
n

∑
i=1

pi Ln pi (15)

Entropy is a measure of how evenly distributed the probabilities p1, p2, . . . pn are. A
higher value of entropy indicates that the random variable is closer to being equiprobable;
in other words, each outcome is equally likely. Conversely, a lower entropy value suggests
a deviation from this equiprobability.

The entropy value will reach its minimum of 0 if and only if there is an index k
such that pk = 1, and it will reach its maximum of ln n if and only if pi = 1/n for all
i = 1, 2, ···, n.

The investment proportions in securities xi are treated similarly to the probabilities pi
in the Shannon entropy formula, i.e., xi ≥ 0 and ∑n

i=1 xi = 1, i = 1, 2, . . . , n.
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We substituted the probabilities of Shannon entropy with the proportions of invest-
ments and applied the principles of entropy to demonstrate the degree of diversification in
a portfolio.

3. DEA-Based Evaluation Model of Assets’ Performance

This section assesses assets’ performance in two distinct ways: first, over the entire
time horizon using the CVaR risk measure, and second, up to the point of the investor’s
exit time using the SPP-CVaR risk measure. The purpose was to compare performance
between the two modes and assess the impact of the exit time on the assets’ performance.
The subsequent subsections provide a detailed analysis and the results.

3.1. Evaluation of Assets’ Performance over the Entire Time Horizon Using Traditional
Risk Measures

Based on the RDM model, the mean-CVaR model was proposed by Banihashemi and
Navidi (2017) and can be described as follows [25]:

max ∝
S.t.

E(r(x)) ≥ µo + ∝ Rµo

CVaR(r(x)) ≤ CVaRo+ ∝ RCVaRo

∑n
i=1 xi = 1

∝≥ 0 , 0 ≤ xi ≤ 1 , i = 1, 2, . . . ., n

(16)

In this model, µ is the expected return of the asset, xi is the proportion of the portfolio’s
initial value invested in asset i, and x is an n-vector of variable xi. Moreover, r is the return
of the asset and g =

(
Rµo , RCVaRo

)
is a vector that shows the direction in which ∝ is to be

maximized. The process of determining the Mean− CVaR is similar to the RDM model. If
the value of α assigned to the asset being evaluated is zero, then that asset is considered to
be efficient. Alternatively, the efficiency of an asset can be represented as 1− α.

3.2. SPP-CVaR-Based Evaluation of Portfolios’ Performance

In this section, we introduce a model to evaluate the performance of an asset (or a
portfolio) in a mean return–risk framework under the exit time and entropy. Unlike the
previous model, this model considers the risks before the exit point, as exiting a transaction
eliminates further exposure to the associated risks. Our model was inspired by the RDM
model, with the risk (SPP-CVaR) and mean return considered as the only input and output,
respectively, that use the uncertainty of the exit time. We used a sophisticated framework
to determine the input and output of this model.

The computation of the stop-profit point–conditional value at risk (SPP-CVaR) is a
comprehensive process that amalgamates statistical techniques, calibration methodologies,
and simulation procedures. The overarching aim of this algorithm is to provide a robust
framework for assessing the potential downside risks and tail outcomes associated with
a given investment. This is achieved by taking both the real-world dynamics and the
stochastic nature of the stop-profit points into account.

We began by obtaining the risk-neutral density through the application of kernel
density estimation, a technique that captures the market’s sentiment and expectations
by meticulously analyzing historical data. Subsequently, we utilized a beta distribution
to transform this risk-neutral density into a real-world density. The parameters of a
beta distribution that align with the risk-neutral density were determined using maximum
likelihood estimation. We then computed the real-world density by applying the calibration
function and the estimated parameters of the beta distribution.

Once the real-world density had been derived, we calibrated the real-world parameters
through an optimization procedure. This procedure aimed to minimize a specific objective
function and was designed to quantify the discrepancy between the real-world density and
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the density of the returns simulated from a normal distribution with predetermined drift
and volatility parameters.

After calibration, we generated a price path simulation with the real-world measure.
This measure was based on the genuine probabilities of events occurring in reality, and it
also accounted for the inherent risk and uncertainty in the financial market.

In the subsequent step, we derived both the real and SPP density for the distribution of
the price and exit time. This is a critical step for the computation of the SPP-CVaR. The real
density reflects the true probability distribution of prices, while the SPP density integrates
the concept of stop-profit points based on predefined profit levels. The stop-profit point
was defined as a set that included 2%, 4%, 6%, 8%, 10%, and 12%.

Assuming that the investment entry time, represented as t, followed a uniform distri-
bution, we executed a simulation of 250 random entry times. This simulation was crucial
in deriving a more precise distribution of the exit times. The exit time for all 250 random
entry times was computed to generate an exit time series, which aided in acquiring the dis-
tribution of real exit times using the kernel method. By implementing the density transfer
function, we obtained the of density the SPP exit time.

The final stage of our process involved calculating the SPP-CVaR, a metric that quan-
tifies the risk of severe financial loss linked to the stop-profit points. The SPP-CVaR is
determined by the exit time, meaning it does not consider the full investment period. This
approach offers a unique advantage, as it focuses on the critical moments of exiting from
the investment, providing a more targeted and relevant measure of extreme risk, rather
than diluting the risk assessment over the entire investment timeline.

In a similar vein to the SPP-CVaR, we also computed the mean return of the asset up
until the point of the investor’s exit time.

Assuming that Yday1, Yday2, Yday3, . . . . . . , Yexit time are the log of the returns of a
specific asset up to the exit time and regarding the negative return, we defined the vector
gT such that

gT =
(

RSPP−CVaRo
β
, RE(Yo)

)
(17)

where
RSPP−CVaRo

β
=
[
SPP− CVaRo

β −min
(

SPP− CVaRj
β : j = 1, 2, . . . , n

)]

RE(Yo) =
[
max

(
E
(
Yj
)

: j = 1, 2, 3, . . . , n
)
− E(Yo)

]
 (18)

This vector is a range of possible improvements in the input and output. The SPP−
CVaRo

β is the value of the risk, and E(Yo) is the mean return of the asset. Then we solvef
the following nonlinear model:

max ∝
S.t. E(Y(x)) ≥ E(Yo)+ ∝ RE(Yo)

SPP− CVaR(Y(x)) ≤ SPP− CVaRo
β− ∝ RSPP−CVaRo

β

eTx = 1
−∑ xi ln(xi) ≥ θ

(19)

where 0 < θ ≤ ln(n), x ≥ 0, ∝ ≥ 0.
The optimal solution ∝∗ indicates the inefficiency score of the asset under evaluation,

and the asset is efficient when the inefficiency score is zero. The term for entropy was
incorporated into the model conditionally, with θ ranging between zero and the natural
logarithm of n. This proves beneficial when investors encounter numerous inefficiencies
across a wide range of assets, making the construction of a portfolio challenging. Thus,
entropy enhances efficiency, clarifying the investment process by aiding in the selection of
the best assets from the available pool.
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4. Empirical Application

In this section, we briefly introduce our data and present selective graphs of the
distribution of the exit time, risk-neutral density, and real-world density. We then introduce
short-term and long-term portfolios based on our analysis and research.

4.1. The Data Analysis

To highlight the capability of the proposed model in resolving the problem, it is crucial
that we first introduce and discuss the data that have been collected for this purpose. The
limitation of our study was the inability to include a larger number of assets in the portfolio
due to the extensive empirical work required for each asset, potentially impacting the
generalizability of our findings. Our portfolio comprised eight stocks, including Coca-Cola,
Amazon, Pfizer, Tesla, crude oil, gold, Meta, and Bitcoin. We utilized historical daily closing
prices from 11 February 2019 to 9 February 2023. All our data were sourced from the Yahoo
Finance website. Due to the extensive numerical work involved, we were unable to include
more assets in our portfolio. To ensure the accuracy of our calculations, we multiplied
the return by 100. The decision to incorporate Bitcoin into our portfolio was influenced
by Audit Rashid’s 2021 research [26], which indicates that the addition of Bitcoin could
potentially boost a portfolio’s performance due to its potential for diversification, and
its established resilience to market downturns offers an extra layer of protection during
economic turbulence. In our analysis, we used Python to calculate the stop-profit point–
conditional value at risk (SPP-CVaR). To evaluate the efficiency score of the asset, we used
the general algebraic modeling system (GAMS). These tools allowed us to conduct our
computations effectively and derive precise results.

As part of our methodology of computing the SPP-CVaR, acquisition of the distribu-
tion of the price and exit time proved to be crucial. Given the extensive data, we selectively
included a limited number of graphs in this article for illustrative purposes. Figures 1–4
showcase the risk-neutral density and the real-world density of selective assets. Addition-
ally, Figures 5–12 present the density of the SPP and the actual density of the distribution
of the exit time for an asset, factoring in the stop-profit point.
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Real-world density portrays the future asset price probabilities based on market data
and real-world influences, while risk-neutral density simplifies valuation of the derivatives
by assuming risk-neutrality among investors, aiding the efficient pricing of options and
related instruments. As demonstrated by the figures, the probability density function of the
exit times revealed a marked concentration of exit events during a particular trading day.
As the exit time extended beyond this trading day, a noticeable and gradual decrease in
exit probability became apparent, highlighting a distinct decline in the likelihood of these
events.

4.2. Portfolio Selection

In this section, we evaluated the efficiency of all assets, considering scenarios both
with and without the inclusion of the exit time and Shannon entropy. Subsequently, we
construct short-term and long-term portfolios based on the exit time and Shannon entropy,
SPP-CVaR, and efficiency scores, which are recommended for investors.

Table 1 provides an overview of the efficiency scored for the assets, not taking the time
of exit and Shannon entropy into account.

As indicated in Table 1, Tesla and gold outperformed the other assets due to their
higher efficiency scores.



Entropy 2023, 25, 1252 13 of 16

Table 1. Efficiency scores of assets independent of the exit time and entropy.

Asset CVaR Mean Return Efficiency Score

Coca-Cola 0.03745 0.00018 0.79
Amazon 0.05365 0.00018 0.68
Pfizer 0.03969 0.0000865 0.75
Tesla 0.09969 0.00229 1
Oil 0.11004 0.00038 0.47
Gold 0.02453 0.00035 1
Meta 0.06882 0.00007469 0.58
Bitcoin 0.11175 0.00178 0.7

In the subsequent section, we computed the exit time based on the stop-profit point.
Following this, we determined the SPP-CVaR for the calculated exit time. Utilizing the SPP-
CVaR and mean return, we assessed each asset’s effectiveness by evaluating its efficiency
score in two ways: initially without factoring in the Shannon entropy and, subsequently,
by incorporating various values of θ to encompass the influence of Shannon entropy. Ul-
timately, we constructed short-term and long-term portfolios based on our analysis. Our
calculations were performed with a confidence level of 95%. Tables 2–6 show representa-
tions of both the short- and long-term portfolios we constructed.

Table 2. Selection of assets suitable for a 10-day investment period.

Asset Stop-Profit Point Exit Time SPP-CVaR Mean Return
Efficiency Score
with Exit Time

Efficiency Score with Exit
Time and Entropy

θ = 0.75 θ = 1.5 θ = 2.2

Coca-Cola 2% 2 0.000230 0.00494 0.04 0.21 0.81 1
Coca-Cola 4% 8 0.0007 0.0031 0.02 0.14 0.36 0.76
Amazon 2% 8 0.000916 −0.0002 0.01 0.11 0.29 0.63
Amazon 6% 9 0.00096 0.0053 0.03 0.15 0.4 0.88

Pfizer 2% 1 0.00016 0.00461 1 1 1 1
Pfizer 4% 2 0.0001615 0.0189 1 1 1 1

Oil 2% 2 0.00064 −0.0229 0.01 0.06 0.18 0.63
Oil 4% 3 0.0012 0.01119 0.05 0.26 0.71 1

Meta 2% 8 0.00088 −0.0003 0.01 0.11 0.29 0.62
Meta 6% 7 0.000297 0.00453 0.03 0.19 0.54 1

Table 3. Ideal assets for short-term portfolio diversification over 21 days.

Asset Stop-Profit Point Exit Time SPP-CVaR Mean Return
Efficiency Score
with Exit Time

Efficiency Score with Exit
Time and Entropy

θ = 0.75 θ = 1.5 θ = 1.7

Coca-Cola 6% 16 0.001613 0.002759 0.05 0.09 0.3 0.47
Amazon 8% 10 0.0010479 0.00777 1 1 1 1
Amazon 10% 12 0.002868 0.00758 0.35 0.54 0.65 0.65

Meta 8% 14 0.001187 0.003991 0.27 0.28 0.5 0.68
Bitcoin 2% 21 0.0000577 0.00068 1 1 1 1
Bitcoin 6% 21 0.0000622 0.00267 1 1 1 1

Table 4. Comprehensive asset recommendations for a 1-month investment span.

Asset Stop-Profit Point Exit Time SPP-CVaR Mean Return
Efficiency Score
with Exit Time

Efficiency Score with Exit
Time and Entropy

θ = 0.75 θ = 1.2 θ = 1.5

Coca-Cola 8% 22 0.003711 0.002831 0.78 0.8 1 1
Coca-Cola 10% 24 0.003532 0.003301 1 1 1 1

Tesla 2% 26 0.001274 −0.0022 0.38 0.4 0.43 0.64
Tesla 6% 27 0.001165 0.0008237 0.82 0.84 0.9 1
Gold 2% 28 0.0008493 0.0005553 1 1 1 1
Gold 6% 29 0.000928 0.001130 1 1 1 1
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Table 5. Beneficial asset choices for a 90-day investment timeframe.

Asset Stop-Profit Point Exit Time SPP-CVaR Mean Return
Efficiency Score
with Exit Time

Efficiency Score with Exit
Time and Entropy

θ = 0.75 θ = 1.2 θ = 2.01

Amazon 12% 96 0.01394 0.00114 0.19 0.21 0.48 0.94
Pfizer 6% 74 0.01018 0.000794 0.21 0.22 0.36 0.68
Pfizer 8% 79 0.01262 0.000767 0.18 0.19 0.34 0.66
Tesla 10% 74 0.00333 −0.000459 0.22 0.24 0.51 1
Tesla 12% 76 0.006018 0.00120 0.36 0.37 0.58 1
Gold 8% 43 0.001068 0.001377 1 1 1 1
Gold 10% 98 0.0010646 0.000916 1 1 1 1
Meta 12% 43 0.004394 0.002012 1 1 1 1

Table 6. Long-term investment portfolio: suggested assets for sustained growth and stability.

Asset Stop-Profit Point Exit Time SPP-CVaR Mean Return
Efficiency Score
with Exit Time

Efficiency Score with Exit
Time and Entropy

θ = 0.75 θ = 1.5

Pfizer 10% 140 0.02169 0.000705 1 1 1
Pfizer 12% 142 0.02233 0.00068 0.82 0.85 0.92

Oil 8% 218 0.02490 0.000151 0.03 0.03 0.12
Oil 10% 219 0.01765 0.000428 0.05 0.05 0.2
Oil 12% 222 0.01308 0.000329 0.07 0.07 0.22

Gold 12% 363 0.000915 0.000324 0.94 0.94 1
Bitcoin 10% 177 0.000845 0.000205 1 1 1
Bitcoin 12% 179 0.000885 0.000542 1 1 1

An analysis of the efficiency score across three scenarios (without the exit time, with
the exit time, and with both the exit time and Shannon entropy) can assist in selecting
the optimal assets for portfolios. Instruments such as the exit time, SPP-CVaR, and the
stop-profit point provide comprehensive perspectives. When low efficiency is a common
issue among assets, Shannon entropy can boost the effectiveness of selection. For example,
in Table 2, we present an assortment of assets suitable for inclusion in a short-term portfolio
with a targeted period of 10 days. Investors can customize their selection based on their
unique strategies, taking associated risks and predetermined exit timelines into account.
With the exception of Pfizer, the efficiency scores of the other assets were relatively low,
posing challenges for investors seeking the best asset options. However, by incorporat-
ing the entropy constraint, the assets’ efficiency can be enhanced, offering investors the
opportunity to build more profitable portfolios.

In the domain of short-term investments, certain assets display strong performance,
with the ability to generate rapid and consistent returns. For instance, in Table 3, Bitcoin’s
exit time remained consistent for both the 2% and 6% stop-profit points, indicating its
capacity to deliver prompt and reliable results. Moreover, in a 1-month portfolio, gold took
merely 28 days to achieve a 2% stop-profit point and only 29 days for a 6% stop-profit point,
emphasizing the importance of the exit time alongside the stop-profit point. These valuable
insights underscore the significance of comprehending the exit times while designing
short-term investment strategies.

For the decision on long-term investments, the relationship among when to exit, the
efficiency scores, and risk is crucial. Looking at Table 6, we find interesting insights. At
a 10% profit point, both Pfizer and Bitcoin had the same efficiency score of 1. However,
Pfizer took 140 days to make that profit, while Bitcoin took 177 days. Despite the longer
time, Bitcoin was less risky than Pfizer. At a 12% profit point, gold took more time to
exit compared with oil and Pfizer, yet it had better efficiency and lower risk. Interestingly,
Bitcoin’s efficiency score of 1 was even better than gold’s, and it also had less risk and
quicker exit times. In conclusion, investors need to think carefully about these factors when
making long-term investment choices.
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If we compare the model that considers both the risk and return for the entire time
horizon (as shown in Table 1) with our model, which takes the risk and returns only
until the exit time into account, it is evident that our approach provides a more accurate
representation. This is because, at the point of the investor’s exit, the consideration of risk
and return becomes less relevant. Therefore, in our scenario, the efficiency score offers a
more precise means of asset selection, resulting in a relatively dependable portfolio for
the investor.

5. Conclusions

In conclusion, this study investigated the evaluation of the performance of assets using
the SPP-CVaR measure and Shannon entropy, coupled with the data envelopment analysis
(DEA) model for assessing the assets’ efficiency. Unlike other studies that consider the risk
and mean return for the entire time horizon, our approach of incorporating the mean return
and risk measures until the exit time significantly enhanced the accuracy of the efficiency
scores. This enhancement facilitates the selection of the optimal assets for constructing a
profitable portfolio. The analysis revealed that Shannon entropy enhances the effectiveness
of asset selection, particularly in scenarios where low efficiency is prevalent among the
assets. Developing effective investment strategies hinges on comprehending the dynamics
among the exit time, risk measures, and efficiency scores. Whether one focuses on short-
term or long-term investments, finding the right balance among these factors is essential for
making the best asset choices. By taking this approach, investors and portfolio managers
can minimize risk, maximize returns, and make strategic choices aligned with their unique
investment goals, paving the way for more informed and successful financial endeavors.
Our study’s results, originating from specific cases, have broader relevance across diverse
situations. Further research can validate and expand upon these insights.
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