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Abstract: Global optimization problems have been a research topic of great interest in various engi-
neering applications among which neural network algorithm (NNA) is one of the most widely used
methods. However, it is inevitable for neural network algorithms to plunge into poor local optima
and convergence when tackling complex optimization problems. To overcome these problems, an
improved neural network algorithm with quasi-oppositional-based and chaotic sine-cosine learning
strategies is proposed, that speeds up convergence and avoids trapping in a local optimum. Firstly,
quasi-oppositional-based learning facilitated the exploration and exploitation of the search space by
the improved algorithm. Meanwhile, a new logistic chaotic sine-cosine learning strategy by integrat-
ing the logistic chaotic mapping and sine-cosine strategy enhances the ability that jumps out of the
local optimum. Moreover, a dynamic tuning factor of piecewise linear chaotic mapping is utilized
for the adjustment of the exploration space to improve the convergence performance. Finally, the
validity and applicability of the proposed improved algorithm are evaluated by the challenging CEC
2017 function and three engineering optimization problems. The experimental comparative results of
average, standard deviation, and Wilcoxon rank-sum tests reveal that the presented algorithm has
excellent global optimality and convergence speed for most functions and engineering problems.

Keywords: neural network algorithm; quasi-oppositional-based learning; complex optimization;
chaotic mapping; sine-cosine learning strategy; a new strategy; CEC 2017

1. Introduction

In contemporary practical applications, it is significant to imperative tackle a wide
variety of optimization problems. These encompass the optimization of route plan-
ning [1,2], production scheduling [3,4], energy system [5], nonlinear programming [6],
supply chain [7], facility layout [8], medical registration [9], and unmanned system [10],
among others. These projects typically involve an enormous amount of information and
constraints where conventional algorithms would struggle to find an optimal solution
within a reasonable timeframe. Consequently, investigating efficient approaches to these
intricate optimization processes has become an extremely challenging research domain.
After relentless efforts, there are numerous optimization methods exploited by researchers,
commonly employing deterministic and meta-heuristic approaches over intricate optimiza-
tion issues.

Deterministic methods can be described as problem-solving approaches that rely on
rigorous logic and mathematical models, effectively utilizing extensive gradient informa-
tion to search for optimal or near-optimal solutions [11]. However, the strong dependence
on the initial starting point makes it easy to produce identical results. In the real world,
optimization problems are often highly intricate and exhibit nonlinear characteristics [12],
which frequently involve multiple local optima within the objective function. Consequently,
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deterministic methods often encounter difficulties in escaping local minima when dealing
with complex optimization problems [13,14]. Instead, metaheuristics are inspired by phe-
nomena observed in nature and simulate these phenomena to efficiently optimize and solve
problems without relying on complex gradient information and mathematical principles
thereby better exploring optimal solutions [15–17]. For instance, the grey wolf optimization
(GWO) [18] replicates the social behavior of grey wolves during the search for optimization;
the artificial immune algorithm (AIA) [19] mimics the evolutionary process of the human
immune system to adaptively adjust the solution quality; the ant colony optimization
(ACO) [20] emulates the pheromone-based foraging behavior of ants. It is noteworthy
that the parameters of metaheuristic algorithms can be classified into two categories [21]:
common parameters and special parameters. Common parameters encompass the foun-
dational principles that govern the behavior of an algorithm, such as population size and
termination criteria. On the other hand, specific parameters are tailored to the unique
characteristics of individual algorithms. For instance, in simulated annealing (SA) [22] con-
figuring the initial temperature and cooling rate is crucial for achieving optimal outcomes.
Given the sensitivity of the algorithms for input data, any improper tuning of specific
parameters may contribute to an augmented computational effort or the conundrum of
local optimality when treating varying sorts of projects.

It is for heuristic algorithms featuring non-specific parameters that have gained im-
mense relevance. Neural network algorithm (NNA) [23], which draws inspiration from
artificial neural networks and biological nervous systems, emerged in 2018 as a promising
method towards achieving globally optimal solutions. Additionally, a distinguishing trait
of NNA from many famous heuristic algorithms is that it relies only on common param-
eters; hence, no extra parameters are required. This universality dramatically enhances
its superior adaptability across a range of engineering applications. Nevertheless, NNA
is confronted with two notable constraints: susceptibility to local optima and sluggish
convergence speed. Therefore, a lot of improved optimization algorithms based on the
scientific method have been offered to ameliorate the defects of NNA. For example, the
competitive learning chaos neural network algorithm (CCLNNA) [24] is proposed by in-
tegrating NNA with competitive mechanisms and chaotic mapping; an effective hybrid
algorithm TLNNA based on TLBO algorithm and NNA is proposed [25]; the gray wolf
optimization neural network algorithm (GNNA) was created by combining GWO with
NNA [26]; and the dropout strategy in the neural network was introduced and the elite
selection strategy was proposed as a neural network algorithm with dropout using elite
selection [27]. Moreover, by the no free lunch theorem [28], no one algorithm can be applied
to all optimization questions. Thereby, it is fundamental for the ongoing refinement of
existing to develop novel algorithms along with the integration of multiple algorithms for
better results under practical applications. In this paper, the quasi-oppositional and chaotic
sine-cosine neural network algorithm to boost the global search capability and refine the
convergence performance of NNA is proposed. The main contributions of this work are
listed below:

• To maintain the QOCSCNNA diversity of populations, a quasi-oppositional-based
learning (QOBL) [29] is introduced, where quasi-opposite populations are randomly
generated between the centers of solution space and opposite space, which contributes
to better balance exploration and exploitation that make these populations closer to
the most optimal ones more likely.

• By integrating logistic chaotic mapping [30] and sine-cosine strategy [31], a new
logistic chaotic sine-cosine learning strategy (LCSC) is proposed that helps to escape
from local optimum in the bias strategy phase.

• To improve the QOCSCNNA convergence performance, a dynamic tuning factor of
piecewise linear chaotic mapping [32] is employed to adjust the chances of operation
for the bias and transfer operators.
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• The optimization performance of QOCSCNNA was verified through 29 numerical
optimization problems based on the CEC 2017 test suite [33], as well as two real-world
engineering constraint problems.

The remainder of this paper follows the following structure: a brief introduction of the
original NNA is given in Section 2. Section 3 describes the proposed QOCSCNNA in detail.
Section 4 validates the performance of the QOCSCNNA as well as explores the application
of the QOCSCNNA to real-world engineering design problems using the CEC 2017 test
suite. Finally, the main conclusions of this paper are summarized in Section 5 and further
research directions are proposed.

2. NNA

Artificial neural networks (ANNs) are mathematical models that are based on the
principles of biological neural networks, aiming to simulate the mechanisms of information
processing in the human brain. ANNs are used for prediction primarily by receiving
input data and output data which infer the relationship between these. The input data for
ANN are typically obtained through experiments, computations, and other means, and
the weights are iteratively adjusted to minimize the error between the predicted solution
and the target solution, as shown in Figure 1. However, it might sometimes be unknown
what the target solution is. Aiming to solve in this way, the authors of NNA treat the
current best solution as the target solution and keep adjusting the weights of each neuron
to achieve it. The NNA is a population-based evolutionary algorithm, which involves
initializing the population, updating the weight matrices, and setting bias operators, and
transferring operators.
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2.1. Initial Population

In the NNA algorithm, the population is updated using a neural network model-like
approach. In the search space, the initial population Xr =

[
xr

1, xr
2, . . . , xr

N
]

is updated
through the weight matrix Wr =

[
wr

1, wr
2, . . . , wr

N
]
, for any generation (r). Here, xr

i repre-
sents the ith individual vector and wr

i represents the ith weight vector, both with D dimen-

sions. Thus, xr
i =

[
xr

i,1, xr
i.2, . . . , xr

i,D

]
and wr

i =
[
wr

i,1, wr
i.2, . . . , wr

i,D

]
, where i = 1, 2, . . . , Np.

It is desirable to impose constraints on the weights associated with new model solu-
tions so that significant biases are prevented in the generation and transmission of these
solutions. In this way, NNA was equipped to regulate its behavior through subtle devia-
tions. After initializing the weights, the one corresponding to the desired solution (Xtarget),
i.e., the target weight (Wtarget), that is chosen from the weight matrix W. Therefore, the
summation of the weight matrix must adhere to the following conditions:

∑N
j=1 wr

i,j = 1, i = 1, 2, . . . , Np (1)
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where
wi,j ∈ U[0, 1], i, j = 1, 2, . . . , Np (2)

In addition, the formula of generating a new population at the (r + 1)th iteration can
be expressed by:

xr+1
i,new = ∑N

i=1 wr
i,j × xr

i , i = 1, 2, . . . , N, j = 1, 2, . . . , Np (3)

xr+1
i = xr

i + xr+1
i,new, i = 1, 2, . . . Np (4)

where Np is the population size, r is the current number of iterations, and xr
i,new is the

weighted solution of the ith individual at time r.

2.2. Update Weight Matrix

The weight matrix is then adjusted based on the desired target weight
(
Wtarget

)
using

the following formula:

wr+1
i =

∣∣∣wr
i + 2× rand(0, 1)×

(
wr

target − wr
i

)∣∣∣, i = 1, 2, . . . , Np (5)

where wr
target is the vector of optimal target weights obtained in each iteration.

2.3. Bias Operator

To enhance the global search capability of NNA, a bias operator has been incorporated
to fine-tune the probabilities of pattern solutions generated using the new population and
updated weight matrices. A correction factor β is utilized to precisely define the probability
of the adjusted pattern solution. Initially, β is initialized to 1 and progressively decreased
in each iteration. The update process can be outlined as follows:

βr+1 = βr × 0.99, r = 1, 2, . . . , Tmax (6)

The bias operator encompasses two components: the bias population and the bias
weight matrix. To begin, a random number NP and a set P are generated, where NP
is D multiplied by βr. Let L = (l1, l2, . . . , lD) and U = u1, u2, . . . , uD) be the lower and
upper limits of the variables Additionally, P denotes a set of NP integers that are randomly
selected from the range of 0 to D. Consequently, the definition of the bias population can be
formulated as follows:

xr
i,P(s)= lP(s) +

(
uP(s) − lP(s)

)
× α1, s = 1, 2, . . . , NP (7)

where α1 is a random number between 0 and 1 that obeys a uniform distribution. The
bias weight matrix also involves two variables: a random number Pw, a stochastic number
determined by the formula N × βr, and Q, a set of Pw integers randomly chosen between 0
and N. Therefore, the scientific representation for defining the bias weight matrix can be
formulated as follows:

wr
i,Q(t) = α2, t = 1, 2, . . . , Pw (8)

where α2 is a random number between 0 and 1, following a uniform distribution.

2.4. Transfer Operator

There is an introduced transfer function operator (TF) that transfers the new mode
solution at the current position to a new position in the search space proximal to the target
solution (xr

target). This operator can be denoted as:

xr+1
i = xr

i + 2× α3 × (xr
target − xr

i ), i = 1, 2, . . . , NP (9)
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where α3 is a random number between 0 and 1 that follows a uniform distribution. Based
on the above statements, the overall NNA framework can be seen in the pseudocode in
Algorithm 1.

Algorithm 1: The pseudocode of the NNA algorithm

1. Initialize the population Xr and the weight matrix Wr.
2. Calculate the fitness value of each solution and then set Xtarget and Wtarget
3. for i = 1 : NP
4. Generate the new solution xr

i by Equation (3) and new weight matrix wr
i by Equation (5)

5. if βr ≥ rand
6. Perform the bias operator for xr+1

i by Equation (7) and the weight matrix wr+1
i by Equation

(8)
7. else
8. Perform the transfer function operator for xr

i via Equation (9)
9. end if
10. end for
11. Generate the new modification factor βr+1 by Equation (6)
12. Calculate the fitness value of each solution and find the optimal solution and the optimal

weight
13. Until(stop condition = false)
14. Post process results and visualization

3. Quasi-Oppositional-Based Chaotic Sine-Cosine Neural Network Algorithm
3.1. Quasi-Oppositional-Based Learning Strategy

Opposites-based learning (OBL) theory [34] has been proposed by Tizhoosh to syn-
thesize the selection of existing solutions and their opposites to improve the quality of
candidate solutions. The OBL strategy can provide more accurate candidate solutions.
Moreover, the OBL theory evolved into quasi-oppositional-based learning (QOBL) ap-
proaches, which show a higher probability of approaching the unknown optimal solution
compared to the candidate solutions generated by OBL in terms of achieving the global
optimum [29]. To enhance the quality and convergence speed of the solutions, researchers
integrated QOBL into metaheuristic methods.

The opposite point is the symmetric point of a given point concerning the center
point in the solution space. Figure 2 shows the positions of the current point, the op-

posite point
∼
X, and the quasi-opposite Q̃H within the one-dimensional space [A, B]. IF

X = (x 1, x2, . . . , xn) represents a point in an n-dimensional space, where each coordinate

xi ∈ [ai, bi] for i = 1, 2, . . ., n. The opposite point
∼
X = (x̃1,x̃2, . . . x̃n) corresponding to the

generated X is as follows:
∼
xi = ai + bi − xi (10)
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Furthermore, the quasi-opposite point Q̃H = (q̃x1,q̃x2, . . . q̃xn) is randomly generated
between the inverse point and the center point M = (A + B)/2 of the solution space. The

quasi-opposite point Q̃H of
∼
X can be generated as follows [29]:

q̃xi =

{
mi + (

∼
xi −mi)× k, mi <

∼
xi

∼
xi + (mi −

∼
xi)× k, mi >

∼
xi

(11)
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where k is a uniformly distributed random number between 0 and 1.
In this study, QOBL performs the initialization and generation of jumps for QOCSCNNA.

The initialization phase through which randomly generated initial populations of quasi-
opposite populations is created. The ridiculously generated initial population is taken to
define the optimal solution of the inception phase; the generation jumping phase drives the
algorithm jumps during the selection process to the solution with a better fitness function
value. In this process, a greedy strategy is used to decide whether to keep the current
solution or leap to a quasi-opposite solution. The pseudocode for the QOBL strategy is
presented in Algorithm 2.

Algorithm 2: QOBL Strategy

for i = 1 : NP
for j = 1: N
∼
xi = αi + γi − xi
mi = (αi + γi)/2
If mi <

∼
xi

q̃xi = mi + (
∼
xi −mi)× k

else
q̃xi =

∼
xi + (mi −

∼
xi)× k

end if
end for

end for

3.2. Chaotic Sine-Cosine Learning Strategy
3.2.1. Sine-Cosine Learning Strategy

For the performance improvement of meta-heuristic algorithms, Mirjalili introduced
the sine-cosine learning strategy (SCLS) in his research [31]. It is the core idea of this
strategy that the current solution is updated using the sine and cosine functions which
effectively refrain the algorithm from falling into a local optimum. The definition of the
algorithm is given below [31]:

xr+1
i,j =

{
xr

i,j + u1 × sin(u2)× |u3 × xr
target − xr

i,j|, u4 < 0.5
xr

i,j + u1 × cos(u2)× |u3 × xr
target − xr

i,j|, u4 ≥ 0.5
(12)

where r is the current iteration number; xr
i,j is the position of the ith individual in the jth

dimension in the r iteration; and xr
target is the optimal solution of the previous generation.

u2 is a range greater than 0 and less than
√

2 as the radius of the circles. u3 is set to be
a random number between 0 and 2, to control the distance of the optimal solution and
maintain the diversity of the population. The value of u4 is a random number between 0
and 1. u1 is the cosine amplitude adjustment factor, set as follows:

u1 =
r
R

(13)

where R is the maximum number of iterations.

3.2.2. Logistic Chaos Mapping

The exploratory potential of chaos optimization algorithms can be further enhanced by
leveraging the traversing traits and stochastic attributes of chaotic variables to optimize the
diversity within the population [35]. In this work, the well-known logistic chaos mapping
(LCM) was chosen to generate chaotic candidate solutions. Logistic mapping is formulated
as follows [30]:

cz+1 = p× cz × (1− cz) (14)

where cz ∈ (0, 1) ∀ z∈{0, 1, . . .NP} and p = 3.8.
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Based on the candidate solutions generated by the logistic chaos, the generation is
as follows:

δz= lz + (uz − lz)× cz (15)

In biased operators, a novel strategy, i.e., logistic chaotic sine-cosine learning strategy
(LCSC), is generated by integrating the LCM with the SCLS to align the candidate solutions
to be that more chaotic to explore the design space. This mechanism serves as a preventive
measure against premature convergence in subsequent iterations. The new solution is
generated as follows:

xr+1
i,j =

{
δz + u1 × sin(u2)× |u3 × cz − xr

i,j|, u4 < 0.5
δz + u1 × cos(u2)× |u3 × cz − xr

i,j|, u4 ≥ 0.5
(16)

where r is the current iteration number; xr
i,j is the position of the ith individual in the

rth iteration. u1 is the positive cosine amplitude adjustment factor, defined as shown in
Equation (12). u2 is set to be more than 0 and smaller than a circle with a radius of

√
2, u3 is

set to be a random number between 0 and 2, and u4 is set to be a random number between
0 and 1. The pseudocode of the bias operator changed by the CSCL is given in Algorithm 3.

Algorithm 3: The Bias Operator

Pn signifies the number of biased variables in the population of the new pattern solution
Pw signifies the number of biased variables in the updated weight matrix
for i = 1: NP

if rand ≤ β

%Bias for new pattern solution %
Pn = round(N× β)
Update the chaotic sequence δz using Equation (14)
for j = 1: Pn
Update the new pattern solution xr+1

i,Integer rand[0,N]
by Equation (16)

end for
%Bias for updated weight %
Pw = round(NP × β)

for j = 1: j = 1 : Pw
Update the weight wr

j,Integer rand[0,NP ]
by Equation (8)

end for
end if

end for

3.3. The Dynamic Tuning Factor

Since the bias operator decreases as the number of iterations increases, a piecewise
linear chaotic map (PWLCM) [32] is introduced, for which the chances of running different
learning strategies are dynamically tuned to help QOCSCNNA converge faster as more
iterations are added. As well, the definition of PWLCM is denoted in Equation (17):

Zr+1 =

{
Zr/k , Zrε(0, k)

(1− Zr)/(1− k), Zrε[k, 1)
(17)

where r represents the function mapping value for the rth iteration; k is a control parameter,
with k between 0 and 1.

In this study, the improved algorithm by fusing the original NNA with the bias
operators of QOBL, LCSC strategy, and PWLCM factor is called QOCSCNNA. The detailed
flowchart as shown in Figure 3 and the pseudocode for QOCSCNNA can be found in
Algorithm 4.
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Algorithm 4: QOCSCNNA algorithm

1. Initialize the number of iterations r (r = 1), the dynamic tuning factor βr
(
β1 = 1

)
2. Randomly generate an initial population X
3. Generate quasi-opposite solutions Q̃Hi using algorithm 2
4. Calculate the fitness value of combined set {X, Q̃H} then make the greedy selection to obtain Q̃H
5. Randomly generate the weight matrix considering the imposed constraints in Equations (1) and (2)
6. Set the optimal solution xr

target and the optimal weight wr
target

7. While r < rmax
8. Generate new pattern solution xr

i by Equations (3)–(4), new weight matrix wr
i by Equation (5)

9. Calculate the fitness value of X
10. if fit(Q̃Hi) < fit(Xi)

11. Xi = Q̃Hi

12. fit(Xi) = fit(Q̃H)
13. end if
14. if rand ≤ βr

15. Perform the bias operator using algorithm 3
16. else
17. Perform the transfer function operator for xr

i via Equation (7)
18. end if
19. Calculate the fitness value of each solution and find the optimal solution xr+1

target and the

optimal weight wr+1
target

20. Update the current number of iterations by r = r + 1
21. Update the dynamic tuning factor βr+1 by Equation (17)
22. End while

4. Numerical Experiments and Result Analysis

This section examines the properties of the proposed QOCSCNNA numerical opti-
mization problems. This chapter is divided into three subsections. Section 4.1 details the
CEC 2017 test function and the experimental environment that ensures the reliability of the
experimental results. Section 4.2 provides a comparative analysis between QOCSCNNA
and eight other metaheuristics on the CEC 2017 function which validates the effectiveness
of the improved algorithms. Finally, the performance of the algorithm is compared with
other algorithms through three engineering projects of practical significance in Section 4.3.

4.1. Experiment Setup

It is a broadly used CEC 2017 test suite [33] specifically dedicated to evaluating the
performance of complex optimization algorithms. The test suite consists of 30 test functions
covering a wide range of test requirements to obtain a more comprehensive insight into the
performance characteristics of optimization algorithms. Unfortunately, for unavoidable
reasons, the F2 test functions could not be tested, resulting in only 29 functions being tested.
These functions could be categorized into four types, each with diverse levels of complexity
and characteristics. Firstly, there are the single-peaked functions (F1,F3), which have a
clear optimal solution and are suitable for assessing the behavior of the algorithm when
dealing with simple problems. Secondly, there are simple multimodal functions (F4–F9),
which have multiple partial optimal solutions and can be used to test the robustness and
convergence of the algorithm during local search. The third category is hybrid functions
(F11–F20), which combine the characteristics of single-peak and multimodal and are closer
to the situation of complex problems in reality, enabling a comprehensive assessment of the
overall global and local search capability of algorithms. Finally, the synthesized functions
(F21–F30) are combined with other functions. The specific functions are shown in Table 1.
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Table 1. The definition of the CEC2017 test suite.

No. Function Optimum

Unimodal function
F1 Shifted and Rotated Bent Cigar Function 100
F3 Shifted and Rotated Zakharov Function 300

Simple multimodal function

F4 Shifted and Rotated Rosenbrock’s Function 400
F4 Shifted and Rotated Rastrigin’s Function 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
F7 Shifted and Rotated Lunacek BiRastriginFunction 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
F9 Shifted and Rotated Levy Function 900
F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid function (HF)

F11 Hybrid Function 1 (N = 3) 1100
F12 Hybrid Function 2 (N = 3) 1200
F13 Hybrid Function 3 (N = 3) 1300
F14 Hybrid Function 4 (N = 4) 1400
F15 Hybrid Function 5 (N = 4) 1500
F16 Hybrid Function 6 (N = 4) 1600
F17 Hybrid Function 6 (N = 5) 1700
F18 Hybrid Function 6 (N = 5) 1800

Hybrid function (HF) F19 Hybrid Function 6 (N = 5) 1900
F20 Hybrid Function 6 (N = 6) 2000

Composition function (CF)

F21 Composition Function 1 (N = 3) 2100
F22 Composition Function 2 (N = 3) 2200
F23 Composition Function 3 (N = 4) 2300
F24 Composition Function 4 (N = 4) 2400
F25 Composition Function 5 (N = 5) 2500
F26 Composition Function 6 (N = 5) 2600
F27 Composition Function 7 (N = 6) 2700
F28 Composition Function 8 (N = 6) 2800
F29 Composition Function 9 (N = 3) 2900
F30 Composition Function 10 (N = 3) 3000

Search range : [−100, 100]D (D is the population dimension)

Furthermore, it was necessary to place all algorithms under the same test conditions
to ensure fairness, and experiments were conducted using MATLAB R2022a software
under MacOS 12.3 M1. In the CEC 2017 suite, the population size was set to 50 and
the dimensionality was set to 10 D. To fully evaluate the performance of the algorithms,
the maximum number of function evaluations was set to 20,000 times the population
size. This setup ensures a thorough exploration of the search space, thus improving
the optimization results. It is noted that the other parameters required to compare the
algorithms were extracted directly from the original references to keep the consistency of
the results. Moreover, there were 30 independent runs of each algorithm execution to get
reliable results, and the average value (AVG) and standard deviation (STD) of the obtained
results were logged.

4.2. QOCSCNNA for Unconstrained Benchmark Functions

To evaluate the performance of the improved algorithm, QOCSCNNA was compared
with eight other well-known optimization algorithms, including NNA, CSO [36], SA [22],
HHO [37], WOA [38], SCA [31], WDE [39], and RSA [40]. Based on the experimental
settings outlined in Section 4.1, the average (AVG) and standard deviation (STD) of the
minimum fitness values obtained on the CEC 2017 benchmark functions are presented in
Table A1, with the smallest average and standard deviation highlighted in bold. When
compared to other algorithms, QOCSCNNA demonstrated significant superiority in terms
of both AVG and STD results in the 2017 CEC functions. Moreover, given the limited
evaluation budget, the QOCSCNNA algorithm had relatively minor means and standard
deviations for a range of functions including F1, F4, F5, F7, F8, F10-F17, F19-F21, F27,
F29, and F30. These results highlight QOCSCNNA’s superior ability to effectively tackle
optimization problems characterized by complexity and hybridity.
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The results of the Wilcoxon rank-sum test (“+”, “=”, and “−” indicate that QOCSC-
NNA performs better, the same, or worse, respectively, compared to the other algorithms)
are shown in Table A1 to better compare the performance of the different algorithms. As
can be seen in the last row of Table A2, QOCSCNNA achieved significantly superior results
to SA, SCA, RSA, and CSO on more than 28 test functions, while QOCSCNNA beats HHO
and WOA for more than 26 functions and exceeds WDE and NNA for 23 functions. In
other words, the average superiority rate of QOCSCNNA over 29 functions is 92.24%
(∑8

i=1
+i

29×8 × 100%). These results indicate that adopting the CSCL can effectively improve
the optimization capability of NNA.

Nine convergence plots of QOCSCNNA with the comparison algorithm on the CEC
2017 test set including F1, F8, F10, F12, F16, F21, F24, F29, and F30 are given in Figure 4,
where the vertical axis takes the logarithm of the function’s minimum value, and the
horizontal axis denotes the number of times the function was evaluated. It can be noticed
that although sometimes QOCSCNNA does not perform the best in the initial phase, as
the number of function iterations increases, smaller fitness values can be searched for by
constantly jumping out of the local optimum. The good performance of this algorithm is
because the exploration of QOBL enhances the global search capability.

4.3. Real-World Engineering Design Problems

Furthermore, to validate the feasibility of the QOCSCNNA for actual engineering
applications, multiple algorithms were utilized to address the critical engineering design
problems of cantilever beam structures (CB) [41], car side impact (CSI) [41], and tension
spring (TS) [41]. For three problems, a population size of 50 was set with an iteration
count of 2000 times the population size. Moreover, each algorithm was independently run
30 times to obtain reliable results. Such settings ensured thorough exploration of the search
space, leading to improved optimization results. Additionally, the solution provided by
QOCSCNNA was compared to well-known algorithms to better evaluate its performance.

4.3.1. CB Engineering Design Problem

The weight optimization of a square cross-section cantilever beam is involved in the
CB structural engineering design. The beam has a rigid support at one extremity, while
vertical forces act on the free nodes of the cantilever. A model of the CB design problem is
illustrated in Figure 5. The beam consists of five hollow squares of equal thickness, with
the height (or width) of each square being the decision variable. Meanwhile, the thickness
of these squares remains constant at 2/3. The objective function of this design problem can
be represented by Equation (18).

F(x)min = 0.0624 (x1 + x2 + x3 + x4 + x5) (18)

Subject to:

G(x) =
61
x1

3 +
37
x23 +

19
x33 +

7
x4

3 +
1

x53 − 1 ≤ 0 (19)

Variable range:
0.01 ≤ xi ≤ 100, i = 1, . . . , 5. (20)
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This problem is being solved by several researchers using different metaheuristic
methods, such as NNA, WOA, SCA, SA and PSO used in [42]. Table 2 reveals that the
optimal result of QOCSCNNA is 1.3548, as well as the optimal constraints obtained from
QOCSCNNA, satisfy Equation (19), which proves the validity of the optimal solutions
obtained by QOCSCNNA. In addition, the optimum solutions of WOA and SA are 1.3567
and 1.3569, respectively, which are very close to the best results of QOCSCNNA. In contrast,
the NNA, PSO, and SCA algorithms have poor optimum solutions, which indicates that
these three algorithms are not suitable for the problem. Furthermore, by comparing the
results of the Wilcoxon rank-sum test (+, =, and − indicating better, equal, or worse
performance of QOCSCNNA compared to other algorithms), it is possible to discover that
QOCSCNNA outperforms NNA, PSO, and SCA in terms of performance. Hence, it can be
summarized that the proposed QOCSCNNA demonstrates superior feasibility compared
to other algorithms.
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Table 2. Comparison results between QOCSCNNA and its competitor CB design problems.

QOCSCNNA NNA PSO WOA SCA SA

x1 5.8487 16.0042 5.7184 5.3875 5.6072 5.7227
x2 5.2207 4.6257 8.1930 5.7766 6.0038 6.1674
x3 4.6131 7.0074 5.9331 4.6485 4.1554 4.3927
x4 3.8433 2.3777 2.8983 3.7243 3.9320 3.4333
x5 2.2120 6.6237 1.6369 2.2048 2.1331 2.0293

G(x) −0.0258 −0.0319 −1.6287 × 10−5 −1.2506 × 10−11 −1.6002 × 10−5 0

F(x)min 1.3564 2.2863 1.5213 1.3567 1.3623 1.3569

+/−/= + + = + =

4.3.2. CSI Engineering Design Problem

As shown in Table 3, 11 parameters should be considered when minimizing the impact
of a side impact on a vehicle. Figure 6 illustrates the model of the CSI crash design problem.
The objective function of this design problem can be expressed as Equation (21):

F(x)min = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (21)

Table 3. Influence parameters of the weight of the door.

No. Variables Description of Variables

1 x1 Thicknesses of Bpillar Inner
2 x2 Bpillar Reinforcement
3 x3 Floor Side Inner
4 x4 Cross Members
5 x5 Door Beam
6 x6 Door Beltline Reinforcement
7 x7 Roof Rail
8 x8 Materials of Bpillar Inner
9 x9 Floor Side Inner
10 x10 Barrier Height
11 x11 Hitting Position
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Subject to:

G1(x) = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0 (22)

G2(x) = 46.36− 9.9x2 − 12.9x1x2 + 0.1107x3x10 − 32 ≤ 0 (23)

G3(x) = 33.86 + 2.95x3 + 0.1792x3 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10
− 9.98x7x8 + 22.0x8x9 − 32 ≤ 0

(24)

G4(x) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8
+ 0.32x9x10 − 32 ≤ 0

(25)

G5(x) = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5
+ 0.0008757x5x10 + 0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 − 32 ≤ 0

(26)

G6(x) = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7
+ 0.0208x3x8 − 0.02x2

2 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10
− 0.0005354x6x10 + 0.00121x8x11 + 0.00184x9x10 − 0.32 ≤ 0

(27)

G7(x) = 0.74− 0.61x2− 0.163x3x8 + 0.001232x3x10− 0.166x7x9 + 0.227x2
2− 0.32 ≤ 0 (28)

G8(x) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11

− 4 ≤ 0
(29)

G9(x) = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10
− 9.9 ≤ 0

(30)

G10(x) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11
− 0.000786x2

11 − 15.7 ≤ 0
(31)

Variable range:

0.5 ≤ x1, x2, x3, x4, x5, x6, x7 ≤ 1.5 , x8, x9 ∈ {0.192, 0.345} , −30 ≤ x10 , x11 ≤ +30 (32)

The CSI problem is a widely studied classical engineering design problem and many
heuristics have been proposed to solve it over the years. The methods include NNA, SA,
WOA, PSO, and SCA. According to the comparative experimental results (Table 4), the
presented QOCSCNNA achieves the optimal fitness value of 23.4538 and makes the optimal
constraints satisfy Equations (22)–(32). This validates the efficacy of the optimal results
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obtained by QOCSCNNA. In addition, the optimal results of NNA, SA, WOA, PSO, and
SCA are significantly higher than those of QOCSCNNA. This indicates that QOCSCNNA
holds a clear advantage among the five algorithms for solving the problem. The analysis
results by the Wilcoxon rank-sum test showed that QOCSCNNA was superior to the other
algorithms. It further confirms the feasibility of the obtained QOCSCNNA.

Table 4. Comparison results between QOCSCNNA and its competitor CSI design problems.

QOCSCNNA NNA SA WOA PSO SCA

x1 0.5000 0.5000 0.5846 0.5676 0.5000 0.5000
x2 1.0702 0.9389 0.8214 0.8164 0.9749 1.0438
x3 0.5000 0.5000 0.5000 0.5282 0.5000 0.5000
x4 1.2346 1.4497 1.3295 1.3847 1.4484 1.3642
x5 0.5000 0.5000 0.5386 0.5000 0.5000 0.5000
x6 1.3072 0.7040 1.2600 0.6988 1.5000 0.9223
x7 0.9359 1.1196 1.3245 1.2616 1.1604 0.9757
x8 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200
x9 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200
x10 1.5200 0.5787 −0.6113 −5.1295 −26.1752 −7.1364
x11 1.2847 15.7543 10.0525 2.1609 1.4852 −1.9988

G1(x) −0.5422 −0.5681 −0.4742 −0.5046 −0.8772 −0.6109
G2(x) −3.0534 −0.9586 0 −3.2758 × 10−4 −3.0287 −3.1005
G3(x) −0.1003 −0.1158 −0.8491 −3.9851 × 10−9 −0.6587 −0.0384
G4(x) −1.5518 −6.5431 −5.0120 −9.1875 −10.2060 −6.7642
G5(x) −0.0703 −0.0967 −0.0787 −0.1282 −0.0703 −0.1067
G6(x) −0.1258 −0.1282 −0.1378 −0.1600 −0.1578 −0.1548
G7(x) −0.1898 −0.1982 −0.2055 −0.2019 −0.2273 −0.1978
G8(x) −0.0030 −0.0531 −7.3880 × 10−4 −1.6522 × 10−4 −2.5206 × 10−9 −0.0031
G9(x) −1.5665 −1.3500 −1.1290 −1.1124 −2.0150 −1.6091
G10(x) −0.0364 −0.7984 −0.7851 −0.1884 −1.2840 −0.0618

F(x)min 23.4538 23.9420 23.7545 23.7803 24.2888 23.9060

+/−/= + + + + +

4.3.3. TS Engineering Design Problem

The goal of the TS problem is to reduce the weight of the spring, illustrated in Figure 7.
Minimum deflection, shear stress, surge frequency, outer diameter limits, and limitations
on design variables need to be considered in the design process. The parameter settings
include the average coil diameter D (denoted as x1), the wire diameter d (denoted as x2),
and the effective number of coils N (denoted as x3). The issue is described as:

F(x)min = (x3 + 2)x2x1
2 (33)

Entropy 2023, 25, x FOR PEER REVIEW 15 of 20 
 

 

Table 3. Influence parameters of the weight of the door. 

No. Variables Description of Variables 
1 𝑥ଵ Thicknesses of Bpillar Inner 
2 𝑥ଶ Bpillar Reinforcement 
3 𝑥ଷ Floor Side Inner 
4 𝑥ସ Cross Members 
5 𝑥ହ Door Beam 
6 𝑥 Door Beltline Reinforcement 
7 𝑥 Roof Rail 
8 𝑥଼ Materials of Bpillar Inner 
9 𝑥ଽ Floor Side Inner 

10 𝑥ଵ Barrier Height 
11 𝑥ଵଵ Hitting Position 

4.3.3. TS Engineering Design Problem 
The goal of the TS problem is to reduce the weight of the spring, illustrated in Fig-

ure 7. Minimum deflection, shear stress, surge frequency, outer diameter limits, and lim-
itations on design variables need to be considered in the design process. The parameter 
settings include the average coil diameter D (denoted as 𝑥ଵ), the wire diameter d (denot-
ed as 𝑥ଶ), and the effective number of coils N (denoted as 𝑥ଷ). The issue is described as: F(x) = (𝑥ଷ + 2)𝑥ଶ𝑥ଵଶ  (33)

Subject to: 𝐺ଵ(𝑥) = 1 − 𝑥ଵଷ𝑥ଶ/71785𝑥ଵସ ≤ 0  (34)

𝐺ଶ(𝑥) = (4𝑥ଶଶ − 𝑥ଵ𝑥ଶ)/12566(𝑥ଵଷ𝑥ଶ − 𝑥ଵସ) + 1/5108𝑥ଵଶ − 1 ≤ 0 (35)

𝐺ଷ(𝑥) = 1 − 140.45𝑥ଵ/𝑥ଶଶ𝑥ଷ ≤ 0 (36)

𝐺ସ(𝑥) = (𝑥ଵ + 𝑥ଶ)/1.5 − 1 ≤ 0 (37)

Variable range: 0.05 ≤ 𝑥ଵ ≤ 2 , 0.25 ≤ 𝑥ଶ ≤  1.3 , 2 ≤ 𝑥ଷ ≤ 15  (38)

 
Figure 7. The model for the TS problem [41]. 

Several researchers have tried various meta-heuristics to solve this problem, includ-
ing NNA, SA, WOA, PSO, and HHO. Table 5 demonstrates the optimal solutions ob-
tained by QOCSCNNA and the comparative algorithms, and it can be seen that the pro-
posed QOCSCNNA obtains the optimal solution, i.e., 0.127. Also, it is given that the con-
straints on the optimal cost achieved with QOCSCNNA meet Equations (34)–(38), which 
implies that the best solution provided by QOCSCNNA is valid. In addition, HHO has 
an optimal fitness value of 0.0129, which is nearly the same as the optimal result of 
QOCSCNNA. On the contrary, the optimal solutions of NNA, SA, WOA, and PSO are 
inferior, which means QOCSCNNA and HHO have significant advantages. Moreover, 

Figure 7. The model for the TS problem [41].

Subject to:
G1(x) = 1− x1

3x2/71785x1
4 ≤ 0 (34)

G2(x) =
(

4x2
2 − x1x2

)
/12566

(
x1

3x2 − x1
4
)
+ 1/5108x1

2 − 1 ≤ 0 (35)

G3(x) = 1− 140.45x1/x2
2x3 ≤ 0 (36)
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G4(x) = (x 1 + x2)/1.5− 1 ≤ 0 (37)

Variable range:

0.05 ≤ x1 ≤ 2 , 0.25 ≤ x2 ≤ 1.3 , 2 ≤ x3 ≤ 15 (38)

Several researchers have tried various meta-heuristics to solve this problem, including
NNA, SA, WOA, PSO, and HHO. Table 5 demonstrates the optimal solutions obtained
by QOCSCNNA and the comparative algorithms, and it can be seen that the proposed
QOCSCNNA obtains the optimal solution, i.e., 0.127. Also, it is given that the constraints
on the optimal cost achieved with QOCSCNNA meet Equations (34)–(38), which implies
that the best solution provided by QOCSCNNA is valid. In addition, HHO has an optimal
fitness value of 0.0129, which is nearly the same as the optimal result of QOCSCNNA. On
the contrary, the optimal solutions of NNA, SA, WOA, and PSO are inferior, which means
QOCSCNNA and HHO have significant advantages. Moreover, through a comparison of
the results of the Wilcoxon rank-sum test, it is observed that QOCSCNNA outperforms
NNA, SA, WOA, and PSO in the aspect of performance. Therefore, it can be drawn that
QOCSCNNA is a more efficient and feasible method compared with other algorithms.

Table 5. Comparison results between QOCSCNNA and its competitor TS design problems.

QOCSCNNA NNA SA WOA PSO HHO

x1 0.5028 0.0659 0.0556 0.0612 0.0649 0.0552
x2 0.3850 0.8040 0.4592 0.6309 0.7659 0.4478
x3 9.8066 5.2301 10.0143 4.0040 6.8458 7.4345

G1(x) −1.1266 × 10−10 −1.0099 −0.4100 −2.7309 × 10−6 −1.4141 −1.3636 × 10−8

G2(x) −1.1102 × 10−16 −1.2845 × 10−11 −1.1266 × 10−7 −1.4795 × 10−10 −5.3960 × 10−6 −3.3307 × 10−16

G3(x) −490.0553 −73.8673 −370.1311 −85.4248 −105.3872 −286.5735
G4(x) −0.7081 −0.4201 −0.6568 −0.5386 −0.4461 −0.6647

F(x)min 0.0127 0.0252 0.0171 0.0142 0.0285 0.0129

+/−/= + + + + =

5. Conclusions and Future Works

This paper reports on the NNA based on the quasi-oppositional-based strategy, piece-
wise linear chaotic mapping operator, and logistic chaotic sine-cosine learning strategy
proposed to enhance global search capability and convergence. More specifically, QOBL
allows the generation of quasi-opposite solutions between opposite solutions and the center
of the solution space during the initialization phase, helping to balance exploration and
exploitation in the generation jump. A new LCSC strategy by integrating LCM and SCLS is
proposed which facilitates the algorithm to control at the bias strategy stage to jump out of
the local optimum. Moreover, a dynamic adjustment factor that varies with the number
of evaluations is presented, which facilitates tuning the search space and accelerates the
convergence speed. To demonstrate the validity of QOCSCNNA, the performance of nu-
merical optimization problems is investigated by solving challenging CEC 2017 functions.
The results of the average and standard deviation of the comparison experiments in 29 test
functions show that the QOCSCNNA algorithm outperforms the NNA algorithm in 23 func-
tions and beats the other 7 algorithms in more than half of the test functions. Meanwhile,
the Wilcoxon rank-sum test and convergence analysis indicate that the QOCSCNNA algo-
rithm significantly outperforms the other algorithms. Furthermore, QOCSCNNA and other
comparative algorithms are applied to three real-world engineering design problems, and
the results further evidence the applicability of the algorithms in solving practical projects.

For future research, we concentrate on the next two areas. First, QOCSCNNA will
continue to be improved to address more complex real-world engineering optimal problems,
which include intelligent traffic management, supply chain optimization, and large-scale
unmanned aircraft systems. Second, even though QOCSCNNA can greatly enhance the
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global search capability of NNA, we recognize that further exploration is needed to improve
the performance of NNA, especially in dealing with high-dimensional problems. Therefore,
we plan to introduce the attention mechanism in neural networks for efficient exploration
as well as the use of back-propagation to update the weights to further improve the
performance of NNA.
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Appendix A

Table A1. Comparison results of algorithms on CEC 2017.

No. Metric QOCSCNNA NNA CSO SA HHO WOA WDE SCA RSA

F1
AVG 1.0000 × 103 5.2273 × 103 4.2623 × 108 5.0774 × 103 1.2246 × 105 2.7875 × 103 1.9213 × 102 1.1539 × 109 1.2285 × 1010

STD 1.5594 × 10−4 4.2122 × 103 8.0384 × 108 3.5549 × 103 5.5971 × 104 2.7429 × 103 2.1334 × 102 1.6023 × 109 3.6113 × 109

F3
AVG 3.0000 × 102 3.0000 × 102 4.1083 × 103 3.1815 × 104 3.0031 × 102 3.0016 × 102 3.0000 × 102 3.4470 × 103 9.3828 × 103

STD 8.9486 × 10−12 1.0010 × 10−9 2.8705 × 103 1.5764 × 104 1.4204 × 10−1 1.7345 × 10−1 5.2034 × 10−13 2.9124 × 103 4.6166 × 103

F4
AVG 4.0006 × 102 4.0199 × 102 4.3755 × 102 4.2943 × 102 4.0792 × 102 4.0945 × 102 4.0533 × 102 4.8410 × 102 1.5297 × 103

STD 3.4750 × 10−1 1.0132 × 101 3.1247 × 101 3.3827 × 101 1.6671 × 101 1.6874 × 101 1.7456 × 101 6.1224 × 101 5.9168 × 102

F5
AVG 5.1149 × 102 5.1761 × 102 5.2463 × 102 5.7441 × 102 5.3595 × 102 5.4435 × 102 5.4026 × 102 5.4776 × 102 5.8814 × 102

STD 4.4021 × 100 6.4411 × 100 6.7348 × 100 3.3369 × 101 1.4968 × 101 1.2415 × 101 1.8390 × 101 1.5013 × 101 2.6776 × 101

F6
AVG 6.0039 × 102 6.0000 × 102 6.1112 × 102 6.6755 × 102 6.1670 × 102 6.1923 × 102 6.2053 × 102 6.2147 × 102 6.3924 × 102

STD 2.5611 × 10−1 1.3743 × 10−6 7.7939 × 100 2.3173 × 101 1.0198 × 101 8.3311 × 100 1.3073 × 101 9.2855 × 100 1.1581 × 101

F7
AVG 7.2388 × 102 7.2719 × 102 7.3238 × 102 7.9634 × 102 7.6245 × 102 7.6965 × 102 7.7299 × 102 7.8204 × 102 8.1741 × 102

STD 6.6604 × 100 6.3264 × 100 1.1115 × 101 5.3283 × 101 1.6185 × 101 1.7812 × 101 2.5893 × 101 2.1705 × 101 4.2648 × 101

F8
AVG 8.1108 × 102 8.1716 × 102 8.1781 × 102 8.6931 × 102 8.2558 × 102 8.3072 × 102 8.3917 × 102 8.3569 × 102 8.3708 × 102

STD 4.9211 × 100 6.7785 × 100 5.4251 × 100 2.6543 × 101 6.0887 × 100 1.3195 × 101 1.7063 × 101 9.8691 × 100 1.1248 × 101

F9
AVG 9.0257 × 102 9.0002 × 102 9.4739 × 102 3.0775 × 103 1.1992 × 103 1.1020 × 103 1.7433 × 103 1.2542 × 103 1.5024 × 103

STD 2.5656 × 100 8.4907 × 10−2 3.8012 × 101 1.7799 × 103 2.5726 × 102 1.9554 × 102 5.9984 × 102 2.2817 × 102 3.9959 × 102

F10
AVG 1.2767 × 103 1.4417 × 103 1.9552 × 103 2.1637 × 103 1.7521 × 103 1.8604 × 103 2.0783 × 103 2.2525 × 103 2.1479 × 103

STD 1.7181 × 102 2.3379 × 102 2.9479 × 102 3.7853 × 102 2.2240 × 102 2.5633 × 102 3.8612 × 102 3.5089 × 102 3.0579 × 102

F11
AVG 1.1080 × 103 1.1152 × 103 1.1726 × 103 1.2969 × 103 1.1380 × 103 1.1501 × 103 1.1149 × 103 1.5303 × 103 4.3697 × 103

STD 4.8079 × 100 9.1784 × 100 4.9546 × 101 2.5319 × 102 3.7571 × 101 4.8840 × 101 8.7095 × 100 6.7499 × 102 1.7531 × 103

F12
AVG 3.2398 × 103 1.5886 × 104 1.0761 × 105 3.7010 × 106 2.9019 × 105 1.4733 × 106 1.3037 × 104 1.9745 × 107 2.0259 × 108

STD 3.0675 × 103 1.5987 × 104 2.2332 × 105 3.5550 × 106 3.2864 × 105 1.9770 × 106 1.2535 × 104 7.6865 × 107 4.5420 × 108

F13
AVG 1.3145 × 103 7.5368 × 103 3.5358 × 103 1.8885 × 104 1.3338 × 104 1.5718 × 104 1.3429 × 103 1.3325 × 104 1.6636 × 107

STD 6.6758 × 100 5.9487 × 103 2.2158 × 103 1.1688 × 104 9.5387 × 103 1.1828 × 104 5.0494 × 101 6.8891 × 103 2.9435 × 107

F14
AVG 1.4061 × 103 1.4256 × 103 1.4532 × 103 1.3088 × 104 1.4963 × 103 1.4910 × 103 1.4494 × 103 1.5214 × 103 3.2583 × 103

STD 3.2039 × 100 1.2052 × 101 1.9130 × 101 1.0440 × 104 1.9157 × 101 2.8546 × 101 8.1283 × 101 5.0084 × 101 1.1504 × 103

F15
AVG 1.5043 × 103 1.5078 × 103 2.0383 × 103 1.2101 × 104 1.5800 × 103 1.7077 × 103 1.5124 × 103 6.3238 × 103 4.2151 × 103

STD 2.6053 × 100 5.6853 × 100 1.5397 × 103 9.2005 × 103 5.0374 × 101 9.6909 × 101 7.7796 × 100 4.2253 × 103 2.2369 × 103

F16
AVG 1.6101 × 103 1.6333 × 103 1.7866 × 103 2.0739 × 103 1.8147 × 103 1.7182 × 103 1.9915 × 103 1.8258 × 103 2.0139 × 103

STD 2.4942 × 101 4.8432 × 101 1.2516 × 102 2.1413 × 102 1.4412 × 102 1.0270 × 102 1.9766 × 102 1.2447 × 102 2.0499 × 102

F17
AVG 1.7081 × 103 1.7218 × 103 1.7547 × 103 1.8582 × 103 1.7640 × 103 1.7726 × 103 1.8639 × 103 1.7741 × 103 1.8074 × 103

STD 8.2533 × 100 1.9107 × 101 1.6551 × 101 1.0271 × 102 3.1636 × 101 3.7196 × 101 1.1954 × 102 2.6842 × 101 4.9826 × 101

F18
AVG 2.2765 × 103 1.3327 × 104 2.8110 × 103 2.2214 × 104 1.4777 × 104 1.6149 × 104 1.8208 × 103 1.6568 × 104 1.3899 × 107

STD 9.9498 × 102 1.0439 × 104 2.0918 × 103 1.4389 × 104 1.0784 × 104 1.1130 × 104 9.2447 × 100 1.3148 × 104 4.7873 × 107

F19
AVG 1.9014 × 103 1.9021 × 103 2.0291 × 103 9.9946 × 103 6.0167 × 103 9.8421 × 103 1.9094 × 103 1.9580 × 104 2.0567 × 105

STD 5.6987 × 10−1 2.8074 × 100 3.8966 × 102 1.1165 × 104 4.8818 × 103 7.7129 × 103 5.9387 × 100 4.6590 × 104 3.5967 × 105

F20
AVG 2.0042 × 103 2.0178 × 103 2.0765 × 103 2.2958 × 103 2.1063 × 103 2.0754 × 103 2.1583 × 103 2.1302 × 103 2.1900 × 103

STD 5.2200 × 100 1.1072 × 101 4.1266 × 101 1.2813 × 102 6.1903 × 101 3.4860 × 101 9.0067 × 101 6.2912 × 101 6.6794 × 101

F21
AVG 2.2009 × 103 2.2090 × 103 2.3012 × 103 2.4203 × 103 2.3042 × 103 2.2687 × 103 2.3383 × 103 2.3068 × 103 2.2749 × 103

STD 1.1942 × 100 2.7408 × 101 4.2005 × 101 5.2922 × 101 5.9704 × 101 6.7893 × 101 3.2279 × 101 5.5607 × 101 5.2630 × 101

F22
AVG 2.3084 × 103 2.2965 × 103 2.3221 × 103 3.1894 × 103 2.3131 × 103 2.3356 × 103 2.6411 × 103 2.3760 × 103 3.0777 × 103

STD 1.9126 × 101 1.9511 × 101 2.0456 × 101 7.4665 × 102 5.3597 × 100 1.8075 × 102 5.6473 × 102 1.2571 × 102 3.6595 × 102

F23
AVG 2.6181 × 103 2.6248 × 103 2.6322 × 103 2.8207 × 103 2.6505 × 103 2.6385 × 103 2.6384 × 103 2.6448 × 103 2.6855 × 103

STD 7.8347 × 100 7.3500 × 100 1.8049 × 101 1.9624 × 102 2.0815 × 101 1.4541 × 101 2.3021 × 101 2.5283 × 101 1.7166 × 101
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Table A1. Cont.

No. Metric QOCSCNNA NNA CSO SA HHO WOA WDE SCA RSA

F24
AVG 2.6003 × 103 2.6901 × 103 2.7495 × 103 2.9065 × 103 2.7617 × 103 2.7542 × 103 2.7540 × 103 2.7913 × 103 2.9018 × 103

STD 1.2995 × 102 1.1722 × 102 3.9062 × 101 8.9372 × 101 9.2439 × 101 7.1181 × 101 7.1111 × 101 6.0177 × 101 8.8390 × 101

F25
AVG 2.9134 × 103 2.9334 × 103 2.9497 × 103 2.9915 × 103 2.9278 × 103 2.9324 × 103 2.9303 × 103 2.9939 × 103 3.4258 × 103

STD 2.1652 × 101 2.2886 × 101 2.0807 × 101 9.7024 × 101 2.3714 × 101 2.4213 × 101 2.4698 × 101 8.0498 × 101 1.9369 × 102

F26
AVG 2.9770 × 103 2.9559 × 103 3.1403 × 103 4.0366 × 103 3.2685 × 103 3.1671 × 103 3.5374 × 103 3.3500 × 103 4.1195 × 103

STD 8.3544 × 101 4.3782 × 101 1.5730 × 102 6.8739 × 102 5.2972 × 102 3.0177 × 102 6.1491 × 102 3.3099 × 102 3.4946 × 102

F27
AVG 3.0921 × 103 3.0932 × 103 3.1089 × 103 3.2479 × 103 3.1213 × 103 3.1193 × 103 3.1127 × 103 3.1621 × 103 3.2831 × 103

STD 1.9594 × 100 2.8759 × 100 1.3637 × 101 6.4546 × 101 2.4699 × 101 3.2729 × 101 1.9635 × 101 3.8743 × 101 7.4340 × 101

F28
AVG 3.3480 × 103 3.2893 × 103 3.3576 × 103 3.6733 × 103 3.3046 × 103 3.3119 × 103 3.3573 × 103 3.5270 × 103 3.5508 × 103

STD 1.0843 × 102 8.3349 × 101 1.3117 × 102 1.9834 × 102 1.5539 × 102 1.5543 × 102 1.1627 × 102 1.9909 × 102 1.0554 × 102

F29
AVG 3.1627 × 103 3.1851 × 103 3.2150 × 103 3.4427 × 103 3.2798 × 103 3.2644 × 103 3.3194 × 103 3.2993 × 103 3.4197 × 103

STD 2.0458 × 101 3.4660 × 101 3.7003 × 101 1.5928 × 102 7.1812 × 101 6.0127 × 101 7.5910 × 101 7.9825 × 101 1.5867 × 102

F30
AVG 5.0572 × 104 1.1594 × 105 7.3684 × 105 2.5244 × 106 1.8827 × 105 9.7804 × 104 1.8197 × 105 2.8045 × 106 2.8547 × 106

STD 1.5162 × 105 2.8149 × 105 1.1491 × 106 2.6234 × 106 3.9800 × 105 1.6309 × 105 3.6619 × 105 6.4617 × 106 6.5786 × 106

Table A2. The Wilcoxon rank-sum test results.

No. NNA CSO SA HHO WOA WDE SCA RSA

F1 + + + + + + + +
F3 + + + + + = + +
F4 + + + + + + + +
F5 + + + + + + + +
F6 − + + + + + + +
F7 + + + + + + + +
F8 + + + + + + + +
F9 − + + + + + + +

F10 + + + + + + + +
F11 + + + + + + + +
F12 + + + + + + + +
F13 + + + + + + + +
F14 + + + + + + + +
F15 + + + + + + + +
F16 + + + + + + + +
F17 + + + + + + + +
F18 + + + + + = + +
F19 + + + + + + + +
F20 + + + + + + + +
F21 + + + + + + + +
F22 − + + = + = + +
F23 + + + + = + + +
F24 + + + + + + + +
F25 + + + = + = + +
F26 = + + + + + + +
F27 = + + + + + + +
F28 − = + = − = + +
F29 + + + + + + + +
F30 + + + + + = + +

Statistics
Number
(+/−/=)

23/4/2 28/0/1 29/0/0 26/0/3 27/1/1 23/0/6 29/0/0 29/0/0
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