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Abstract: We develop a new model for spatio-temporal data. More specifically, a graph penalty
function is incorporated in the cost function in order to estimate the unknown parameters of a
spatio-temporal mixed-effect model based on a generalized linear model. This model allows for more
flexible and general regression relationships than classical linear ones through the use of generalized
linear models (GLMs) and also captures the inherent structural dependencies or relationships of the
data through this regularization based on the graph Laplacian. We use a publicly available dataset
from the National Centers for Environmental Information (NCEI) in the United States of America
and perform statistical inferences of future CO2 emissions in 59 counties. We empirically show how
the proposed method outperforms widely used methods, such as the ordinary least squares (OLS)
and ridge regression for this challenging problem.

Keywords: graph regression model; spatio-temporal data; CO2 emission

1. Introduction

Statistical models for spatio-temporal data are invaluable tools in environmental ap-
plications, providing insights, predictions, and actionable information for understanding
and managing complex environmental phenomena [1]. Such models help uncover complex
patterns and trends, providing insights into how environmental variables change geograph-
ically and temporally. Many environmental datasets are collected at specific locations and
times, leaving gaps in information. Statistical models help interpolate and map values
between observation points, providing a complete spatial and temporal picture of the
phenomenon being studied. Moreover, environmental applications frequently require
predicting future values or conditions. Statistical models allow for accurate predictions
by capturing the spatial and temporal dependencies present in the data. Such predictions
provided by these models provide valuable information for decision makers by quantify-
ing the effects of various factors on the environment and projecting the consequences of
different actions.

Let {yt,s : s ∈ Ωs, t ∈ Ωt} denote the spatio-temporal random process for a phe-
nomenon of interest evolving through space and time. As an example, yt,s might be the
CO2 emission level at a geographical coordinate s = (latitude, longitude) on the sphere
at a given time t. Traditionally, one considers models for such a process from a descriptive
context, primarily in terms of the first few moments of a probability distribution (i.e.,
mean and covariance functions in the case of a Gaussian process). Descriptive models are
generally based on the spatio-temporal mixed-effect model [1,2], in which the spatio-temporal
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process is described with a deterministic mean function and some random effects capturing
the the spatio-temporal variability and interaction:

yt,s = µt,s + εt,s (1)

where µt,s is a deterministic (spatio-temporal) mean function or trend, and εt,s a zero-mean
random effect, which generally depends on some finite number of unknown parameters. A
common choice for the trend is to consider the following linear form µt,s = φt,sβ, where
φt,s represents a vector of known covariates and β a set of unknown coefficients. Generally,
with such a model, it is generally assumed that the process of interest is Gaussian. However,
in real-world scenarios, data can exhibit heavy tails or outliers, which can significantly
affect the distribution’s shape and parameters. If these extreme values are not accounted
for, it can lead to biased estimates and incorrect inferences. As a consequence, a more
advanced model based on a generalized linear model (GLM) has been proposed [3]. The
systematic component of the GLM specifies a relationship between the mean response
and the covariates through a possibly nonlinear but known link function. Note that some
additional random effects can be added in the transformed mean function, leading to the
so-called generalized linear mixed model (GLMM) [4].

The main challenge of such models lies in estimating the unknown parameters. Once
this important step is done, the different tasks of interest (prediction, decision, etc.) can
be performed. Unfortunately, the inference of these parameters can lead to overfitting,
multicollinearity-related instability, and lack of variable selection, resulting in complex
models with high variance. As a consequence, regularization methods using the `1 and/or
`2 norm as penalty function are generally used in practice to mitigate these issues by
controlling the model complexity, improving generalization, and enhancing the stability of
coefficient estimates [5,6].

Contributions

Graph signal processing is a rapidly developing field that lies at the intersection
between signal processing, machine learning and graph theory. In recent years, graph-based
approaches to machine learning problems have proven effective at exploiting the intrinsic
structure of complex datasets [7]. Recently, graph penalties were applied successfully to the
reconstruction of a time-varying graph signal [8,9] or to the regression with a simple linear
model [10,11]. In these works, the results highlight that regularization based on the graph
structure could have an advantage over more traditional norm-based ones in situations
where the data or variables have inherent structural dependencies or relationships. The
main advantage of graph penalties is that they take into account the underlying graph
structure of the variables, capturing dependencies and correlations that might not be
adequately addressed by norm-based penalties.

In this work, we propose a novel and general spatio-temporal model that incorporates
a graph penalty function in order to estimate the unknown parameters of a spatio-temporal
mixed-effect model based on a generalized linear model. In addition, different structures
of graph dependencies are discussed. Finally, the proposed model is applied to a real
and important environmental problem: the prediction of CO2 emissions in the the United
States. As recently discussed in [12], regression analysis is one of the most widely used
statistical method to characterize the influence of selected independent variables on a
dependent variable and thus has been widely used to forecast CO2 emissions. To the
best of our knowledge, this is the first time that a more advanced model, i.e., a GLM-
based spatio-temporal mixed effect model with graph penalties, is proposed to predict
CO2 emissions.
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2. Problem Statement—The Classical Approach

In this section, we first provide a background of graphs and their properties, then we
introduce the system model of our problem followed by the classical approach which uses
a linear regression structure.

2.1. Preliminaries

Let us consider a weighted, undirected graph G = (V , E , A) composed of |V| = N
vertices. A ∈ RN×N is the weighted adjacency matrix, where Aij ≥ 0 represents the
strength of the interaction between nodes i and j. An example of such a graph is depicted
in Figure 1. E is the set of edges, and therefore (i, j) ∈ E implies Aij > 0 and (i, j) /∈ E
implies Aij = 0. The graph can be defined through the (unnormalized) Laplacian matrix
L ∈ RN×N :

L = D− A (2)

where D corresponds to the degree matrix of the graph as D = diag(D11, D22, . . . DNN),
where Dii is the i-th column sum (or row sum) of the adjacency matrix A.

y1,t

y2,t

y3,t

y4,t

y5,t

y6,t

A12

A24

A46

A13

A23

A35

A56

A45

A34

Figure 1. Example of a graph with |V| = 6 vertices at time t.

The graph Laplacian, closely related to the continuous domain Laplace operator, has
many interesting properties. One of them is the ability to inform about the connectedness
of the graph. By combining this property with any graph signal at time t, yt ∈ RN , in the
following quadratic sum,

y>t LyT = ∑
(i,j)

Aij
(
yt,i − yt,j

)2 (3)

can be considered a measure of the cross-sectional similarity of the signal, with smaller
values indicating a smoother signal reaching a minimum of zero for a function that is
constant on all connected sub-components [13].

2.2. System Model

The main objective of this paper is to design a statistical regression model in order
to characterize and predict CO2 emissions across time and space. More precisely, the
paper is concerned with the situation where a signal yt = (yt,1, yt,2, . . . , yt,N)

> ∈ RN is
measured on the vertices of a fixed graph at a set of discrete times t ∈ [1, 2, . . . , T]. This
vector corresponds to the CO2 emission measured at N different spatial locations at time t.
At each of these time instants, a vector of K covariates xt ∈ RK is also measured, which is
not necessarily linked to any node or set of nodes.
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Objectives:

1. Determine, for each of the N different locations, the specific relationship between the
response variables {yt,i}T

t=1 and the set of covariates {xt}T
t=1.

2. Based on this relationship, make a prediction of the CO2 levels in different locations
in space and time.

2.3. Problem Formulation with a Classical Linear Regression Model

The most common form of structural assumption is that the responses are assumed to
be related to predictors through some deterministic function f and some additive random
error component εi so that for the i-th location and ∀t = 1, . . . , T we have that

yt,i = fi(xt) + εi, (4)

where εi is a zero-mean error random variable. Therefore, a classical procedure consists of
approximating the true function fi by a linear combination of basis functions:

fi(xt) ≈
P

∑
p=1

βi,pφi,p(xt) = φi(xt)
T βi, (5)

where βi =
[
βi,1 . . . βi,P

]T is the set of coefficients corresponding to basis functions φi(xt) =[
φi,1(xt) . . . φi,P(xt)

]T in order to approximate the function fi(·) associated to the signal
over time at i-th location, i.e., {yt,i}T

t=1.
The linear regression model over all the N different locations could be formulated in a

matrix form as follows ∀t ∈ [1, 2, . . . , T]:

yt = Φtβ + εt, (6)

where

Φt =


φ1(xt) 01×P . . . 01×P

01×P φ2(xt)
...

...
. . . 01×P

01×P . . . 01×P φN(xt)

 β =

 β1
...

βN

 and εt =

 εt,1
...

εt,N

 (7)

As a consequence, this linear regression can be fully summarized as

y = Φβ + ε, (8)

where y =
(
yT

1 yT
2 . . . yT

T
)> ∈ RNT×1 and

Φ =

Φ1
...

ΦT

 ∈ RNT×NP and ε =

ε1
...

εT

 ∈ RNT×1,

where E[ε] = 0NT×1 and Var(ε) = Σ.
In such a model, the most common approach to estimate the regression coefficients

is the generalized least square (GLS) method, which aims at minimizing the squared
Mahalanobis distance of the residual vector:

β̂GLS = arg min
β

(y−Φβ)TΣ−1(y−Φβ). (9)
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Theorem 1 (Aitken [14]). Consider that the following conditions are satisfied:

(A1) The matrix Φ is nonrandom and has full rank, i.e., its columns are linearly independent,
(A2) The vector y is a random vector such that the following hold:

(i) E[y] = Φβ0 for some β0;
(ii) Var(y) = Σ is a known positive definite matrix.

Then, the generalized least square estimator from (9) is given by

β̂GLS =
(

ΦTΣ−1Φ
)−1

ΦTΣ−1y.

Moreover, β̂GLS corresponds to the best linear unbiased estimator for β0 and its covariance
matrix is Var

(
β̂GLS

)
=
(
ΦTΣ−1Φ

)−1.

Let us remark that the ordinary least square (OLS) estimator is nothing but a special
case of the GLS estimator. They are indeed equivalent for any diagonal covariance matrix
Σ = σ2 I.

2.4. Generalized Linear Models

In this paper, we propose to use the generalized linear model (GLM) structure [15],
which is a flexible generalization of linear regression model discussed previously. In
this model, the additivity assumption of the random component is removed and more
importantly, the response variables can be distributed from more general distributions in
the standard linear model for which one generally assumes normally distributed responses,
see discussions in [16,17]. The likelihood distribution of the response variables fY (y|β) is a
member of the exponential family, which includes the normal, binomial, Poisson and gamma
distributions, among others.

Moreover, in a GLM, a smooth and invertible function g(·), called link function, is
introduced in order to transform the expectation of the response variable, µt,i ≡ E[yt,i]

g(µt,i) = ηt,i = φi(xt)
T βi. (10)

Because the link function is invertible, we can also write

µt,i = g−1(ηt,i) = g−1
(

φi(xt)
T βi

)
, (11)

and, thus, the GLM may be thought of as a linear model for a transformation of the expected
response or as a nonlinear regression model for the response. In theory, the link function can
be any monotonic and invertible function. The inverse link g−1 is also called the mean func-
tion. Commonly employed link functions and their inverses can be found in [15]. Note that
the identity link simply returns its argument unaltered µt,i = g−1(ηt,i) = ηt,i = φi(xt)T βi
and therefore is equivalent to the assumption (A2)-(i) of Theorem 1 used in the classical
linear model.

In GLM, due to the nonlinearity induced by the link function, the regression coefficients
are generally obtained with the maximum likelihood technique, which is equivalent to
minimizing a cost function defined as the negative log-likelihood function fY (y|β) as [16]

β̂ = arg min
β

V(y; β), (12)

with V(y; β) = − ln fY (y|β).

3. Proposed Graph Regression Model

In this section, we develop our penalized regression model over graph. We first show
how to overcome some of the deficiencies in traditional regression models by introducing
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new penalty terms which regulate the solution. Finally we provide details regarding the
estimation procedure and the algorithm we develop.

3.1. Penalized Regression Model over Graph

In the previous section, we introduced a flexible generalization in order to model
our spatial and temporal response variables of interest. Unfortunately, two main issues
could arise. On the one hand, the solution of the optimization problem defined in (12) may
not be unique if Φ has full rank deficiency or when the number of regression coefficients
exceeds the number of observations (i.e., NP > NT). On the other hand, the learned model
could suffer from poor generalization due to, for example, the choice of an overcomplicated
model. To avoid such problems, the most commonly used approach is to introduce a
penalty function in the optimization problem to further constrain the resulting solution as

β̂ = arg min
β

(V(y; β) + h(β; γ)). (13)

The penalty term h(β; γ) can be decomposed as the sum of p penalty functions and
therefore depends on some positive tuning parameters {γi}

p
i=1 (regularization coefficients),

which controls the importance of each elementary penalty function in the resulting solution.
When every parameter is null, i.e., {γi}

p
i=1 = 0, we obtain the classical GLM solution in (12).

On the contrary, for large values of γ, the influence of the penalty term on the coefficient
estimate increases. The most commonly used penalty functions are the `2 norm (ridge), `1
norm (LASSO) or a combination of both (Elastic-net)—see [18] for details.

In this paper, we propose to use an elementary penalty function, which takes into
account the specific graph structure of the observations. As in [10,11], a penalty function
can be introduced in order to enforce some smoothness of the predicted mean of the signal
E[yt] over the underlying graph at each time instant. More specifically, we propose to use
the following estimator:

β̂ = arg min
β

(
V(y; β) + γ1β>β + γ2

T

∑
t=1

E[yt]
>LE[yt]

)

= arg min
β

(
V(y; β) + γ1β>β + γ2

T

∑
t=1

g−1(φ(xt)β)>Lg−1(φ(xt))β

)
= arg min

β

(
V(y; β) + γ1β>β + γ2g−1

(
β>Φ>

)
(IT ⊗ L)g−1(Φβ)

)
,

(14)

where the function g−1(·) : RNT 7→ RNT corresponds to the element-wise application of
the inverse link function introduced in (11) on the input argument. IT ⊗ L stands for the
tensor product between the identity matrix of size T (IT) and the Laplacian matrix of the
underlying graph (L). The penalty function is therefore the sum of two elementary ones
with γ1, γ2 ≥ 0, their regularization coefficients. The regularization β>β = ‖β‖2 imposes
some smoothness conditions on possible solutions, which also remain bounded. Finally,
the regularization based on the graph Laplacian L enforces the expectation of the response
variable through the GLM model to be smooth over the considered graph G at each time t.
It comes from the property of the Laplacian matrix discussed in Section 2.1.

As recently discussed in both [8,9], in some practical applications, the reconstruction
of a time-varying graph signal can be significantly improved by adequately exploiting the
correlations of the signal in both space and time. The authors show from several real-world
datasets that the time difference signal (i.e., E[yt]−E[yt−1] in our case) exhibits smoothness
on the graph, even if signals E[yt] are not smooth on the graph. The proposed model can
be simply rewritten as follows in order to take into account this property:

β̂ = arg min
β

(
V(y; β) + γ1β>β + γ2g−1

(
β>Φ>

)
L̃g−1(Φβ)

)
, (15)



Entropy 2022, 25, 1272 7 of 16

With this general formulation, several cases can be considered:

• Case 1—L̃ = IT ⊗ L: the penalization induces the smoothness of the successive mean
vectors E[y1], . . . ,E[yT ] over a static graph structure L.

• Case 2—L̃ = diag(L1, . . . , LT): the penalization induces the smoothness of the succes-
sive mean vectors E[y1], . . . ,E[yT ] over a time-varying graph structure, L1, . . . , LT .

• Case 3—L̃ = D>h (IT−1 ⊗ L)Dh or L̃ = D>h diag(L1, . . . , LT−1)Dh: The penalization
induces the smoothness of the time difference mean vectors E[y2]−E[y1], . . . ,E[yT ]−
E[yT−1] over a graph structure which could be either static or time varying, respec-
tively. The matrix D>h of dimension NT × N(T − 1) defined as

D>h =



−IN 0N . . . . . . . . . 0N
IN −IN 0N . . . . . . 0N
0N IN −IN 0N . . . 0N
...

. . . . . . . . . . . .
...

0N . . . 0N IN −IN 0N
0N . . . . . . 0N IN −IN
0N . . . . . . . . . 0N IN


,

allows to transform the mean vector into the time difference mean vector.

Proposition 1. When the response variables are considered to be normally distributed, i.e.,
y ∼ N (Φβ, Σ), then the solution that minimizes the cost function defined in Equation (15) is
given by

β̂ =
(

Φ>Σ−1Φ + γ1 INP + γ2Φ> L̃Φ
)−1

Φ>Σ−1y (16)

Proof. See Appendix A.

3.2. Learning and Prediction Procedure

As discussed in the previous section, our proposed estimator in (15) results from a
regression model with a penalization function over the graph, which depends on some
hyperparameters, i.e., γ = {γ1, γ2}. Cross-validation techniques are the most commonly
used strategies for the calibration of such hyperparameters, as they allow us to obtain
an estimator of the generalization error of a model [19]. In this paper, a cross-validation
technique is used by partitioning the dataset into train, validation and test sets. Only the
train and validation sets are used to obtain the selected parameters/hyperparameters set.
Finally, the model with the selected set is evaluated using the test set.

Cross validation (CV) is a resampling method that uses different portions of the
data to test and train a model through different iterations. Resampling may be useful
while working with iid data. However, as opposed to the latter, time-series data usually
posses temporal dependence, and therefore, one should respect the temporal structure
while performing CV in that context. To that end, we follow the procedure of forward
validation (we refer to it as time series CV) originally due to [20]. More specifically, the
dataset is partitioned as follows Dtrain = {xt, yt}ρtrainT

t=1 , Dval = {xt, yt}(ρtrain+ρval)T
t=ρtrainT+1 and

Dtest = {xt, yt}T
t=(ρtrain+ρval)T+1, where ρtrain and ρval correspond to the percentage of the

dataset used for training and validation, respectively. In this paper, we set ρval =
1−ρtrain

2 to
have the same number of data in both the validation and test sets. The set of hyperparam-
eters and parameters are obtained by minimizing the generalization error approximated
using the validation set. In practice, the hyperparameters are optimized using either numer-
ical optimization methods that do not require a gradient (e.g., Nelder–Mead optimizer) or a
grid of discrete values. The proposed learning procedure used in this work is summarized
in Algorithm 1.
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Algorithm 1 Learning procedure of the proposed penalized regression model over graph

Input: Dtrain = {xt, yt}ρtrainT
t=1 ,

Dval = {xt, yt}(ρtrain+ρval)T
t=ρtrainT+1

Dtest = {xt, yt}T
t=(ρtrain+ρval)T+1

1: Iterations of a numerical optimization method
2: while E∗Dval

6= Emin
Dval

do
3: Let γ∗ denote the candidate for the values of hyperparameters for this iteration of

the chosen derivative-free optimization technique.
4: Given γ∗, obtain the optimal regression coefficient β̂∗ in (15) using only the data

from the training set Dtrain:

β̂∗ = arg min
β

(
V(y ∈ Dtrain; β) + γ∗1 β>β + γ∗2 ∑

t∈Dtrain

g−1(φ(xt)β)> L̃g−1(φ(xt))β

)
.

either by a numerical optimization technique or Equation (16) in case of Gaus-
sian likelihood.

5: Compute the estimator of the generalization error using the validation set:

E∗Dval
=

1
ρvalT

∑
t∈Dval

||yt − g−1(φ(xt))β̂∗||2

6: end while

Output: Optimal hyperparameters γ̂ and regression coefficients β̂

4. Numerical Study—CO2 Prediction in the United States

In this section, we empirically assess the benefit of using our proposed penalized
regression model over graph for the prediction of CO2 in the United States. For this purpose,
the CO2 emission levels were obtained from the Vulcan project (https://vulcan.rc.nau.edu/
(accessed on 1 August 2023)) [21] and more especially the dataset (https://daac.ornl.gov/
cgi-bin/dsviewer.pl?ds_id=1810 (accessed on 1 August 2023)), which provides emissions
on a 1 km by 1 km regular grid with an hourly time resolution for the 2010–2015 time
period. More specifically, the response variable vector yt corresponds to the CO2 emissions
for the t-th day after 1 January 2011 at N = 59 different counties on the east coast of the
United States of America (see Appendix B for the full list of selected counties).

On the other hand, among the explanatory variables presented in detail below, there
are weather data from weather daily information available on the platform https://www.
ncdc.noaa.gov/ghcnd-data-access (accessed on 1 August 2023) of National Centers for
Environmental Information (NCEI) in the United States of America. NCEI manages one of
the largest archives of atmospheric, coastal, geophysical, and oceanic research in the world.

4.1. Choice of Covariates and Data Pre-Processing

The covariates we propose to use to model the daily CO2 emissions at the US counties
level are composed of three types of data:

• Daily weather data (available on the platform of National Centers for Environmental
Information (NCEI) https://www.ncdc.noaa.gov/ghcnd-data-access (accessed on
1 August 2023)) in the United States of America including maximal temperature
(TMAX), minimal temperature (TMIN) and precipitation (PREC);

• Temporal information to capture the time patterns of the data;
• Lagged CO2 emission variables to take into account the time correlation of the re-

sponse.

https://vulcan.rc.nau.edu/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1810
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1810
https://www.ncdc.noaa.gov/ghcnd-data-access
https://www.ncdc.noaa.gov/ghcnd-data-access
https://www.ncdc.noaa.gov/ghcnd-data-access
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All the variables related to the first two points are commonly used as covariates for
each county, whereas lagged variables are county-specific.

Firstly, for the weather data, a number of steps are taken to pre-process them before
feeding into the learning procedure described in Algorithm 1. Firstly any weather stations
from the 59 US counties with a large proportion of missing values over the period of time
are discarded. Missing values in the retained weather stations are interpolated linearly
between the available readings. Then, the weather data are summarized at the state
level—the 59 counties are part of 19 different states. As a consequence, for each state, the
3 weather variables (TMAX, TMIN and PREC) are averaged over the retained weather
stations of that state. Whatever the county considered, weather variables from all 19 states
are utilized as covariates in {φi}N

i=1 of Equation (7). The final step before estimation is to
transform all variables so that they are scaled and translated to achieve a unit marginal
variance and zero mean.

Secondly, for the temporal patterns in the data, we consider three types: a week
identifier (WD), a weight associated to each day of a week (WD) and a trend variable
(TREND). The variable WI simply corresponds to a one-hot encoding of the week number
of the year. The variable WD is added after observing that a regular pattern can be observed
concerning the evolution of the CO2 emission with the day of the week—as shown in Figure
2, less emissions typically are observed during the weekend. The trend variable (TREND)
is simply a linear and regularly increasing function at the daily rate from 0 (1 January 2010)
to 1 (31 December 2015).

(a) (b)
Figure 2. Choice of the covariate WD to encapsulate information about the weekday for the CO2

emission. (a) Spatial and temporal average of the CO2 emission per weekday. (b) Values assigned to
the covariates WD depending on the current weekday.

Finally, to take into account the time correlation of the CO2 emissions, we decided
to use some lagged response variables as covariates. More precisely, after analyzing the
autocorrelation function (ACF) of the time series of CO2 for each county (see Figure 3 for
the ACF of three different counties), we proposed to use as covariates three lagged versions
of the response variable. More precisely, for the i-th county at time t, yt,i, the following
lagged variables are used as predictors: the 365-day lagged variable yt−365,i (one year), the
182-day lagged variable yt−182,i (about six months) and the 14-day lagged variable yt−14,i
(about 2 weeks).
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(a) ACF for Hinds County (b) ACF for Taylor County (c) ACF for Daviess County
Figure 3. Illustration of the time correlation of the daily CO2 emissions per county with the autocor-
relation function (ACF) of three different counties.

4.2. Graph Construction of the Spatial Component

In this work, the 59 counties are considered the nodes of a common graph. The
locations of the chosen counties are depicted in Figure 4. As a consequence, case 1 of the
graph penalty function of Section 3.1 is considered, i.e., L̃ = IT ⊗ L. The single Laplacian
matrix L is defined through the adjacency matrix.

Figure 4. US counties selected as nodes of the graph depicted in green.

A graph adjacency matrix should reflect the tendency for measurements made at node
pairs to have similar values in mean. There are many possible choices for the design of this
adjacency matrix. In this work, two different choices of matrix are compared. As in [11],
we firstly construct the adjacency matrix based on distances by setting

Adist
i,j = e

−l
d2

i,j
∑i,j d2

i,j , (17)

where di,j denotes the geodesic distance between the i-th and j-th counties in kilometers
and l is a scaling hyperparameter to be optimized using Algorithm 1. A heat map of the
geodesic distances in kilometers between counties is represented in Figure 5.



Entropy 2022, 25, 1272 11 of 16

1
0

2
0

3
0

4
0

5
0

Figure 5. Geodesic distances in kilometers between counties.

The second proposition for the adjacency matrix is to utilize the empirical correlations
between counties CO2 emissions. For two counties i and j, the adjacency coefficient is
defined as follows:

Acorr
i,j = e−l max

(
0, ρ2

i,j

)
(18)

where ρi,j is the empirical correlation between yi and yj, the CO2 emissions of the i-th and
j-th counties, respectively.

4.3. Numerical Experiments

In the following numerical experiments, the proposed penalized regression model
over graph is compared to two other classical models, namely, the ridge and the ordinary
least square (OLS) solution. In fact, these two models are nothing but special cases of the
proposed model by setting in Equation (16) either γ2 = 0 or (γ1 = 0, γ2 = 0), respectively.

Firstly, we empirically study the performance of the penalized regression model over
graph with the two possible choices for the Laplacian matrix. As shown in Table 1, using
the adjacency matrix based on geodesic distances rather than on empirical correlations
improves the RMSE on both the validation and the test sets. A smaller RMSE on the
training set using the correlation-based adjacency matrix shows that this choice could lead
to overfitting.

Table 1. RMSE of the penalized regression model over graph with the Laplacian defined using an
adjacency matrix based either on geodesic distances or on empirical correlations.

Root Mean Square Error (RMSE): Distances Versus Empirical Correlations

Testing Set Validation Set Training Set

Perc.
Train

Graph
(Distance)

Graph
(Correlation)

Graph
(Distance)

Graph
(Correlation)

Graph
(Distance)

Graph
(Correlation)

70% 16.42 27.04 13.67 14.92 13.40 7.96

Table 2 shows the root mean squared error (RMSE) over the different sets (training,
validation and test) with a varying number of training data. Let us remark as described
more precisely in Section 3.2 that since we use the same number of data, increasing the size
of training set reduces the size of both the validation and test sets. As expected, since the
proposed model is a generalization of both the ridge and OLS solution, smaller RMSE is
obtained on all configurations. More importantly, the proposed model allows us to obtain
a quite significant improvement on the test set compared to both the ridge and the OLS
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solutions, which clearly demonstrates the superiority in terms of the generalization of the
proposed model.

Table 2. RMSE of the different regression models for different sizes of the training set.

Root Mean Square Error (RMSE)

Testing Set Validation Set Training Set

Perc.
Train

Graph
Reg.

Ridge OLS Graph
Reg.

Ridge OLS Graph
Reg.

Ridge OLS

50% 35.65 41.43 42.10 16.80 17.86 17.65 9.13 6.74 6.55

60% 30.02 36.77 41.41 15.02 19.60 19.73 21.73 6.52 6.52

70% 16.42 22.65 49.52 13.67 17.13 16.44 13.40 7.94 7.02

Next, in Table 3 we present the RMSE obtained when the models are applied without
any lagged variables as covariates. By comparing the values obtained with these variables
in Table 2, we can clearly see the benefit of using an auto-regressive structure in the
regression model by the introduction of such lagged response variables.

Table 3. RMSE of the different regression models without the use of the lagged response variables
as covariates.

Root Mean Square Error (RMSE) without Lagged Variables

Testing Set Validation Set Training Set

Perc.
Train

Graph
Reg.

Ridge OLS Graph
Reg.

Ridge OLS Graph
Reg.

Ridge OLS

70% 38.54 38.54 41.76 20.28 20.28 20.34 9.65 9.65 9.64

In Figure 6, the weekly RMSE is depicted as a function of time for three different
counties. These weekly RMSEs are obtained by aggregating the daily forecasted values
from the proposed regression model which is trained on 50% of the dataset. It is interesting
to observe that the weekly RMSE does not explode with time but rather stays quite stable
with respect to time.

(a) Union County (b) Red River Parish (c) Lebanon County
Figure 6. RMSE as a function of time for three different counties.

In order to ensure that the previously observed conclusions are not too sensitive to
the specific 59 chosen counties, we compute the RMSE on the three different sets for the
different regression models by randomly selecting 2 counties for each of the 19 states. Let
remark that we use transfer learning for the hyperpamemeters of the models (i.e., γ1 and
γ2). They are not optimized on each random choice of data but are set to their optimized
values in the previous scenario in which all 59 counties are used. From the results depicted
in Figure 7, the same conclusions as before can be drawn. It is worth noting that, even if the
hyperparameters are not optimized for each random choice, the RMSE on the validation
set is still smaller using the proposed model. Finally, the boxplots obtained on the test sets
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empirically show better predictive power for the proposed penalized regression model
over graph prediction.

(a) RMSE on testing set (b) RMSE on validation set (c) RMSE on training set
Figure 7. Boxplots of the RMSE obtained after 50 random choices of two counties per state for the
different regression models (70% of the dataset is used for training).

5. Conclusions

In this paper, we propose a novel GLM-based spatio-temporal mixed-effect model
with graph penalties. This graph penalization allows us to take into account the inherent
structural dependencies or relationships of the data. Another advantage of this model is its
ability to model more complicated and realistic phenomena through the use of generalized
linear models (GLMs). To illustrate the performance of our model, a publicly available
dataset from the National Centers for Environmental Information (NCEI) in the United
States of America is used, where we perform statistical inference of future CO2 emissions
over 59 counties. We show that the proposed method outperforms widely used methods,
such as the ordinary least squares (OLS) and ridge regression models. In the future, we will
further study how to improve this model to this specific CO2 prediction. In particular, the
use of different likelihood and link functions will be studied along with other adjacency
matrices. We will also study whether considering, for the graph penalties, time differences
instead of the direct mean values as discussed in Section 3.1 could improve the prediction
accuracy. Finally, it will be interesting to connect this prediction model to some decision-
making problems as in [22].
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Appendix A. Proof of Proposition 1

With the normal assumption of the response variables, the resulting estimator β̂
defined in (15) is given by

β̂ = arg min
β

(y−Φβ)>Σ−1(y−Φβ) + γ1β>β + γ2β>Φ> L̃Φβ.
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The partial derivative with respect to β is

∂C(β)

∂β
=− 2Φ>Σ−1(y−Φβ) + 2γ1β + 2γ2Φ> L̃Φβ

=− 2Φ>Σ−1y + 2Φ>Σ−1Φβ + 2γ1β + 2γ2Φ> L̃Φβ

∂C(β)

∂β
= 0⇔ Φ>Σ−1Φβ̂ + γ1β̂ + γ2Φ> L̃Φβ̂ = Φ>Σ−1y

⇔
(

Φ>Σ−1Φ + γ1 INP + γ2Φ> L̃Φ
)

β̂ = Φ>Σ−1
y y

We finally obtain that

β̂ =
(

Φ>Σ−1Φ + γ1 INP + γ2Φ> L̃Φ
)−1

Φ>Σ−1
y y

Appendix B. List of Counties Used in the Numerical Study

Table A1. List of counties.

List of Counties

Number Counties States Number Counties States

1 Anoka County Minnesota 31 Daviess County Kentucky

2 Dakota County Minnesota 32 Hopkins County Kentucky

3 Lyon County Minnesota 33 Russel County Kentucky

4 Buchanan
County

Iowa 34 Alamance
County

North Carolina

5 Crawford County Iowa 35 Lenoir County North Carolina

6 Page County Iowa 36 Pender County North Carolina

7 Union County Iowa 37 Randolph
County

North Carolina

8 Ashley County Arkansas 38 Charleston
County

South Carolina

9 Columbia County Arkansas 39 Dillon County South Carolina

10 Outagamie County Wisconsin 40 Lee County South Carolina

11 Dane County Wisconsin 41 Marlboro
County

South Carolina

12 Clark County Illinois 42 Pickens County South Carolina

13 Mercer County Illinois 43 Bartholomew
County

Indiana

14 Ogle County Illinois 44 Posey County Indiana

15 Stephenson
County

Illinois 45 Mahoning
County

Ohio

16 Lawrence
County

Tennessee 46 Shelby County Ohio

17 Obion County Tennessee 47 Delta County Michigan

18 Cumberland
County

Tennessee 48 Montcalm
County

Michigan
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Table A1. Cont.

List of Counties

Number Counties States Number Counties States

19 Hinds County Mississipi 49 Washtenaw
County

Michigan

20 Tate County Mississipi 50 Armstrong
County

Pennsylvania

21 Blount County Alabama 51 Montour County Pennsylvania

22 Autauga County Alabama 52 Lebanon County Pennsylvania

23 Marengo County Alabama 53 Luzerne County Pennsylvania

24 Morgan County Alabama 54 Addison County Vermont

25 Talladega County Alabama 55 Windsor County Vermont

26 Bulloch County Georgia 56 Grant Parish Louisiana

27 Habersham
County

Georgia 57 Red River Parish Louisiana

28 Bradford County Florida 58 Vermilion Parish Louisiana

29 Clay County Florida 59 Madison Parish Louisiana

30 Taylor County Florida
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