Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm
Abstract
:1. Introduction
- (1)
- We analyze the cooperative constraints and performance constraints among multiple UCAVs. We establish a comprehensive set of trajectory-cooperative constraints that take into account spatio-temporal coordination, range, speed, angles, flight altitude, and three-dimensional threat distribution. Additionally, we propose evaluation criteria in the form of a cost function to measure the level of satisfaction of multi-type cooperative constraints among UCAV trajectories.
- (2)
- Building upon the CO algorithm, we propose the Modified Cheetah Optimization (MCO) algorithm. This algorithm incorporates an adaptive search agent strategy, the Cheetah returning home mechanism, and the Logistic chaotic mapping strategy.
- (3)
- The performance of the proposed approach is evaluated through testing with nine shifted CEC2005 functions and fifty test functions that cover single-peaked, multi-peaked, separable, and non-separable characteristics. The MCO algorithm is compared with other algorithms such as CO, PSO, GWO, and FA.
- (4)
- We use the MCO algorithm in combination with a dimensionality reduction search strategy to address the problem of autonomous trajectory planning in real-world scenarios.
2. Description of Cooperative Trajectory Planning Problem
2.1. Collaborative Constraints
2.1.1. Spatial Collaborative Constraints
2.1.2. Temporal Collaborative Constraints
2.2. Performance Constraints
2.2.1. Range Constraint and Minimum Trajectory Segment Constraint
2.2.2. Speed Constraint
2.2.3. Angle Constraint
2.2.4. Flight Altitude Constraint
2.2.5. Three-Dimensional Threats Spatial Distribution Constraint
2.3. Cost Functions
2.3.1. Trajectory Length Cost
2.3.2. Height Cost
2.3.3. Threat Zone Cost
2.3.4. Spatial Collaboration Cost
2.3.5. Temporal Collaboration Cost
3. Solving Multi-UCAV Trajectory Planning Problems by MCO
3.1. Cheetah Optimization (CO) Algorithm
3.2. Modified Cheetah Optimization (MCO) Algorithm
3.2.1. Improved Population Position Updating Method
3.2.2. Adaptive Search Agent Strategy
3.2.3. Strategy of Cheetah Returning to Home after Leaving Prey
Algorithm 1: The MCO Algorithm |
|
|
3.3. Encoding Strategy
4. Experimental Results and Applications
4.1. Test of Public Benchmark Functions
4.2. Test of Multi-UCAV Trajectory Planning Problems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Glinton, D.Q.; Oliveira, L.S.; Pagán, J.E.; Martins, R.C. Cooperative Path Planning for Multiple Unmanned Aerial Vehicles Using a Modified Mixed Integer Linear Programming Method with Time and Energy Constraints. IEEE/CAA J. Autom. Sin. 2021, 8, 2383–2396. [Google Scholar]
- Jia, R.; Zhao, K.; Wei, X.; Zhang, G.; Wang, Y.; Tu, G. Joint Trajectory Planning, Service Function Deploying, and DAG Task Scheduling in UAV-Empowered Edge Computing. Drones 2023, 7, 443. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Hezam, I.M.; Alshamrani, A.M.; Sallam, K.M. An Efficient Evolution-Based Technique for Moving Target Search with Unmanned Aircraft Vehicle: Analysis and Validation. Mathematics 2023, 11, 2606. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Q.; Chen, B.M. Multi-UAV Cooperation for Distributed Sensing and Trajectory Planning: A Game-Theoretic Perspective. IEEE Trans. Veh. Technol. 2020, 69, 14537–14548. [Google Scholar]
- Xiang, H.; Han, Y.; Pan, N.; Zhang, M.; Wang, Z. Study on Multi-UAV Cooperative Path Planning for Complex Patrol Tasks in Large Cities. Drones 2023, 7, 367. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, J.; Hu, J.; Guo, S. A Control-Aware Topology Design Framework for Multi-UAV Formation Considering Coverage and Connectivity. IEEE Trans. Ind. Electron. 2019, 66, 5689–5698. [Google Scholar]
- Smith, J.; Johnson, A.; Brown, R. Multi-UAV cooperative mission planning considering collaborative and performance constraints. J. Intell. Syst. 2020, 45, 567–582. [Google Scholar]
- Cheng, Z.; Zhao, L.; Shi, Z. Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework for Formation Rendezvous. IEEE Access 2022, 10, 45695–45708. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Wu, Y.; Guo, Y. Multi-Conflict-Based Optimal Algorithm for Multi-UAV Cooperative Path Planning. Drones 2023, 7, 217. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, Q.; Shang, X.; Wu, Z.; Wang, J. Multi-UAV Autonomous Path Planning in Reconnaissance Missions Considering Incomplete Information: A Reinforcement Learning Method. Drones 2023, 7, 10. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Ding, Y.; Qin, X.; Han, Y.; Zhang, H. Multi-UAV Path Planning Algorithm Based on BINN-HHO. Sensors 2022, 22, 9786. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, B.; Zhang, M.; Zhang, S. Multi-UAV Collaborative Path Planning Method Based on Attention Mechanism. Math. Probl. Eng. 2021, 2021, 6964875. [Google Scholar]
- Chen, Q.; Zhang, G.; Liang, B.; Wang, Y. A hybrid heuristic algorithm for multi-UAV cooperative trajectory planning problem. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1479–1492. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Wang, H. Three-Dimensional Tracking-Planning of UAVS Based on PSO Algorithm; Northeastern University (China): Shenyang, China, 2008. [Google Scholar]
- Banks, A.; Vincent, J.; Phalp, K. Particle Swarm Guidance System for Autonomous Unmanned Aerial Vehicles in an Air Defence Role. J. Navig. 2008, 61, 9–29. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Wu, F.; Wang, Y. Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm. IEEE Access 2021, 9, 89400–89411. [Google Scholar] [CrossRef]
- Yang, X. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2008; pp. 81–96. [Google Scholar]
- Chen, S.; Jiang, B.; Pang, T.; Xu, H.; Gao, M. Firefly swarm intelligence based cooperative localization and automatic clustering for indoor FANETs. PLoS ONE 2023, 18, e0282333. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzlerland, 2019; pp. 43–55. [Google Scholar]
- Tian, J.; Shen, L.; Zheng, Y. Genetic Algorithm Based Approach for Multi-UAV Cooperative Reconnaissance Mission Planning Problem. In Foundations of Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4203. [Google Scholar]
- Price, K. Differential evolution: A fast and simple numerical optimizer. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 524–527. [Google Scholar]
- Fu, Y.; Ding, M.; Zhou, C.; Hu, H. Route Planning for Unmanned Aerial Vehicle (UAV) on the Sea Using Hybrid Differential Evolution and Quantum-Behaved Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2023, 43, 1451–1465. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Yan, S. Research on Path Planning of AUV Based on Improved Ant Colony Algorithm. In Proceedings of the 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2021; pp. 121–124. [Google Scholar]
- Akbari, M.; Zare, M.; Azizipanah-abarghooee, R.; Mirjalili, S.; Deriche, M. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep. 2022, 12, 10953. [Google Scholar] [CrossRef]
- Sait, S.; Mehta, P.; Gürses, D.; Yildiz, A. Cheetah optimization algorithm for optimum design of heat exchangers. Mater. Test. 2023, 65, 1230–1236. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Ghoneimi, A.; Nabih, M. Contribution of Fluid Substitution and Cheetah Optimizer Algorithm in Predicting Rock-Physics Parameters of Gas-Bearing Reservoirs in the Eastern Mediterranean Sea, Egypt. Nat. Resour. Res. 2023. [Google Scholar] [CrossRef]
- Vijay, M.; Sunil, J.; Vincy, V.; IjazKhan, M.; Abdullaev, S.S.; Eldin, S.M.; Govindan, V.; Ahmad, H.; Askar, S. Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm. Sci. Rep. 2023, 13, 10810. [Google Scholar] [CrossRef]
- Xiong, T.; Liu, F.; Liu, H.; Ge, J.; Li, H.; Ding, K.; Li, Q. Multi-Drone Optimal Mission Assignment and 3D Path Planning for Disaster Rescue. Drones 2023, 7, 394. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, L.; Tiwari, R. Novel Reinforcement Learning Guided Enhanced Variable Weight Grey Wolf Optimization (RLV-GWO) Algorithm for Multi-UAV Path Planning. Wireless Pers. Commun. 2023, 131, 2093–2123. [Google Scholar] [CrossRef]
- Patel, B.; Patle, B. Analysis of Firefly–Fuzzy Hybrid Algorithm for Navigation of Quad-Rotor Unmanned Aerial Vehicle. Inventions 2020, 5, 48. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Wu, Y.; Xu, H.; Lv, Z. Multi-UAV cooperative trajectory planning algorithm based on adaptive particle swarm optimization. Aerosp. Sci. Technol. 2018, 88, 183–194. [Google Scholar]
- Patel, P.; Nigam, M.J. A novel trajectory planning approach for cooperative unmanned aerial vehicles using improved PSO algorithm. J. Intell. Robot. Syst. 2020, 98, 681–698. [Google Scholar]
- Liu, B.; Huang, Y.; Zhang, Z.; Tan, M. A Method of Path Planning for UAV Based on Improved PSO Algorithm. In Advances in Swarm Intelligence; Springer: Cham, Switzerland, 2018; pp. 310–319. [Google Scholar]
- Zhang, Y.; Wang, Y.; Zhu, Y.; Yan, Y. Distributed formation control of UAVs with collision avoidance via backstepping approach. Aerosp. Sci. Technol. 2020, 102761. [Google Scholar]
- Giannopoulos, I.; Tzes, A. Distributed Consensus and Real-Time UAV Motion Planning Over Wireless Communication Networks. IEEE Trans. Control Syst. Technol. 2020, 1–16. [Google Scholar]
- Luo, Y.; Li, M.; Ma, X.; Li, R.; Li, Q. An Effective Initialization Method for Genetic Algorithms Based on Local Search and Minimum Spanning Tree. IEEE Trans. Evol. Comput. 2020, 24, 376–390. [Google Scholar]
- Chai, Y.; Wu, Y.; Qin, P.; Qiu, Q. Image encryption algorithm based on logistic map with dynamic sequence length. J. Vis. Commun. Image Represent. 2017, 49, 17–27. [Google Scholar]
- Ma, Y.; Zhang, S.; Huang, L.; Chang, X. A Dual-Mirror-Reflection Theory for Understanding User Engagement in Mobile Social Networks. IEEE Trans. Mob. Comput. 2020, 19, 998–1011. [Google Scholar]
- Faisal, A.; Heikki, N. System modelling and online optimal management of microgrid using mesh adaptive direct search. Int. J. Electric. Power Energy Syst. 2010, 32, 98–407. [Google Scholar]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar] [CrossRef]
- El Sayed, W.E.; Hassanien, A.E. Cooperative path planning in uncertain cluttered environments using multi-objective optimization. Appl. Soft Comput. 2017, 52, 161–175. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput. 2007, 13, 945–958. [Google Scholar] [CrossRef]
- Zhao, W.; Wanga, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
Functions | Properties | MCO | CO | PSO | GWO |
---|---|---|---|---|---|
f1 | Min | 2.19 × 10−3 | 2.71 × 10−3 | 7.82 × 103 | 3.84 × 104 |
Mean | 9.11 × 10−2 | 2.85 × 10−1 | 3.15 × 104 | 6.51 × 104 | |
SD | 1.63 × 10−1 | 9.90 × 10−1 | 1.32 × 104 | 1.32 × 104 | |
f2 | Min | 2.25 × 10−3 | 3.88 × 10−3 | 9.70 × 101 | 1.39 × 102 |
Mean | 5.02 × 10−2 | 9.67 × 10−2 | 1.47 × 102 | 1.68 × 102 | |
SD | 7.30 × 10−2 | 1.97 × 10−2 | 2.85 × 101 | 1.44 × 101 | |
f3 | Min | 5.31 × 10−3 | 2.07 × 10−3 | 3.87 × 103 | 1.17 × 105 |
Mean | 8.91 × 10−2 | 1.14 × 10−1 | 3.75 × 104 | 1.70 × 105 | |
SD | 1.82 × 10−1 | 1.93 × 10−1 | 2.51 × 104 | 1.56 × 105 | |
f4 | Min | 4.17 × 10−3 | 2.72 × 10−3 | 1.94 × 101 | 6.20 × 101 |
Mean | 1.57 × 10−1 | 1.58 × 10−1 | 2.84 × 101 | 6.51 × 101 | |
SD | 2.81 × 10−1 | 3.59 × 10−1 | 4.20 × 100 | 1.65 × 100 | |
f5 | Min | 4.21 × 10−3 | 5.56 × 10−3 | 1.38 × 106 | 1.07 × 108 |
Mean | 1.27 × 10−1 | 3.80 × 10−1 | 2.34 × 107 | 2.33 × 108 | |
SD | 2.59 × 10−1 | 1.34 × 100 | 2.07 × 107 | 6.12 × 107 | |
f6 | Min | 3.83 × 10−3 | 6.07 × 10−3 | 7.44 × 103 | 3.64 × 104 |
Mean | 1.58 × 10−1 | 4.71 × 10−1 | 3.17 × 104 | 6.58 × 104 | |
SD | 4.09 × 10−1 | 1.50 × 100 | 1.57 × 104 | 1.42 × 104 | |
f7 | Min | 2.04 × 10−3 | 6.06 × 10−3 | 1.30 × 103 | 8.85 × 101 |
Mean | 1.01 × 10−1 | 1.27 × 10−1 | 3.47 × 103 | 2.15 × 102 | |
SD | 2.41 × 10−1 | 2.26 × 10−1 | 7.59 × 102 | 7.10 × 101 | |
f8 | Min | 3.19 × 10−3 | 1.51 × 10−3 | 1.64 × 104 | 2.27 × 104 |
Mean | 1.57 × 10−1 | 2.77 × 10−1 | 1.99 × 104 | 2.64 × 104 | |
SD | 3.42 × 10−1 | 9.00 × 10−1 | 1.83 × 103 | 1.96 × 103 | |
f9 | Min | 1.65 × 10−3 | 5.69 × 10−3 | 9.70 × 102 | 6.06 × 102 |
Mean | 1.25 × 10−1 | 8.70 × 10−1 | 1.10 × 103 | 7.31 × 102 | |
SD | 2.91 × 10−1 | 4.95 × 100 | 6.30 × 101 | 6.70 × 101 |
Source | SS | df | MS | Chi-sq | Prob > Chi-sq |
---|---|---|---|---|---|
Columns | 115.204 | 3 | 38.4012 | 69.38 | 5.79677 × 10−15 |
Error | 19.296 | 78 | 0.2474 | ||
Total | 134.5 | 107 |
Functions | Properties | MCO | CO | PSO | FA |
---|---|---|---|---|---|
f1 | Min | −5.00 × 100 | −5.00 × 100 | −5.00 × 100 | −4.00 × 100 |
Mean | −4.34 × 100 | −3.60 × 100 | −4.34 × 100 | 2.20 × 10−1 | |
SD | 7.81 × 10−1 | 1.03 × 100 | 2.64 × 100 | 2.74 × 100 | |
f2 | Min | 0.00 × 100 | 0.00 × 100 | 1.10 × 101 | 6.50 × 101 |
Mean | 7.79 × 100 | 1.67 × 101 | 1.50 × 101 | 1.22 × 103 | |
SD | 1.42 × 101 | 5.54 × 101 | 1.52 × 100 | 2.16 × 103 | |
f3 | Min | 1.54 × 10−7 | 5.43 × 10−8 | 1.07 × 101 | 5.23 × 101 |
Mean | 1.24 × 10−5 | 2.17 × 10−5 | 1.39 × 101 | 2.62 × 102 | |
SD | 3.54 × 10−5 | 5.98 × 10−5 | 1.34 × 100 | 1.76 × 102 | |
f4 | Min | 3.92 × 10−9 | 1.77 × 10−8 | 1.28 × 102 | 3.83 × 102 |
Mean | 1.94 × 10−6 | 2.76 × 10−6 | 1.94 × 102 | 1.73 × 103 | |
SD | 5.87 × 10−6 | 1.12 × 10−5 | 2.84 × 101 | 1.23 × 103 | |
f5 | Min | 3.40 × 10−2 | 4.71 × 10−2 | 4.28 × 101 | 2.40 × 101 |
Mean | 1.74 × 10−1 | 2.10 × 10−1 | 9.61 × 101 | 2.40 × 101 | |
SD | 8.61 × 10−2 | 1.02 × 10−1 | 1.85 × 101 | 2.71 × 101 | |
f6 | Min | 2.38 × 10−15 | 1.16 × 10−14 | 8.92 × 10−6 | 5.89 × 10−7 |
Mean | 5.04 × 10−2 | 1.24 × 10−1 | 1.07 × 10−1 | 4.01 × 10−2 | |
SD | 2.01 × 10−1 | 2.86 × 10−1 | 2.67 × 10−1 | 2.00 × 10−1 | |
f7 | Min | −1.00 × 100 | −1.00 × 100 | −1.00 × 100 | −1.00 × 100 |
Mean | −8.47 × 10−1 | −7.42 × 10−1 | −9.96 × 10−1 | −3.40 × 10−1 | |
SD | 3.35 × 10−1 | 4.09 × 10−1 | 5.20 × 10−3 | 4.78 × 10−1 | |
f8 | Min | 1.84 × 10−9 | 2.65 × 10−12 | 3.29 × 10−8 | 3.05 × 10−8 |
Mean | 1.08 × 10−3 | 1.29 × 10−3 | 5.02 × 10−5 | 1.04 × 10−4 | |
SD | 4.09 × 10−3 | 6.03 × 10−3 | 4.34 × 10−5 | 4.70 × 10−4 | |
f9 | Min | 6.69 × 10−3 | 2.36 × 10−3 | 3.23 × 10−1 | 1.38 × 10−2 |
Mean | 4.05 × 100 | 4.54 × 100 | 2.29 × 100 | 2.35 × 100 | |
SD | 3.49 × 100 | 5.47 × 100 | 1.14 × 100 | 3.27 × 100 | |
f10 | Min | −5.00 × 101 | −5.00 × 101 | −5.00 × 101 | −5.00 × 101 |
Mean | −4.97 × 101 | −4.92 × 101 | −4.98 × 101 | −4.97 × 101 | |
SD | 4.61 × 10−1 | 1.98 × 100 | 7.11 × 10−2 | 1.08 × 100 | |
f11 | Min | −2.10 × 102 | −2.10 × 102 | −2.10 × 102 | −2.10 × 102 |
Mean | −1.45 × 102 | −1.46 × 102 | −2.09 × 102 | −2.08 × 102 | |
SD | 7.42 × 101 | 1.04 × 102 | 3.31 × 10−1 | 6.90 × 100 | |
f12 | Min | 6.09 × 10−4 | 1.15 × 10−3 | 1.09 × 100 | 4.50 × 10−1 |
Mean | 3.76 × 10−1 | 7.09 × 10−1 | 3.26 × 100 | 8.87 × 100 | |
SD | 1.05 × 100 | 1.35 × 100 | 5.97 × 100 | 1.11 × 101 | |
f13 | Min | 7.43 × 10−3 | 4.92 × 10−3 | 1.83 × 102 | 1.79 × 102 |
Mean | 6.38 × 10−2 | 7.88 × 10−2 | 3.08 × 102 | 1.24 × 103 | |
SD | 5.58 × 10−2 | 8.27 × 10−2 | 7.13 × 101 | 1.00 × 103 | |
f14 | Min | 4.46 × 10−6 | 4.62 × 10−6 | 1.40 × 101 | 2.63 × 101 |
Mean | 5.38 × 10−4 | 6.07 × 10−4 | 1.59 × 101 | 5.74 × 108 | |
SD | 2.43 × 10−3 | 3.47 × 10−3 | 8.54 × 10−1 | 2.14 × 109 | |
f15 | Min | 3.99 × 102 | 7.38 × 102 | 2.66 × 101 | 8.80 × 102 |
Mean | 1.82 × 103 | 3.28 × 103 | 3.67 × 101 | 8.24 × 103 | |
SD | 9.73 × 102 | 1.81 × 103 | 7.23 × 100 | 2.21 × 104 | |
f16 | Min | 3.02 × 100 | 5.55 × 100 | 1.96 × 103 | 8.25 × 104 |
Mean | 1.07 × 102 | 1.28 × 102 | 2.89 × 103 | 1.64 × 106 | |
SD | 9.50 × 101 | 1.21 × 102 | 6.14 × 102 | 1.67 × 106 | |
f17 | Min | 4.56 × 10−1 | 4.27 × 10−2 | 4.07 × 102 | 8.59 × 103 |
Mean | 2.26 × 100 | 2.81 × 100 | 9.65 × 102 | 1.30 × 105 | |
SD | 1.44 × 100 | 1.88 × 100 | 2.50 × 102 | 1.50 × 105 | |
f18 | Min | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 |
Mean | 5.39 × 100 | 6.12 × 100 | 3.82 × 100 | 4.17 × 100 | |
SD | 4.47 × 100 | 5.42 × 100 | 2.78 × 100 | 3.66 × 100 | |
f19 | Min | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 |
Mean | 3.98 × 10−1 | 3.99 × 10−1 | 3.99 × 10−1 | 4.02 × 10−1 | |
SD | 5.55 × 10−4 | 6.86 × 10−3 | 1.13 × 10−3 | 1.30 × 10−2 | |
f20 | Min | 1.78 × 10−10 | 2.70 × 10−10 | 5.41 × 10−4 | 2.03 × 10−6 |
Mean | 2.71 × 10−2 | 3.98 × 10−2 | 1.52 × 10−2 | 5.47 × 10−3 | |
SD | 1.06 × 10−1 | 1.26 × 10−1 | 1.70 × 10−2 | 1.08 × 10−2 | |
f21 | Min | 1.11 × 10−10 | 9.75 × 10−10 | 1.77 × 10−5 | 3.06 × 10−7 |
Mean | 1.10 × 10−4 | 1.51 × 10−3 | 1.79 × 10−3 | 2.38 × 10−3 | |
SD | 4.42 × 10−4 | 1.38 × 10−2 | 2.05 × 10−3 | 1.03 × 10−2 | |
f22 | Min | 2.19 × 101 | 2.59 × 101 | 1.77 × 102 | 2.09 × 102 |
Mean | 5.24 × 101 | 5.37 × 101 | 2.25 × 102 | 3.20 × 102 | |
SD | 1.52 × 101 | 1.38 × 101 | 1.81 × 101 | 4.07 × 101 | |
f23 | Min | −1.26 × 104 | −1.15 × 104 | −8.93 × 103 | −8.85 × 103 |
Mean | −1.23 × 104 | −1.02 × 104 | −6.75 × 103 | −7.10 × 103 | |
SD | 4.71 × 102 | 4.85 × 102 | 9.73 × 102 | 6.08 × 102 | |
f24 | Min | −1.80 × 100 | −1.80 × 100 | −1.80 × 100 | −1.80 × 100 |
Mean | −1.80 × 100 | −1.79 × 100 | −1.78 × 100 | −1.79 × 100 | |
SD | 1.83 × 10−6 | 8.26 × 10−2 | 2.57 × 10−2 | 1.13 × 10−2 | |
f25 | Min | −4.69 × 100 | −4.69 × 100 | −3.92 × 100 | −4.37 × 100 |
Mean | −4.53 × 100 | −4.51 × 100 | −3.12 × 100 | −3.79 × 100 | |
SD | 1.54 × 10−1 | 1.69 × 10−1 | 2.70 × 10−1 | 2.50 × 10−1 | |
f26 | Min | −9.62 × 100 | −9.61 × 100 | −5.92 × 100 | −6.32 × 100 |
Mean | −8.95 × 100 | −8.90 × 100 | −4.40 × 100 | −5.35 × 100 | |
SD | 3.75 × 10−1 | 3.24 × 10−1 | 5.02 × 10−1 | 4.84 × 10−1 | |
f27 | Min | 1.77 × 10−9 | 5.70 × 10−9 | 6.23 × 10−10 | 7.23 × 10−11 |
Mean | 1.42 × 10−2 | 1.48 × 10−2 | 1.26 × 10−6 | 2.75 × 10−4 | |
SD | 2.32 × 10−2 | 2.34 × 10−2 | 1.74 × 10−6 | 1.39 × 10−3 | |
f28 | Min | −1.03 × 100 | −1.03 × 100 | −1.03 × 100 | −1.03 × 100 |
Mean | −1.02 × 100 | −1.02 × 100 | −1.03 × 100 | −1.03 × 100 | |
SD | 8.16 × 10−2 | 8.16 × 10−2 | 2.46 × 10−3 | 1.58 × 10−3 | |
f29 | Min | 9.07 × 10−11 | 5.07 × 10−10 | 1.51 × 10−4 | 9.11 × 10−6 |
Mean | 6.92 × 10−2 | 7.02 × 10−2 | 1.64 × 10−2 | 3.10 × 10−3 | |
SD | 1.13 × 10−1 | 1.02 × 10−1 | 1.85 × 10−2 | 6.58 × 10−3 | |
f30 | Min | 2.21 × 10−7 | 4.22 × 10−7 | 1.61 × 10−4 | 8.03 × 10−6 |
Mean | 2.01 × 10−2 | 2.68 × 10−2 | 5.68 × 10−3 | 6.61 × 10−3 | |
SD | 5.14 × 10−2 | 6.36 × 10−2 | 6.08 × 10−3 | 4.05 × 10−2 | |
f31 | Min | −1.87 × 102 | −1.87 × 102 | −1.87 × 102 | −1.87 × 102 |
Mean | −1.85 × 102 | −1.84 × 102 | −1.86 × 102 | −1.86 × 102 | |
SD | 8.95 × 100 | 1.24 × 101 | 8.93 × 10−1 | 2.50 × 100 | |
f32 | Min | 3.00 × 100 | 3.00 × 100 | 3.00 × 100 | 3.00 × 100 |
Mean | 9.63 × 100 | 1.59 × 101 | 3.05 × 100 | 3.72 × 100 | |
SD | 1.77 × 101 | 2.63 × 101 | 7.37 × 10−2 | 3.84 × 100 | |
f33 | Min | 3.18 × 10−4 | 3.42 × 10−4 | 7.12 × 10−4 | 7.16 × 10−4 |
Mean | 2.38 × 10−3 | 6.75 × 10−3 | 4.34 × 10−3 | 2.13 × 10−3 | |
SD | 4.65 × 10−3 | 8.67 × 10−3 | 7.08 × 10−3 | 1.22 × 10−3 | |
f34 | Min | −1.02 × 101 | −1.02 × 101 | −1.01 × 101 | −9.86 × 100 |
Mean | −7.09 × 100 | −5.82 × 100 | −5.82 × 100 | −5.29 × 100 | |
SD | 2.65 × 100 | 3.44 × 100 | 2.61 × 100 | 2.91 × 100 | |
f35 | Min | −1.04 × 101 | −1.04 × 101 | −9.41 × 100 | −1.03 × 101 |
Mean | −7.41 × 100 | −5.12 × 100 | −6.21 × 100 | −6.23 × 100 | |
SD | 2.98 × 100 | 3.18 × 100 | 2.29 × 100 | 3.23 × 100 | |
f36 | Min | −1.05 × 101 | −1.05 × 101 | −1.04 × 101 | −1.04 × 101 |
Mean | −6.88 × 100 | −5.85 × 100 | −6.85 × 100 | −6.97 × 100 | |
SD | 3.25 × 100 | 3.58 × 100 | 2.38 × 100 | 2.96 × 100 | |
f37 | Min | 5.99 × 10−3 | 1.51 × 10−2 | 4.83 × 10−2 | 5.32 × 10−3 |
Mean | 4.01 × 100 | 1.24 × 101 | 3.68 × 101 | 4.16 × 100 | |
SD | 6.90 × 100 | 1.43 × 101 | 1.77 × 102 | 1.66 × 101 | |
f38 | Min | 4.69 × 10−4 | 3.27 × 10−4 | 3.33 × 10−2 | 8.12 × 10−3 |
Mean | 1.13 × 10−1 | 1.68 × 10−1 | 9.39 × 10−1 | 1.71 × 10−1 | |
SD | 2.39 × 10−1 | 3.83 × 10−1 | 2.90 × 100 | 2.56 × 10−1 | |
f39 | Min | −3.86 × 100 | −3.86 × 100 | −3.86 × 100 | −3.86 × 100 |
Mean | −3.85 × 100 | −3.82 × 100 | −3.82 × 100 | −3.80 × 100 | |
SD | 1.09 × 10−1 | 1.85 × 10−1 | 2.50 × 10−1 | 5.11 × 10−2 | |
f40 | Min | −3.32 × 100 | −3.32 × 100 | −3.21 × 100 | −3.10 × 100 |
Mean | −3.28 × 100 | −3.27 × 100 | −2.82 × 100 | −2.25 × 100 | |
SD | 5.70 × 10−2 | 5.90 × 10−2 | 4.60 × 10−1 | 5.13 × 10−1 | |
f41 | Min | 4.80 × 10−7 | 2.73 × 10−7 | 2.81 × 10−1 | 9.71 × 10−1 |
Mean | 7.31 × 10−2 | 1.03 × 10−1 | 5.08 × 10−1 | 1.12 × 100 | |
SD | 1.11 × 10−1 | 2.78 × 10−1 | 5.85 × 10−2 | 2.35 × 10−1 | |
f42 | Min | 1.21 × 10−4 | 1.16 × 100 | 3.81 × 100 | 6.73 × 100 |
Mean | 2.68 × 100 | 3.15 × 100 | 4.17 × 100 | 1.59 × 101 | |
SD | 1.04 × 100 | 1.32 × 100 | 1.40 × 10−1 | 4.55 × 100 | |
f43 | Min | 1.75 × 10−7 | 4.08 × 10−8 | 2.37 × 10−1 | 8.06 × 101 |
Mean | 3.51 × 10−1 | 5.15 × 10−1 | 2.24 × 100 | 6.38 × 105 | |
SD | 7.25 × 10−1 | 8.52 × 10−1 | 3.17 × 100 | 2.76 × 106 | |
f44 | Min | 6.65 × 10−5 | 1.82 × 10−5 | 1.64 × 100 | 1.40 × 103 |
Mean | 1.32 × 100 | 2.06 × 100 | 2.13 × 100 | 8.28 × 105 | |
SD | 2.49 × 100 | 4.04 × 100 | 2.12 × 10−1 | 3.11 × 106 | |
f45 | Min | −1.08 × 100 | −1.08 × 100 | −1.08 × 100 | −1.08 × 100 |
Mean | −1.02 × 100 | −9.84 × 10−1 | −1.07 × 100 | −1.03 × 100 | |
SD | 1.05 × 10−1 | 1.65 × 10−1 | 2.28 × 10−2 | 8.82 × 10−2 | |
f46 | Min | −1.50 × 100 | −1.50 × 100 | −1.49 × 100 | −1.50 × 100 |
Mean | −8.85 × 10−1 | −7.46 × 10−1 | −9.35 × 10−1 | −9.52 × 10−1 | |
SD | 3.18 × 10−1 | 2.47 × 10−1 | 2.60 × 10−1 | 3.86 × 10−1 | |
f47 | Min | −7.98 × 10−1 | −7.98 × 10−1 | −7.98 × 10−1 | −7.98 × 10−1 |
Mean | −4.99 × 10−1 | −4.51 × 10−1 | −4.72 × 10−1 | −2.20 × 10−1 | |
SD | 2.25 × 10−1 | 2.09 × 10−1 | 2.12 × 10−1 | 2.11 × 10−1 | |
f48 | Min | 7.98 × 10−11 | 5.08 × 10−11 | 1.68 × 10−2 | 3.32 × 10−4 |
Mean | 1.32 × 10−5 | 2.37 × 10−4 | 9.97 × 101 | 3.71 × 101 | |
SD | 3.41 × 10−5 | 2.22 × 10−3 | 2.47 × 102 | 1.70 × 102 | |
f49 | Min | 6.66 × 10−4 | 5.12 × 10−5 | 1.01 × 102 | 3.18 × 101 |
Mean | 3.09 × 102 | 5.31 × 102 | 9.98 × 102 | 1.95 × 103 | |
SD | 6.69 × 102 | 8.78 × 102 | 1.26 × 103 | 1.84 × 103 | |
f50 | Min | 5.87 × 10−1 | 1.68 × 10−1 | 3.01 × 103 | 1.40 × 103 |
Mean | 1.26 × 103 | 3.16 × 103 | 1.22 × 104 | 3.85 × 104 | |
SD | 2.26 × 103 | 4.72 × 103 | 9.65 × 103 | 2.39 × 104 |
Source | SS | df | MS | Chi-sq | Prob > Chi-sq |
---|---|---|---|---|---|
Columns | 116.13 | 3 | 38.71 | 77.13 | 1.26353 × 10−16 |
Error | 561.37 | 447 | 1.2559 | ||
Total | 677.5 | 599 |
Case Number | UAV Position | Target Position | Stereoscopic Threat Distribution Field Position | Effective Operating Distance |
---|---|---|---|---|
1 | (0,60,0) (0,60,0) (0,60,0) (0,60,0) | (85,80,100) (85,80,100) (85,80,100) (85,80,100) | (60,70,45) (20,60,10) (70,65,90) (60,80,70) (35,70,30) (60,50,80) | 10 8 3 8 8 5 |
2 | (0,72,0) (0,72,0) (0,72,0) (0,72,0) (0,72,0) (0,72,0) (0,72,0) (0,72,0) | (85,55,100) (85,60,100) (85,65,100) (85,70,100) (85,75,100) (85,80,100) (85,85,100) (85,90,100) | (60,70,45) (20,60,10) (70,65,90) (35,70,30) (60,50,80) | 10 8 3 8 5 |
3 | (0,25,0) (0,35,0) (0,45,0) (0,55,0) (0,65,0) (0,75,0) (0,85,0) (0,95,0) | (85,80,100) (85,80,100) (85,80,100) (85,80,100) (85,80,100) (85,80,100) (85,80,100) (85,80,100) | (60,70,45) (20,60,10) (70,65,90) (60,80,70) (35,70,30) (60,50,80) | 10 8 3 8 8 5 |
4 | (0,25,0) (0,35,0) (0,45,0) (0,55,0) (0,65,0) (0,75,0) (0,85,0) (0,95,0) | (85,55,100) (85,60,100) (85,65,100) (85,70,100) (85,75,100) (85,80,100) (85,85,100) (85,90,100) | (60,70,45) (20,60,10) (70,65,90) (60,80,70) (35,70,30) (60,50,80) | 10 8 3 8 8 5 |
Functions | Properties | MCO | CO | PSO | GWO |
---|---|---|---|---|---|
Case1 | Min | 1.81 × 104 | 1.81 × 104 | 2.07 × 104 | 1.81 × 104 |
Mean | 1.82 × 104 | 1.82 × 104 | 2.09 × 104 | 1.82 × 104 | |
SD | 5.16 × 101 | 2.05 × 102 | 1.38 × 102 | 2.39 × 102 | |
Case2 | Min | 3.54 × 104 | 3.54 × 104 | 4.16 × 104 | 3.60 × 104 |
Mean | 3.56 × 104 | 3.57 × 104 | 8.00 × 109 | 3.64 × 104 | |
SD | 1.58 × 102 | 2.03 × 102 | 4.22 × 109 | 4.60 × 102 | |
Case3 | Min | 3.48 × 104 | 3.73 × 104 | 3.82 × 104 | 3.68 × 104 |
Mean | 3.49 × 104 | 3.89 × 104 | 3.91 × 104 | 3.75 × 104 | |
SD | 4.6 × 102 | 6.15 × 102 | 5.32 × 102 | 3.39 × 102 | |
Case4 | Min | 3.47 × 104 | 3.49 × 104 | 3.88 × 104 | 3.54 × 104 |
Mean | 3.49 × 104 | 3.51 × 104 | 3.96 × 104 | 3.58 × 104 | |
SD | 1.74 × 102 | 1.74 × 102 | 5.05 × 102 | 2.74 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Yang, S.; Liu, B.; Xia, E.; Huang, D. Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm. Entropy 2023, 25, 1277. https://doi.org/10.3390/e25091277
Fu Y, Yang S, Liu B, Xia E, Huang D. Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm. Entropy. 2023; 25(9):1277. https://doi.org/10.3390/e25091277
Chicago/Turabian StyleFu, Yuwen, Shuai Yang, Bo Liu, E Xia, and Duan Huang. 2023. "Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm" Entropy 25, no. 9: 1277. https://doi.org/10.3390/e25091277
APA StyleFu, Y., Yang, S., Liu, B., Xia, E., & Huang, D. (2023). Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm. Entropy, 25(9), 1277. https://doi.org/10.3390/e25091277