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Abstract: The engineering challenge of rolling bearing condition monitoring has led to a large number
of method developments over the past few years. Most commonly, vibration measurement data are
used for fault diagnosis using machine learning algorithms. In current research, purely data-driven
deep learning methods are becoming increasingly popular, aiming for accurate predictions of bearing
faults without requiring bearing-specific domain knowledge. Opposing this trend in popularity, the
present paper takes a more traditional approach, incorporating domain knowledge by evaluating
a variety of feature engineering methods in combination with a random forest classifier. For a
comprehensive feature engineering study, a total of 42 mathematical feature formulas are combined
with the preprocessing methods of envelope analysis, empirical mode decomposition, wavelet
transforms, and frequency band separations. While each single processing method and feature
formula is known from the literature, the presented paper contributes to the body of knowledge by
investigating novel series connections of processing methods and feature formulas. Using the CWRU
bearing fault data for performance evaluation, feature calculation based on the processing method of
frequency band separation leads to particularly high prediction accuracies, while at the same time
being very efficient in terms of low computational effort. Additionally, in comparison with deep
learning approaches, the proposed feature engineering method provides excellent accuracies and
enables explainability.

Keywords: bearing fault diagnosis; feature engineering; machine learning; condition monitoring;
frequency band separation

1. Introduction

In rotating machinery, it is becoming increasingly important to avoid unforeseen
rolling bearing failures. This trend is driven by both cost efficiency and sustainability. To
detect bearing damage at an early stage, sophisticated condition monitoring is required.
For this purpose, a selection must be made from a variety of possible measurands [1].
According to the current state of research, vibration measurements are the most commonly
used signals for condition monitoring of rotating machinery. Therefore, vibrations are
usually measured with acceleration sensors under operating conditions. The information
contained in the acceleration signals can then be extracted to monitor the condition of the
bearing, which provides the foundation for a predictive maintenance strategy [2].

To infer condition information from raw acceleration signals, a variety of data pro-
cessing techniques are available in the literature. Machine learning methods in particular
are being used more and more frequently to evaluate large amounts of data in a targeted
manner. A distinction must be made between deep learning and more traditional machine
learning (ML) methods, with the latter often used in combination with upstream data
processing—so-called feature engineering. More recently, methodological research on fault
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diagnosis using vibration signals has moved very much towards purely data-driven deep
learning approaches [3]. Motivation for these deep learning approaches is that only little
specific expert or domain knowledge is required by the practitioner for data evaluation.
Furthermore, for big data applications, it is expected that deep learning models can provide
better predictive accuracies than more traditional approaches [4]. However, the disadvan-
tage of purely data-driven approaches is that the path of decision making, starting with the
data and ending with the fault diagnosis, is hardly explainable.

In contrast to purely data-driven deep learning approaches, more classical approaches
combine feature engineering methods with machine learning models [5]. By incorporating
domain knowledge and computing deterministic features, explainability can be obtained.
Furthermore, due to the use of preprocessed feature data, one can rely on computationally
efficient machine learning algorithms, which reduces the training effort compared with
most deep learning approaches.

The remainder of this paper is structured in the following way: Section 2 presents
fundamentals of the CWRU dataset and a collection of feature engineering methods. Funda-
mentals of popular processing methods and a list of relevant feature formulas are provided.
Subsequently, specific feature extraction methods are presented in Section 3, deriving novel
feature calculation techniques by systematically applying series connections of processing
methods and feature formulas. Section 4 discusses the resulting fault diagnosis accuracies
obtained using the different feature sets. Furthermore, the results are analyzed with respect
to deep-learning-based results from the literature. To analyze feature explainability, visual-
izations of feature characteristics are presented. The final Section 5 critically summarizes
the research findings.

2. Fundamentals

Literature provides public bearing datasets for the investigation of different fault
diagnosis methods. A well-structured literature overview of fault diagnosis methods
and the datasets used can be found in publications by Schwendemann et al. [6] and
Hakim et al. [7].

2.1. CWRU Bearing Fault Data

An extensive dataset is provided by Case Western Research University (CWRU) with
a variety of ball bearing damages and operating conditions [8]. Due to its wide scope,
it is particularly well suited for the evaluation of fault diagnosis algorithms and is used
very frequently in the literature [9]. For this reason, it will also be applied for evaluation
of the methods presented in this paper. For the CWRU data, different sizes of damage
are introduced to the inner ring, outer ring and rolling element on different bearings.
In addition, undamaged bearings are also included for reference. With these prepared
bearings, vibration signals are measured on a test bench under different speeds and engine
loads. For further details, the description and analysis of the CWRU dataset by Smith and
Randall [10] is recommended.

2.2. Feature Formulas

To extract features from the raw vibration signals, mathematical feature formulas can
be applied to the acceleration signal. A distinction is made between the feature calculation
in the time domain and in frequency domain. Lei et al. [11] propose a set of 11 time-domain
and 13 frequency-domain features, adding an additional 14th frequency domain feature
in [12]. Based on the recommendations by Lei et al. and further literature on this topic,
the features gathered in Tables 1 and 2 were identified for further use throughout this
article. The time-domain features are calculated using the discrete amplitude values of the
vibration signal x and its length N.
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Table 1. Feature formulas in time domain.

Feature Formula

Mean T1 = 1
N ∑N

i=1 xi [11]

Standard deviation T2 =
√

1
N−1 ∑N

i=1(xi − T1)
2 [11]

Square root mean (SRM) T3 =
(

1
N ∑N

i=1
√
|xi|
)2

[11]

Root mean square (RMS) T4 =
√

1
N ∑N

i=1 x2
i [11]

Maximum absolute T5 = max(|x|) [11]

Skewness T6 = ∑N
i=1(xi−T1)3

(N−1)·T3
2

[11]

Kurtosis T7 = ∑N
i=1(xi−T1)4

(N−1)·T4
2

[11]

Crest factor T8 = T5
T4

[11]

Clearance indicator T9 = T5
T3

[11]

Shape indicator T10 = T4
1
N ∑N

i=1 |xi |
[11]

Impulse indicator T11 = T5
1
N ∑N

i=1 |xi |
[11]

Skewness factor T12 = T6
T3

4
[13]

Kurtosis factor T13 = T7
T4

4
[13]

Mean absolute T14 = 1
N ∑N

i=1 |xi| [14]

Variance T15 = 1
N ∑N

i=1(xi − T1)
2 [14]

Peak T16 = max(x)−min(x)
2 [14]

K factor T17 = T16 · T4 [14]

Energy T18 = ∑N
i=1 x2

i [15]

Mean absolute deviation T19 = 1
N ∑N

i=1 |xi − T1| [16]

Median T20 = median(xi) [16]

Median absolute deviation T21 = median(|xi − T20|) [16]

Rate of zero crossings T22 =
number of zero crossings

N [16]

Product RMS kurtosis T23 = T4 · T7 [17]

Fifth moment T24 = ∑N
i=1(xi−T1)5

T5
2

[18]

Sixth moment T25 = ∑N
i=1(xi−T1)6

T6
2

[18]

RMS shape factor T26 = T4
T14

[18]

SRM shape factor T27 = T3
T14

[18]

Latitude factor T28 = max(x)
T3

[18]
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Table 2. Feature formulas in frequency domain.

Feature Formula

Mean F1 =
∑M

j=1 sj

M [11]

Variance F2 =
∑M

j=1(sj−F1)2

M−1 [11]

Third moment F3 =
∑M

j=1(sj−F1)3

M·(
√

F2)3 [11]

Fourth moment F4 =
∑M

j=1(sj−F1)4

M·F2
2

[11]

Grand mean F5 =
∑M

j=1 f j ·sj

∑M
j=1 sj

[11]

Standard deviation 1 F6 =

√
∑M

j=1( f j−F5)2·sj

M [11]

C Factor F7 =

√
∑M

j=1 f 2
j ·sj

∑M
j=1 sj

[11]

D Factor F8 =

√
∑M

j=1 f 4
j ·sj

∑M
j=1 f 2

j ·sj
[11]

E Factor F9 =
∑M

j=1 f 2
j ·sj√

∑M
j=1 sj ∑M

j=1 f 4
j ·sj

[11]

G Factor F10 = F6
F5

[11]

Third moment 1 F11 =
∑M

j=1( f j−F5)3·sj

M·F3
6

[11]

Fourth moment 1 F12 =
∑M

j=1( f j−F5)4·sj

M·F4
6

[11]

H Factor F13 =
∑M

j=1

√
f j−F5·sj

M·
√

F6
[11]

J Factor F14 =

√
∑M

j=1( f j−F5)2·sj

∑M
j=1 sj

[12]

For calculating the features in the frequency domain, the signal is transformed typically
via fast Fourier transform (FFT). To avoid spectral leakage, windowing of the time signal
has to be performed before applying FFT [19]. For the investigations carried out here, a
Hanning window will be implemented for this purpose. For the mathematical formulations
of the frequency-domain features, the vector of discrete amplitudes in the frequency domain
s is used. Furthermore, the frequencies f associated with the amplitudes and the number
of discrete frequencies M are required for calculation.

2.3. Signal Processing Methods

The features presented in the previous section can be applied directly to the raw signal
and its Fourier transform, as described before. However, it is also common to use addi-
tional processing methods and perform a feature calculation based on such preprocessed
signals [12].

2.3.1. Envelope Analysis

With the help of envelope analysis, relevant information can be extracted from the
measurement signal, which is particularly important for the detection of initial rolling
bearing failures [2]. Rolling bearing damage leads to periodic shock excitations. However,
these are short, decay very quickly and often times are superimposed with non-roller-
bearing vibration excitations, making them difficult or impossible to detect using frequency
analysis of the raw signal. The high-frequency carrier signal is amplitude-modulated by
the frequency of the low-frequency modulation signal of the vibration excitations [20]. For
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the diagnosis of rolling bearing damage, it is usually not the carrier signal that is of interest
but the modulation signal, which can be extracted by demodulation. Envelope analysis
can be implemented using the Hilbert transform, causing demodulation and consequently
allowing identification of shocks and analysis of characteristic damage [21]. In envelope
analysis, the envelope is first determined from the raw signal. In a further step, the envelope
spectrum can be determined via Fourier transform.

2.3.2. Empirical Mode Decomposition

The empirical mode decomposition (EMD) is based on the assumption that signals
can be decomposed into different intrinsic mode functions (IMFs). The iterative process for
determining the IMFs is called sifting. Spline interpolation of the signals local maxima and
minima is an essential part of the sifting process. For further details, Nandi and Ahmed [2]
provide a comprehensive description of the EMD procedure. The sifting process can be
stopped by a termination criterion. One simple termination criterion can be given by
predefining the number of IMFs to be decomposed. After decomposition, the original
signal can be rearranged as the sum of all decomposed IMFs and its residual.

2.3.3. Wavelet Transform

The wavelet transform (WT) is a well-known signal processing strategy for analyzing
nonstationary and transient signals in the time–frequency domain [22]. Using the wavelet
transform, data can be decomposed into different frequency components, which are then
analyzed with a resolution adapted to their scale [23]. In contrast to the Fourier transform,
the wavelet transform uses wavelet basis functions that contain several frequencies [24].
A wavelet family consisting of different wavelet basis functions is formed by scaling and
translation of a mother wavelet. Within wavelet transforms, continuous wavelet transform
(CWT), discrete wavelet transforms (DWT) and wavelet packet transform (WPT) can be
distinguished [2]. Since in the context of this work discrete measurement data are used and
the computational effort is kept low, the focus here is on DWT and WPT.

For DWT, first, the measurement signal is put through complementary low-pass
and high-pass filters [25]. The low-frequency signal is called approximation coefficient,
and the high-frequency signal is called detail coefficient. In the next iteration step, the
approximation coefficient is again decomposed into a high-frequency and low-frequency
component with simultaneously decreasing resolution. The number of iteration steps
can be adjusted by setting the decomposition level. In contrast to DWT, where only the
low-frequency signal is split at each further decomposition level, WPT also splits the
high-frequency signal into new high-frequency and low-frequency components [2].

2.3.4. Frequency Bands

A particularly computationally efficient processing method has already been proposed
in [26] and further investigated in [27]. The core of this method is to separate the signal into
frequency bands. For this purpose, the amplitude spectrum of the signal is first determined
via FFT. Subsequently, this spectrum is split into bands. Figure 1 shows frequency band
separation using eight equally sized frequency bands as an example.

Originally, the use of equally sized frequency bands and mean values calculated
from them was proposed in [26]. Within the present paper, the frequency band method
will additionally be extended to octave- and third-octave-based frequency band sizes.
Furthermore, besides calculating the mean value only, all the feature formulas in the
frequency domain shown in Table 2 will be applied.
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Figure 1. Equally sized frequency band separation (orange) of amplitude spectrum (blue).

3. Methods

The primary goal of this paper is to identify the best-performing feature engineering
methods by comparison. For this reason, all other factors potentially influencing the results
within this comparison must remain unchanged. These constant factors include the dataset
and the machine learning specification, as well as the evaluation of the results using chosen
metrics.

3.1. Data Preparation

In addition to comparing the different feature engineering approaches to each other, it
is of additional interest to determine how well the proposed methods perform in compari-
son with deep learning approaches from the literature. For this reason, the data processing
used in the present work must strictly follow an approach used in the literature. A well-
documented data processing pipeline and classification task is used by Magar et al. [28],
who propose a Convolutional Neural Network (CNN) approach for fault diagnosis. In the
present paper, both the data processing and the classification task are adopted therefrom.
Hence, the Seeded Fault Test Data provided by Case Western Research University [8] are
used. Only the 48 kHz Drive End Bearing Fault Data with 2 hp motor load are processed.
The tested bearings are SKF deep-groove ball bearings of type 6205-2RS JEM. In total, data
from 9 different bearing damages and 1 undamaged bearing are investigated. Based on the
original data naming scheme by CWRU [8], the bearings are labeled as follows:

• Inner ring faults: IR007_2, IR014_2 and IR021_2;
• Outer ring faults: OR007@6_2, OR014@6_2 and OR021@6_2;
• Ball faults: B007_2, B014_2 and B021_2;
• No fault: Normal_2.

Using these data, the machine learning task is to clearly distinguish between the
10 different classes. Following the example of Magar et al. [28], 467,600 values are used for
each bearing data, each of which is divided into packages of 1670 values. This results in
280 instances for each class, for which the feature calculation can be performed.

3.2. Machine Learning

A random forest is used as the machine learning algorithm for the studies presented
here. Random forests belong to the tree-based machine learning methods. According to
Grinsztajn et al. [29], they are superior to neural networks for small-to-medium-sized
tabular data. Also, Fernandez-Delgado et al. [30] showed the superiority of random forests
in a comparison of different classification algorithms based on a large number of datasets.
For the present case, the random forest is parametrized with a maximum tree depth of
20 and a tree count of 500. Training and testing of the random forest is performed within
a stratified 5-fold cross-validation. This allows for increased statistical significance and
consideration of the uncertainties in the results obtained. Since the different bearing fault
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classes are equally distributed within the data, and all classes can be considered of equal
value weighting, the accuracy of the prediction on the test data is chosen as the metric. For
overall performance evaluation, the mean value of the accuracies within cross-validation
is used.

3.3. Feature Engineering

Using the presented data and machine learning procedure, different feature sets will
be generated and reduced, and the achieved prediction accuracies will be compared. The
systematic comparison of different feature engineering methods is based on the modular
design visualized in Figure 2.

28 Time Domain (TD) Features 14 Frequency Domain (FD) Features

Feature 
genera�on

Feature selection via
Random Forest Feature Importance (RFFI)

Feature extraction via
Principal Component Analysis (PCA)

Feature 
formulas

Signal 
processing
methods

Feature 
reduc�on

Envelope analysis
(ENV)

Empircal Mode 
Decomposition (EMD)

Frequency Bands:
Equally sized (FB) 

or
Octave based (OFB)

Wavelet Transform:
Discrete (DWT) 

or
Wavelet Packet (WPT)

Decomposition
level

Wavelet function

Raw signal without
processing (RAW)

(op�onal)

Raw vibration signal

Complete features

Reduced features

Number of IMFs
Number of

frequency bands

Figure 2. Modular design of feature engineering.

The modules can be combined in various ways. A complete analysis of all possible
method combinations is not realizable due to effort limitations. Therefore, the primary task
of the investigations will be to compare the performance of each single signal processing
methods with each other. Thus, one single signal processing method is always considered
per feature set. The following step-by-step approach is used to build the feature sets
examined in the remainder of this paper:

• Selection of an appropriate set of feature formulas based on the raw, unprocessed
vibration signal (RAW).

• Comparison of the different processing methods using the feature formulas selected
in the previous step.

• Additional investigations of the frequency bands: Consideration of the frequency-
domain mean values solely, as proposed in [26].

Based on this approach, a total of 19 feature sets are formed. These feature sets,
including their detailed settings, are listed in Table 3. The settings of the processing
methods were determined during preliminary investigations.

It is apparent that the total number of features varies between 10 and 336 for the
different feature sets. To ensure that the comparisons are not biased by the feature count,
the following 3 approaches are applied to all feature sets:

• All features of the calculated feature set are used for the evaluation of the prediction
accuracy—Complete feature set.
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• Based on the random forest feature importance evaluated on the complete features
set, the 10 most important features are selected and used to evaluate prediction
performance—10 most important features (RFFI).

• The feature sets are transformed using a principal component analysis (PCA), and
only the 10 principal components representing the largest feature variance are used to
evaluate prediction performance—10 principal components (PCA).

The workflow thus realized for evaluating the different feature sets is presented in
Figure 3.

Table 3. Feature set explanations.

Feature Set Name Processing Method Settings of the
Processing Method Feature Formulas Complete

Feature Count

RAW_TD Raw signal - 28 time-domain features: T1 to
T28

28

RAW_FD Raw signal - 14 frequency-domain features:
F1 to F14

14

RAW_all Raw signal - All 42 features: T1 to T28 and F1
to F14

42

RAW_Lei Raw signal - 25 features according to Lei et al.:
T1 to T11 and F1 to F14

25

ENV_Lei Envelope analysis - 25 features according to Lei et al.:
T1 to T11 and F1 to F14

25

EMD_4_Lei Empirical mode
decomposition

Number of extracted
IMFs: 4

25 features according to Lei et al.:
T1 to T11 and F1 to F14

125

DWT_4_Lei-TD Discrete wavelet
transform

Decomposition level: 4
Wavelet: Daubechies 13

11 time-domain features
according to Lei et al.: T1 to T11

55

WPT_4_Lei-TD Wavelet Packet
Transform

Decomposition level: 4
Wavelet: Daubechies 13

11 time-domain features
according to Lei et al.: T1 to T11

176

FB_5_FD Equally sized
frequency bands

Number of frequency
bands: 5

14 frequency -domain features:
F1 to F14

70

FB_10_FD Equally sized
frequency bands

Number of frequency
bands: 10

14 frequency -domain features:
F1 to F14

140

FB_20_FD Equally sized
frequency bands

Number of frequency
bands: 20

14 frequency domain features: F1
to F14

280

FB_10_FD-mean Equally sized
frequency bands

Number of frequency
bands: 10

1 feature: Mean value in
frequency domain: F1

10

FB_20_FD-mean Equally sized
frequency bands

Number of frequency
bands: 20

1 feature: Mean value in
frequency domain: F1

20

FB_50_FD-mean Equally sized
frequency bands

Number of frequency
bands: 50

1 feature: Mean value in
frequency domain: F1

50

FB_100_FD-mean Equally sized
frequency bands

Number of frequency
bands: 100

1 feature: Mean value in
frequency domain: F1

100

OFB_one-octave_FD Octave based
frequency bands

Frequency band size:
One octave

14 frequency-domain features:
F1 to F14

140

OFB_third-octave_FD Octave based
frequency bands

Frequency band size:
Third octave

14 frequency-domain features:
F1 to F14

336

OFB_one-octave_FD-
mean

Octave-based
frequency bands

Frequency band size:
One octave

1 feature: Mean value in
frequency domain: F1

10

OFB_third-octave_FD-
mean

Octave-based
frequency bands

Frequency band size:
Third octave

1 feature: Mean value in
frequency domain: F1

24



Entropy 2023, 25, 1278 9 of 15

CWRU data

Features 
for training

Features 
for tes�ng

Feature 
genera�on

5-fold cross-
valida�on 

train-test-split

Fit standard-
scaler and scale 

features
Scale features

Fit PCA, 
transform 

features and 
reduce to 10 PCs

Transform 
features with 

prefi�ed PCA and 
reduce to 10 PCs

Train random 
forest

Evaluate 
predic�ons on 
random forest

Select 10 best 
features by RFFI 

of complete 
feature set

Select 10 best 
features by RFFI 

of complete 
feature set

Accuracy

Figure 3. Workflow for feature set evaluation.

4. Results and Discussion

In the following, the prediction accuracies achieved using the different feature engi-
neering methods are compared. The results are shown in Figure 4, where each bar indicates
the mean value of the accuracies obtained within the five-fold cross-validation. Addi-
tionally, the standard deviation resulting from the individual cross-validation iterations is
visualized at the top of each bar. For each feature set, the complete feature set is used, as
well as the feature sets reduced to 10 features with the help of the RFFI and PCA methods
for comparison purposes.

Looking at the results generated using the raw signal directly, it is apparent that neither
the sole use of the time-domain (RAW_TD) nor the frequency-domain (RAW_FD) features
leads to particularly good results. In comparison, combining the two domains leads to
significantly better performance. However, the complete collection of 42 features presented
in the fundamentals section (RAW_all) cannot provide a significant advantage compared
to the 25 features proposed by Lei et al. [11,12] (RAW_Lei). Therefore, in order to generate
compact feature sets, the feature set according to Lei et al. is used for further investigations.
Applying envelope analysis (ENV) does not show any advantage over the raw signal in
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the analyses performed here. However, both Empirical Mode Decompostion (EMD) and
Wavelet Transforms (DWT and WPT) lead to increased accuracies when considering the
complete feature set. What is remarkable about the latter feature sets is their rather bad
performance when using the reduced 10 principal components. Apparently, due to the
large feature count of these feature sets, relevant information is lost when applying PCA.

RAW_TD

RAW_FD
RAW_all

RAW_Lei

ENV_Lei

EMD_4_Lei

DWT_4_Lei-TD

WPT_4_Lei-TD

FB_5_FD

FB_10_FD

FB_20_FD

FB_10_FD-mean

FB_20_FD-mean

FB_50_FD-mean

FB_100_FD-mean

OFB_one-octave_FD

OFB_third-octave_FD

OFB_one-octave_FD-mean

OFB_third-octave_FD-mean

Feature sets

84

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 in
 %

Complete feature set
10 most important features (RFFI)
10 principal components (PCA)

Figure 4. Accuracy comparison for different features sets.

Especially good results are provided by all feature sets based on the frequency band
processing methods (FB and OFB). A differentiation is to be made between feature sets that
use all 14 frequency domain features and the feature sets that are formed exclusively with
the frequency-domain mean value. Both variants work very well, and the accuracies reach
values close to 100%. The following four feature sets achieve the highest average accuracies
with values above 99.9%:

• FB_20_FD;
• FB_100_FD-mean;
• OFB_one-octave_FD;
• OFB_third-octave_FD.

Furthermore, some of the feature sets reduced to a feature count of 10 achieve average
accuracies above 99.0%. The two best-performing feature sets reduced using the RFFI
method are listed first:

• FB_20_FD-mean;
• OFB_third-octave_FD-mean.

Reducing the number of features to 10 by PCA, the following two feature sets perform
best:

• FB_20_FD;
• OFB_third-octave_FD.

Based on these results, it can be concluded that considering separated frequency bands
for feature calculation is particularly good for extracting the entirety of relevant information
from vibration signals.
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To further compare the results with a deep learning method, the performance eval-
uation procedure was based on Magar et al. [28]. They propose a deep CNN for the
classification of rolling bearing faults and achieved an average accuracy of 98.5% with
their best-performing three channel CNN. This result is significantly exceeded by the meth-
ods presented here—especially when frequency band separation is applied as the signal
processing method.

To evaluate the computed feature sets also in terms of their computational effort, the
computation times are measured and visualized in Figure 5.
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Figure 5. Feature calculation timings for different features sets.

The first thing to notice here is that EMD is a very computationally expensive method,
which can be explained by the high number of computational steps required when using
the iterative algorithm. Feature sets that are based on frequency bands (FB) as processing
method and the mean frequency-domain value (FD-mean) as feature formula require
particularly low computational effort. Since they provide very good prediction results at
the same time, the use of this feature engineering method seems to be recommendable.

The actual training of the random forest requires similarly little computation time, like
the feature generation. A single training process of the random forest takes between 0.8 and
1.3 s. The slight differences in training duration can be explained by the different number
of features per set. In terms of the required computational effort, the feature-engineering-
based approach proposed in this paper clearly offers advantages over purely data-driven
deep learning algorithms that are trained based on the raw signals.

Since the approach using frequency band separations is recommended, the features
based on frequency bands are now discussed in more detail. For visualization purposes, the
feature set FB_20_FD-mean is used here due to its compactness. To show the importance of
each feature based on this feature set, the random forest feature importance is shown in
Figure 6. Both the mean values represented by the bars, as well as the standard deviations
resulting from cross-validation, can be seen.

From this diagram, the importance of the frequency components for condition monitor-
ing can be observed. There are very important frequency bands both in the low-frequency
range around 2 kHz and in the high-frequency range towards 24 kHz. According to feature
importance, some frequency bands in the middle frequency ranges contain only a small
amount of information.
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Figure 6. Random forest feature importance for feature set FB_20_FD-mean.

The bearing characteristic excitation frequencies for the considered CWRU experi-
ments are within the range of 11 Hz to 156 Hz and are thus found in the lowest frequency
band of FB_20. These characteristic frequency calculations are performed according to the
equations given by Randall et al. [21]. We assume that the particularly important frequency
bands contain exactly the frequencies whose associated test rig eigenmodes are particularly
strongly excited in the case of certain bearing faults. Thereby, different damages excite dif-
ferent modes due to their different characteristic frequencies. For vibration-based condition
monitoring, the detection of exactly these eigenfrequencies is of particular importance.

To illustrate what distinguishes an important from an unimportant feature, the value
distributions of the most important and least important features from the feature set
FB_20_FD-mean are shown as box plots over the different bearing faults in Figure 7.

A well-performing and important feature is generally characterized by the fact that
the value distributions can be used to separate the different classes as well as possible. In
this example, an almost complete separation can be made purely visually between the
classes B007_2, Baseline_2, IR007_2 and OR007_6_2 based on the feature values for the
important feature (left). Based on the unimportant feature (right), the distributions of the
feature values overlap much more. Therefore, a clear separation of the different classes
is only possible to a minor extent. Such a domain-knowledge-supported feature analysis
allows understanding the decision making of the machine learning algorithm. In purely
data-driven approaches, such analysis is hardly possible, which makes the case for the use
of explicit feature engineering from an explainability perspective.



Entropy 2023, 25, 1278 13 of 15

B007_2
B014_2

B021_2

Baseline_2
IR007_2

IR014_2
IR021_2

OR007_6_2

OR014_6_2

OR021_6_2

Bearing fault label

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

FBs_2/20-2386Hz_freq_mean

B007_2
B014_2

B021_2

Baseline_2
IR007_2

IR014_2
IR021_2

OR007_6_2

OR014_6_2

OR021_6_2

Bearing fault label

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1e 5 FBs_13/20-15665Hz_freq_mean

Figure 7. Box plot of feature value distributions over the different classes for the most important
feature (left) and least important feature (right) from feature set FB_20_FD-mean.

5. Conclusions

This article demonstrated that the fault diagnosis of rolling bearings can be optimized
by applying proficient feature engineering incorporating domain knowledge. For this
purpose, known feature generation methods from various literature sources and novel
method combinations were investigated. Applied to the example of CWRU bearing fault
data, feature sets generated based on frequency band separation performed particularly
well, achieving cross-validated accuracies above 99.9% . Given the presented results, we
recommend using the FB_20_FD feature set without feature reduction as an exemplary
benchmark for future investigations. Besides the extension of investigations using different
datasets, it would be of interest for future research to evaluate an even larger feature
engineering design space.

In addition to the excellent prediction accuracy, the proposed feature engineering
approach provides advantages due to the simplicity of the calculation and the associated
low computational cost. Furthermore, compared with purely data-driven approaches, the
feature engineering method offers a good starting point for the interpretation of features
and thus improved explainability. Compared to another publication which examined the
same dataset using a deep CNN method, a significant improvement in prediction accuracy
was achieved. It should be critically noted here that the CWRU dataset provides a rather
small amount of data. We suspect that purely data-driven deep learning methods may be
more effective on much larger datasets.

To conclude, the most complex deep learning approaches should not necessarily be
used for vibration-based classification of rolling bearing faults. As demonstrated, feature
engineering methods based on frequency band separation and rather simple machine learn-
ing algorithms like random forests can enable very high prediction accuracies, especially
on small-to-medium-sized data. In particular, we propose to consider the features based on
frequency band separation for benchmarking purposes when developing or applying more
complex deep learning methods.
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