Exploring Focus and Depth-Induced Saliency Detection for Light Field
Abstract
:1. Introduction
- We introduce a light field saliency detection method taking into account interactions among the depth, focus, color, and compactness cues.
- We separate foreground and background by taking advantage of the focal stack and depth image. Exploring the depth feature, we extract the depth compactness and local saliency cues to emphasize local regions for refinement. At the same time, we integrate foreground probability with a depth contrast map to highlight the foreground.
- We develop the CDCA optimization model, which integrates color and depth cues to improve the spatial consistency of saliency detection results.
2. Related Works
2.1. RGB Image Saliency Detection
2.2. RGB-D Image Saliency Detection
2.3. Light Field Saliency Detection
3. Methodology
3.1. Compactness Based on Color and Depth Cues
3.2. Exploring Focus for Foreground Enhancement
3.3. Depth-Induced Refinement
3.4. Color and Depth-Induced Optimization
3.5. Output Model Using MAE
4. Experiment and Verification
4.1. Dataset and Parameter Setup
4.2. Performance Evaluation Measures
4.3. Comparison with State-of-the-Art Methods
4.4. Ablation Study
4.4.1. The Effectiveness of the CDCA Model
4.4.2. The Effectiveness of the Focal Stack and Depth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, H.G.; Park, J.; Choe, G.; Park, J.; Bok, Y.; Tai, Y.W.; So Kweon, I. Accurate depth map estimation from a lenslet light field camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1547–1555. [Google Scholar]
- Shin, C.; Jeon, H.G.; Yoon, Y.; Kweon, I.S.; Kim, S.J. Epinet: A fully-convolutional neural network using epipolar geometry for depth from light field images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4748–4757. [Google Scholar]
- Jin, J.; Hou, J.; Yuan, H.; Kwong, S. Learning light field angular super-resolution via a geometry-aware network. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11141–11148. [Google Scholar]
- Wang, S.; Zhou, T.; Lu, Y.; Di, H. Detail-preserving transformer for light field image super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2022; Volume 36, pp. 2522–2530. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [PubMed]
- Fan, D.P.; Ji, G.P.; Sun, G.; Cheng, M.M.; Shen, J.; Shao, L. Camouflaged object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2777–2787. [Google Scholar]
- Wei, Y.; Xia, W.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. CNN: Single-label to multi-label. arXiv 2014, arXiv:1406.5726. [Google Scholar]
- Li, N.; Ye, J.; Ji, Y.; Ling, H.; Yu, J. Saliency detection on light field. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2806–2813. [Google Scholar]
- Li, N.; Sun, B.; Yu, J. A weighted sparse coding framework for saliency detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5216–5223. [Google Scholar]
- Zhang, J.; Wang, M.; Gao, J.; Wang, Y.; Zhang, X.; Wu, X. Saliency Detection with a Deeper Investigation of Light Field. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015; pp. 2212–2218. [Google Scholar]
- Wang, A.; Wang, M.; Li, X.; Mi, Z.; Zhou, H. A two-stage Bayesian integration framework for salient object detection on light field. Neural Process. Lett. 2017, 46, 1083–1094. [Google Scholar]
- Zhang, J.; Wang, M.; Lin, L.; Yang, X.; Gao, J.; Rui, Y. Saliency detection on light field: A multi-cue approach. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2017, 13, 1–22. [Google Scholar]
- Piao, Y.; Li, X.; Zhang, M.; Yu, J.; Lu, H. Saliency detection via depth-induced cellular automata on light field. IEEE Trans. Image Process. 2019, 29, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, Y.; Zhang, Q.; Wang, Q. Region-based depth feature descriptor for saliency detection on light field. Multimed. Tools Appl. 2021, 80, 16329–16346. [Google Scholar]
- Piao, Y.; Rong, Z.; Zhang, M.; Li, X.; Lu, H. Deep Light-field-driven Saliency Detection from a Single View. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 904–911. [Google Scholar]
- Zhang, J.; Liu, Y.; Zhang, S.; Poppe, R.; Wang, M. Light field saliency detection with deep convolutional networks. IEEE Trans. Image Process. 2020, 29, 4421–4434. [Google Scholar]
- Wang, A. Three-stream cross-modal feature aggregation network for light field salient object detection. IEEE Signal Process. Lett. 2020, 28, 46–50. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, P.; Xu, K.; Zhang, P.; Lau, R.W. Weakly-supervised salient object detection on light fields. IEEE Trans. Image Process. 2022, 31, 6295–6305. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, W.; Fu, K.; Zhao, Q. MEANet: Multi-modal edge-aware network for light field salient object detection. Neurocomputing 2022, 491, 78–90. [Google Scholar] [CrossRef]
- Yuan, B.; Jiang, Y.; Fu, K.; Zhao, Q. Guided Focal Stack Refinement Network for Light Field Salient Object Detection. arXiv 2023, arXiv:2305.05260. [Google Scholar]
- Fan, D.P.; Lin, Z.; Zhang, Z.; Zhu, M.; Cheng, M.M. Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2075–2089. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, N.; Han, J. Learning selective self-mutual attention for RGB-D saliency detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13756–13765. [Google Scholar]
- Cong, R.; Lei, J.; Fu, H.; Hou, J.; Huang, Q.; Kwong, S. Going from RGB to RGBD saliency: A depth-guided transformation model. IEEE Trans. Cybern. 2019, 50, 3627–3639. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef]
- Cheng, M.M.; Mitra, N.; Huang, X.; Torr, P.; Hu, S.M. Salient Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 37, 569–582. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M.H. Saliency detection via graph-based manifold ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3166–3173. [Google Scholar]
- Zhu, W.; Liang, S.; Wei, Y.; Sun, J. Saliency optimization from robust background detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2814–2821. [Google Scholar]
- Zhou, L.; Yang, Z.; Yuan, Q.; Zhou, Z.; Hu, D. Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 2015, 24, 3308–3320. [Google Scholar] [CrossRef]
- Qin, Y.; Lu, H.; Xu, Y.; Wang, H. Saliency detection via cellular automata. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 110–119. [Google Scholar]
- Luo, Z.; Mishra, A.; Achkar, A.; Eichel, J.; Li, S.; Jodoin, P.M. Non-local deep features for salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6609–6617. [Google Scholar]
- Wang, W.; Zhao, S.; Shen, J.; Hoi, S.C.; Borji, A. Salient object detection with pyramid attention and salient edges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1448–1457. [Google Scholar]
- Chen, Z.; Xu, Q.; Cong, R.; Huang, Q. Global context-aware progressive aggregation network for salient object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 10599–10606. [Google Scholar]
- Zhou, T.; Wang, S.; Zhou, Y.; Yao, Y.; Li, J.; Shao, L. Motion-attentive transition for zero-shot video object segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13066–13073. [Google Scholar]
- Lai, Q.; Zhou, T.; Khan, S.; Sun, H.; Shen, J.; Shao, L. Weakly supervised visual saliency prediction. IEEE Trans. Image Process. 2022, 31, 3111–3124. [Google Scholar]
- Niu, Y.; Geng, Y.; Li, X.; Liu, F. Leveraging stereopsis for saliency analysis. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 454–461. [Google Scholar]
- Peng, H.; Li, B.; Xiong, W.; Hu, W.; Ji, R. RGBD salient object detection: A benchmark and algorithms. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part III 13. Springer: Cham, Switzerland, 2014; pp. 92–109. [Google Scholar]
- Ren, J.; Gong, X.; Yu, L.; Zhou, W.; Ying Yang, M. Exploiting global priors for RGB-D saliency detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 25–32. [Google Scholar]
- Cong, R.; Lei, J.; Zhang, C.; Huang, Q.; Cao, X.; Hou, C. Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE Signal Process. Lett. 2016, 23, 819–823. [Google Scholar] [CrossRef]
- Zhu, C.; Li, G.; Wang, W.; Wang, R. An innovative salient object detection using center-dark channel prior. In Proceedings of the IEEE international Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 1509–1515. [Google Scholar]
- Zhu, C.; Cai, X.; Huang, K.; Li, T.H.; Li, G. PDNet: Prior-model guided depth-enhanced network for salient object detection. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 199–204. [Google Scholar]
- Zhao, Y.; Zhao, J.; Li, J.; Chen, X. RGB-D salient object detection with ubiquitous target awareness. IEEE Trans. Image Process. 2021, 30, 7717–7731. [Google Scholar] [CrossRef]
- Wang, T.; Piao, Y.; Li, X.; Zhang, L.; Lu, H. Deep learning for light field saliency detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8838–8848. [Google Scholar]
- Zhang, M.; Ji, W.; Piao, Y.; Li, J.; Zhang, Y.; Xu, S.; Lu, H. LFNet: Light field fusion network for salient object detection. IEEE Trans. Image Process. 2020, 29, 6276–6287. [Google Scholar]
- Zhang, Q.; Wang, S.; Wang, X.; Sun, Z.; Kwong, S.; Jiang, J. A multi-task collaborative network for light field salient object detection. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 1849–1861. [Google Scholar] [CrossRef]
- Feng, M.; Liu, K.; Zhang, L.; Yu, H.; Wang, Y.; Mian, A. Learning from pixel-level noisy label: A new perspective for light field saliency detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1756–1766. [Google Scholar]
- Margolin, R.; Zelnik-Manor, L.; Tal, A. How to evaluate foreground maps? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 248–255. [Google Scholar]
- Fan, D.P.; Gong, C.; Cao, Y.; Ren, B.; Cheng, M.M.; Borji, A. Enhanced-alignment measure for binary foreground map evaluation. arXiv 2018, arXiv:1805.10421. [Google Scholar]
- Fan, D.P.; Cheng, M.M.; Liu, Y.; Li, T.; Borji, A. Structure-measure: A new way to evaluate foreground maps. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4548–4557. [Google Scholar]
Method | LFSD [8] | HFUT [12] | DUT-LF [15] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LFS [8] | 0.749 | 0.660 | 0.470 | 0.725 | 0.219 | 0.666 | 0.565 | 0.260 | 0.426 | 0.222 | 0.742 | 0.585 | 0.309 | 0.525 | 0.228 |
WSC [9] | 0.778 | 0.693 | 0.637 | 0.735 | 0.163 | 0.679 | 0.613 | 0.428 | 0.485 | 0.154 | 0.787 | 0.656 | 0.527 | 0.617 | 0.151 |
DILF [10] | 0.828 | 0.790 | 0.654 | 0.787 | 0.149 | 0.693 | 0.672 | 0.430 | 0.530 | 0.151 | 0.813 | 0.725 | 0.517 | 0.663 | 0.157 |
RDFD [14] | 0.813 | 0.760 | 0.647 | 0.792 | 0.152 | 0.691 | 0.619 | 0.355 | 0.518 | 0.215 | 0.782 | 0.658 | 0.443 | 0.599 | 0.192 |
Ours | 0.847 | 0.812 | 0.720 | 0.840 | 0.124 | 0.746 | 0.687 | 0.455 | 0.600 | 0.148 | 0.841 | 0.759 | 0.557 | 0.756 | 0.144 |
Category | Method | M | ||||
---|---|---|---|---|---|---|
RGB | DCLC [28] | 0.765 | 0.668 | 0.511 | 0.728 | 0.200 |
BSCA [29] | 0.780 | 0.723 | 0.549 | 0.719 | 0.198 | |
RGB-D | CDCP [39] | 0.763 | 0.699 | 0.595 | 0.692 | 0.181 |
DCMC [38] | 0.817 | 0.722 | 0.584 | 0.802 | 0.172 | |
RGB-D | D3Net [21] | 0.840 | 0.808 | 0.751 | 0.802 | 0.107 |
S2MA [22] | 0.851 | 0.820 | 0.764 | 0.816 | 0.105 | |
PDNet [40] | - | - | - | 0.822 | 0.075 | |
Light Field | DLSD [15] | 0.840 | 0.778 | 0.703 | 0.785 | 0.125 |
MAC [16] | 0.819 | 0.768 | 0.681 | 0.787 | 0.133 | |
NoiseLF [45] | - | - | - | 0.804 | 0.111 | |
Light Field | DCA [13] | - | - | - | 0.831 | 0.133 |
Ours | 0.847 | 0.812 | 0.720 | 0.840 | 0.124 |
Method | M | ||||
---|---|---|---|---|---|
Compactness | 0.801 | 0.700 | 0.577 | 0.743 | 0.178 |
w/o CDCA | 0.844 | 0.797 | 0.721 | 0.831 | 0.125 |
+ CDCA | 0.847 | 0.812 | 0.720 | 0.840 | 0.124 |
Method | Ours | LFS | LFS-CDCA | DILF | DILF-CDCA | WSC | WSC-CDCA | RDFD | RDFD-CDCA |
---|---|---|---|---|---|---|---|---|---|
0.840 | 0.725 | 0.802 | 0.787 | 0.814 | 0.735 | 0.800 | 0.792 | 0.820 | |
0.124 | 0.219 | 0.154 | 0.149 | 0.149 | 0.163 | 0.154 | 0.152 | 0.147 |
Settings | M | ||||
---|---|---|---|---|---|
Compactness | 0.801 | 0.700 | 0.577 | 0.743 | 0.178 |
FocalStack+ | 0.829 | 0.764 | 0.678 | 0.807 | 0.142 |
Depth+ | 0.791 | 0.746 | 0.624 | 0.747 | 0.162 |
FocalStack *+ | 0.828 | 0.791 | 0.697 | 0.811 | 0.134 |
Depth *+ | 0.834 | 0.794 | 0.674 | 0.828 | 0.141 |
MAE Filter | 0.847 | 0.812 | 0.720 | 0.840 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, F.; Peng, Z.; Zou, W.; Zhang, C. Exploring Focus and Depth-Induced Saliency Detection for Light Field. Entropy 2023, 25, 1336. https://doi.org/10.3390/e25091336
Zhang Y, Chen F, Peng Z, Zou W, Zhang C. Exploring Focus and Depth-Induced Saliency Detection for Light Field. Entropy. 2023; 25(9):1336. https://doi.org/10.3390/e25091336
Chicago/Turabian StyleZhang, Yani, Fen Chen, Zongju Peng, Wenhui Zou, and Changhe Zhang. 2023. "Exploring Focus and Depth-Induced Saliency Detection for Light Field" Entropy 25, no. 9: 1336. https://doi.org/10.3390/e25091336
APA StyleZhang, Y., Chen, F., Peng, Z., Zou, W., & Zhang, C. (2023). Exploring Focus and Depth-Induced Saliency Detection for Light Field. Entropy, 25(9), 1336. https://doi.org/10.3390/e25091336