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Abstract: We carry out a systematic study on the motion of test particles in the region inner to the
naked singularity of a quasi-hyperbolically symmetric γ-metric. The geodesic equations are written
and analyzed in detail. The obtained results are contrasted with the corresponding results obtained
for the axially symmetric γ-metric and the hyperbolically symmetric black hole. As in this latter
case, it is found that test particles experience a repulsive force within the horizon (naked singularity),
which prevents them from reaching the center. However, in the present case, this behavior is affected
by the parameter γ which measures the departure from the hyperbolical symmetry. These results
are obtained for radially moving particles as well as for particles moving in the θ − r subspace. The
possible relevance of these results in the explanation of extragalactic jets is revealed.

Keywords: black holes; exact solutions; general relativity

PACS: 04.40.-b; 04.20.-q; 04.40.Dg; 04.40.Nr

1. Introduction

In a recent paper [1], an alternative global description of the Schwarzschild black hole
has been proposed. The motivation behind such an endeavor is, on the one hand, the fact
that the spacetime within the horizon, in the classical picture, is necessarily non-static or,
in other words, that any transformation that maintains the static form of the Schwarzschild
metric (in the whole spacetime) is unable to remove the coordinate singularity appearing
on the horizon in the line element [2]. Indeed, as is well known, no static observers can
be defined inside the horizon (see [3,4] for a discussion on this point). This conclusion
becomes intelligible if we recall that the Schwarzschild horizon is also a Killing horizon,
implying that the time-like Killing vector existing outside the horizon becomes space-like
inside it.

On the other hand, based on the physically reasonable point of view that any equilib-
rium final state of a physical process should be static, it would be desirable to have a static
solution over the whole spacetime.

Based on the arguments above, the following model is proposed in [1].
Outside the horizon (R > 2M), one has the usual Schwarzschild line element corre-

sponding to the spherically symmetric vacuum solution to the Einstein equations, which in
polar coordinate reads (with signature +2)

ds2 = −
(

1− 2M
R

)
dt2 +

dR2(
1− 2M

R

) + R2dΩ2,

dΩ2 = dθ2 + sin2 θdφ2. (1)
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This metric is static and spherically symmetric, meaning that it admits four Killing
vectors:

X(0) = ∂t, X(2) = − cos φ∂θ + cot θ sin φ∂φ,

X(1) = ∂φ, X(3) = sin φ∂θ + cot θ cos φ∂φ. (2)

The solution proposed for R < 2M (with signature −2) is

ds2 =

(
2M
R
− 1
)

dt2 − dR2(
2M
R − 1

) − R2dΩ2,

dΩ2 = dθ2 + sinh2 θdφ2. (3)

This is a static solution, meaning that it admits the time-like Killing vector X(0);
however, unlike (1), it is not spherically symmetric but hyperbolically symmetric, meaning
that it admits the three Killing vectors

Y(2) = − cos φ∂θ + coth θ sin φ∂φ,

Y(1) = ∂φ, Y(3) = sin φ∂θ + coth θ cos φ∂φ. (4)

Thus, if one wishes to keep sphericity within the horizon, one should abandon staticity,
and if one wishes to keep staticity within the horizon, one should abandon sphericity.

The classical picture of the black hole entails sphericity within the horizon; instead,
in [1], we have proceeded differently and have assumed staticity within the horizon.

The three Killing vectors (4) define the hyperbolical symmetry. Spacetimes endowed
with hyperbolical symmetry have previously been the subject of research in different
contexts (see [5–25] and the references therein).

In [13], a general study of geodesics in the spacetime described by (3) is presented (see
also [20]), leading to some interesting conclusions about the behavior of a test particle in
this new picture of the Schwarzschild black hole:

• The gravitational force inside the region R < 2M is repulsive.
• Test particles cannot reach the center.
• Test particles can cross the horizon outward but only along the θ = 0 axis.

These intriguing results further reinforce the interest in this kind of system.
The procedure used in [1] to obtain (3) may be used to obtain hyperbolic versions of

other spacetimes. Of course, in this case, the obtained metric may not admit all the Killing
vectors describing the hyperbolical symmetry (4), and it will not describe a black hole but a
naked singularity. We shall refer to these spacetimes as quasi-hyperbolical.

It is the purpose of this work to delve deeper into this issue by considering a specific
quasi-hyperbolical spacetime. Thus, we shall analyze the quasi-hyperbolical version of
the γ-metric [26–29]. In particular, we endeavor to analyze the geodesic structure of
this spacetime and to contrast it with the corresponding geodesics of the hyperbolically
symmetric version of the Schwarzschild metric discussed in [13] and with the geodesic
structure of the γ-metric discussed in [30].

The motivation for this choice is twofold. On the one hand, the γ-metric corresponds
to a solution of the Laplace equation, in cylindrical coordinates, with the same Newtonian
source image [31] as the Schwarzschild metric (a rod). On the other hand, it has been
proved [32] that by extending the length of the rod to infinity one obtains the Levi-Civita
spacetime. At the same time, a link was established between the parameter γ, measuring
the mass density of the rod in the γ-metric, and the parameter σ, which is thought to be
related to the energy density of the source of the Levi-Civita spacetime. The limit of the
γ-metric when extending its rod source image to an infinite length produces, intriguingly,
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the flat Rindler spacetime. This result enhances even more the peculiar character of the
γ-spacetime.

In other words, the γ-metric is an appealing candidate to describe spacetimes close to
Schwarzschild, by means of exact analytical solutions to Einstein vacuum equations. This
of course is of utmost relevance and explains why it has been so extensively studied in the
past (see [33–52] and the references therein).

This line of research is further motivated by a promising new trend of investigations
aimed at developing tests of gravity theories and corresponding black hole (or naked singu-
larities) solutions for strong gravitational fields, which is based on the recent observations
of shadow images of the gravitationally collapsed objects at the center of the elliptical
galaxy M87 and at the center of the Milky Way galaxy by the Event Horizon Telescope
(EHT) Collaboration [53,54]. The important point is that GR has not been tested yet for such
strong fields [55–57]. The data from EHT observations can be used to obtain constraints on
the parameters of the mathematical solutions that could describe the geometry surrounding
those objects. These solutions include, among others, black hole spacetimes in modified
and alternative theories of gravity [58–62], naked singularities, as well as the classical GR
black hole with hair or immersed in matter fields [63–68].

Our purpose in this paper is to provide another, yet static non-spherical exact solution
to vacuum Einstein equations, which could be tested against the results of the Event
Horizon Telescope (EHT) Collaboration. In order to do so, we shall analyze in detail the
geodesics of test particles in the field of the quasi-hyperbolical γ-metric.

2. The γ-Metric and Its Hyperbolic Version

In Erez–Rosen coordinates, the line element for the γ-metric is

ds2 = f dt2 − f−1[gdr2 + hdθ2 + (r2 − 2mr) sin2 θdφ2], (5)

where

f =

(
1− 2m

r

)γ

, (6)

g =

(
1− 2m

r

1− 2m
r + m2

r2 sin2 θ

)γ2−1

, (7)

h =
r2(1− 2m

r
)γ2

(
1− 2m

r + m2

r2 sin2 θ
)γ2−1

, (8)

and γ is a constant parameter.
The mass (monopole) M and the quadrupole moment Q of the solution are given by

M = γm, Q = γ(1− γ2)
m3

3
, (9)

implying that the source will be oblate (prolate) for γ > 1 (γ < 1). Obviously, for γ = 1,
we recover the Schwarzschild solution.

The hyperbolic version of (5) reads

ds2 = Fdt2 − F−1[Gdr2 + Hdθ2 + (2mr− r2) sinh2 θdφ2], (10)
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where

F =

(
2m
r
− 1
)γ

, (11)

G =

(
2m
r − 1

2m
r − 1 + m2

r2 sinh2 θ

)γ2−1

, (12)

H =
r2( 2m

r − 1
)γ2

(
2m
r − 1 + m2

r2 sinh2 θ
)γ2−1

, (13)

which can be very easily obtained by following the procedure used in [1] to obtain (3)
from (1). It is easy to check that (10) is a solution to vacuum Einstein equations and that
γ = 1 corresponds to the line element (3).

Thus, as in [1], we shall assume that the line element defined by (10) describes the
region r < 2m, whereas the spacetime outside r = 2m is described by the “usual” γ-
metric (5). However, in this case, if γ 6= 1, the surface r = 2m represents a naked singularity
because the curvature invariants are singular on that surface (as expected from the Israel
theorem [69]).

Indeed, the calculation of the Kretschmann scalar K

K = RαβµνRαβµν, (14)

for (10), produces

K =
64m2γ2( 2m

r − 1)2γ(1 + m2 sinh2 θ
2mr−r2 )2γ2

r2(−2m + r)2(−m2 + 4mr− 2r2 + m2 cosh 2θ)3

{
−6r4 + 12mr3(2 + γ)

+ 3m3r(1 + γ)2(4 + γ)−m4(1 + γ)2(1 + γ + γ2)(1− cosh 2θ)

−3m2r2[10 + 3γ(4 + γ)] + m2[3r2γ2 − 3mrγ(1 + γ)2] cosh 2θ
}

, (15)

which is singular at r = 2m, except for γ = 1, in which case we obtain

K =
48m2

r6 . (16)

As it is evident that the metric (10) does not admit the three Killing vectors (4), the
γ-metric (5) does not admit the Killing vectors (2) describing the spherical symmetry as
well.

Indeed, from
LX gαβ = Xρ∂ρgαβ + gαρ∂βXρ + gβρ∂αXρ, (17)

where LX denotes the Lie derivative with respect to the vectors (2), we obtain for (5) two
non-vanishing independent components of (17)

LX gαβKαKβ = LX gαβLαLβ =
m2(1− γ2) sin 2θ cos φ

r2
(

1− 2m
r + m2

r2 sin2 θ
) , (18)
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LX gαβLαSβ = − sin φ

sin θ

( 1− 2m
r

1− 2m
r + m2

r2 sin2 θ

) γ2−1
2

(19)

−

1− 2m
r + m2

r2 sin2 θ

1− 2m
r


γ2−1

2

,

where the orthogonal tetrad associated to (5) is

Vα =

(
1√

f
, 0, 0, 0

)
, Kα =

(
0,
√

f /g, 0, 0
)

,

Lα =
(

0, 0,
√

f /h, 0
)

, Sα =

0, 0, 0,

√
f

r sin θ
√

1− 2m
r

.

On the other hand, calculating LYgαβ for (10) and (4), we obtain two non-vanishing
components

LYgαβK̃αK̃β = Lχ g̃αβ L̃α L̃β =
m2(γ2 − 1) sinh 2θ cos φ

r2
(

2m
r − 1 + m2

r2 sinh2 θ
) , (20)

LYgαβ L̃αS̃β =
sin φ

sinh θ

( 2m
r − 1

2m
r − 1 + m2

r2 sinh2 θ

) γ2−1
2

(21)

−

 2m
r − 1 + m2

r2 sinh2 θ
2m
r − 1


γ2−1

2

,

where the orthogonal tetrad associated to (10) is

Ṽα =

(
1√
F

, 0, 0, 0
)

, K̃α =
(

0,
√

F/G, 0, 0
)

,

L̃α =
(

0, 0,
√

F/H, 0
)

, S̃α =

0, 0, 0,

√
F

r sinh θ
√

2m
r − 1

.

In other words, the γ-metric deviates from spherical symmetry in a similar way as the
hyperbolic version of the γ-metric deviates from hyperbolical symmetry. This is the origin
of the term “quasi–hyperbolically symmetric” applied to (10).

3. Geodesics

We shall now find the geodesic equations for test particles in the metric (10). The qual-
itative differences in the trajectories of the test particles as compared with the γ-metric and
the metric (3) will be identified and discussed.

The equations governing the geodesics can be derived from the Lagrangian

2L = gαβ ẋα ẋβ, (22)

where the dot denotes differentiation with respect to an affine parameter s, which for
time-like geodesics coincides with the proper time.
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Then, from the Euler–Lagrange equations,

d
ds

(
∂L
∂ẋα

)
− ∂L

∂xα
= 0, (23)

we obtain for (10)

ẗ− 2γm
r2( 2m

r − 1)
ṙṫ = 0, (24)

r̈−
mγ( 2m

r − 1)2γ−γ2

r2( 2m
r − 1 + m2

r2 sinh2 θ)1−γ2
ṫ2

−m
r2

 (γ2 − γ− 1)
2m
r − 1

−
(γ2 − 1)

(
1 + m

r sinh2 θ
)

2m
r − 1 + m2

r2 sinh2 θ

ṙ2

− m2(γ2 − 1) sinh 2θ

r2
(

2m
r − 1 + m2

r2 sinh2 θ
) θ̇ṙ +

[
r + m(γ2 − γ− 2)

−
m(γ2 − 1)(1 + m

r sinh2 θ)
( 2m

r − 1
)(

2m
r − 1 + m2

r2 sinh2 θ
)

θ̇2

−
[m(1 + γ)− r]( 2m

r − 1 + m2

r2 sinh2 θ)γ2−1 sinh2 θ

( 2m
r − 1)γ2−1

φ̇2

= 0, (25)

θ̈ +
m2(γ2 − 1) sinh 2θ

2r4
( 2m

r − 1
)( 2m

r − 1 + m2

r2 sinh2 θ
) ṙ2

+ 2

1
r
+

m(γ− γ2)

r2
( 2m

r − 1
) + m(γ2 − 1)

(
1 + m

r sinh2 θ
)

r2
(

2m
r − 1 + m2

r2 sinh2 θ
)
θ̇ṙ

− m2(γ2 − 1) sinh 2θ

2r2
(

2m
r − 1 + m2

r2 sinh2 θ
) θ̇2

−
( 2m

r − 1)1−γ2
sinh 2θ

2( 2m
r − 1 + m2

r2 sinh2 θ)1−γ2
φ̇2 = 0, (26)

φ̈ +
2

r2
( 2m

r − 1
) [m(1 + γ)− r]ṙφ̇ + (2 coth θ)θ̇φ̇ = 0. (27)

Let us first analyze some particular cases from which some important general results
on the geodesic structure of the system may be deduced.

Thus, let us assume that at some given initial s = s0 we have θ̇ = 0, and then it follows
at once from (26) that such a condition will propagate in time only if θ = 0. In other words,
any θ = constant trajectory is unstable except θ = 0. It is worth stressing the difference
between this case and the situation in the purely hyperbolic metric where φ̇ = 0 also
ensures stability.
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Next, let us consider the case of circular orbits. These are defined by ṙ = θ̇ = 0,
producing

ẗ = φ̈ = 0, (28)

mγṫ2 +
r2[(γ + 1)m− r]
( 2m

r − 1)2γ−1
sinh2 θφ̇2 = 0, (29)

sinh θ cosh θφ̇2 = 0. (30)

From (30), it is obvious that, as for the hyperbolically symmetric black hole, no circular
geodesics exist in this case, which is at variance with the γ-metric spacetime.

Let us now consider the motion of a test particle along a meridional line θ (ṙ = φ̇ = 0).
In this case, as shown in [13], motion is forbidden if γ = 1; however, from (25), it is a simple
matter to see that for γ > 1 there are possible solutions.

More so, let us assume (always in the purely meridional motion case) that at s = 0
we have θ = constant 6= 0 and θ̇ = 0. Then, if γ = 1, it follows from (26) that θ̈ = 0.
The particle remains on the same plane, a result already obtained in [13]. However, if γ 6= 1,
θ̈ does not need to vanish, and the particle leaves the plane (θ = constant).

This effect implies the existence of a force parallel to the axis of symmetry, a result
similar to the one obtained for the γ-metric, and which illustrates further the influence of
the deviation from the hyperbolically symmetric case.

Let us consider the case of purely radial geodesics described by θ̇ = φ̇ = 0, producing

ẗ− 2γm
r2( 2m

r − 1)
ṙṫ = 0, (31)

r̈−
mγ( 2m

r − 1)2γ−γ2

r2( 2m
r − 1 + m2

r2 sinh2 θ)1−γ2
ṫ2

−m
r2

 (γ2 − γ− 1)
2m
r − 1

−
(γ2 − 1)

(
1 + m

r sinh2 θ
)

2m
r − 1 + m2

r2 sinh2 θ

ṙ2 = 0, (32)

m2(γ2 − 1) sinh 2θ

2r4
( 2m

r − 1
)( 2m

r − 1 + m2

r2 sinh2 θ
) ṙ2 = 0. (33)

The last of the equations above indicates that, if γ 6= 1, purely radial geodesics only
exist along the axis θ = 0.

In this case, it follows from (23), due to the symmetry imposed, that

∂L
∂ṫ

= constant = E = ṫ
(

2m
r
− 1
)γ

, (34)

∂L
∂φ̇

= constant = L = −φ̇

(
2m
r
− 1
)1−γ

r2 sinh2 θ, (35)

where E and L represent, respectively, the total energy and the angular momentum of the
test particle. Because we have already seen that the only stable radial trajectory is θ = 0,
the angular momentum vanishes for those trajectories.

Then, using (34), we obtain for the first integral of (32)

ṙ2 = E2 −V2, (36)
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where V, which can be associated with the potential energy of the test particle, is given by

V2 ≡
(

2m
r
− 1
)γ

, (37)

or, introducing the dimensionless variable x ≡ r/m, (37) becomes

V2 =

(
2
x
− 1
)γ

. (38)

As we see from Figure 1, for any given value of E (however large, but finite), the test
particle inside the naked singularity never reaches the center, moving between the closest
point to the center where E = V, and x = ∞ because nothing prevents the particle from
crossing the naked singularity outwardly. It is possible however, because for x > 2 the
spacetime is no longer described by (10) but by the usual γ-metric (5), that for some value
of E the particle bounces back at a point (x > 2) where E = V.

Thus, for this particular value of energy, we have a bounded trajectory with extreme
points at both sides of the naked singularity. For sufficiently large (but finite) values of
energy, the trajectory is unbounded and the particle moves between a point close to, but at
a finite distance from, the center and r → ∞.

The above picture is quite different from the behavior of the test particle in the γ-metric
as described in [30] and similar to the one observed for a radially moving test particle inside
the horizon for the metric (3). However, in our case, the parameter γ affects the behavior
of the test particle as is apparent from Figure 1. Specifically, for γ > 1, the test particle is
repelled more strongly from the center, bouncing back at values of r larger than in the case
γ ≤ 1.

Figure 1. V2 as function of x, for the three values of γ indicated in the figure.

In order to understand the results above, it is convenient to calculate the four-acceleration
of a static observer in the frame of (10). We recall that a static observer is one whose
four-velocity Uµ is proportional to the Killing time-like vector [3], i.e.,

Uµ =

[
1

( 2m
r − 1)γ/2

, 0, 0, 0

]
. (39)
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Then, for the four-acceleration aµ ≡ UβUµ
;β, we obtain for the region inner to the naked

singularity

aµ =

0,−
mγ
(

2m
r − 1 + m2

r2 sinh2 θ
)γ2−1

r2
( 2m

r − 1
)γ2−γ

, 0, 0

, (40)

whereas for the region outside the naked singularity, described by (5), we obtain, with

Uµ =

[
1

(1− 2m
r )γ/2

, 0, 0, 0

]
, (41)

aµ =

0,
mγ
(

1− 2m
r + m2

r2 sin2 θ
)γ2−1

r2
(
1− 2m

r
)γ2−γ

, 0, 0

. (42)

The physical meaning of (40) and (42) is clear; it represents the inertial radial accelera-
tion, which is necessary in order to maintain a static frame, by canceling the gravitational
acceleration exerted on the frame, for the spacetimes (10) and (5), respectively. Because this
acceleration is directed radially inward (outward), in the region inner (outer) to the naked
singularity, it means that the gravitational force is repulsive (attractive). The attractive
nature of gravitation in (5) is expected, whereas its repulsive nature in (10) is characteristic
of hyperbolical spacetimes and explains the peculiarities of the orbits inside the horizon.
In particular, we see from (40) that the absolute value of the radial acceleration grows with
γ, implying that the repulsion is stronger for a larger γ, as it follows from Figure 1.

We shall next consider the geodesics in the θ − r plane (φ = constant). The interest
in this case becomes intelligible if we recall that our spacetime (10) is axially symmetric,
implying that the general properties of motion on any slice φ = constant would be invariant
with respect to rotation around the symmetry axis.

In this case, geodesic equations read

ẗ− 2γm
r2( 2m

r − 1)
ṙṫ = 0, (43)

r̈−
mγ( 2m

r − 1)2γ−γ2

r2( 2m
r − 1 + m2

r2 sinh2 θ)1−γ2
ṫ2

−m
r2

 (γ2 − γ− 1)
2m
r − 1

−
(γ2 − 1)

(
1 + m

r sinh2 θ
)

2m
r − 1 + m2

r2 sinh2 θ

ṙ2

− m2(γ2 − 1) sinh 2θ

r2
(

2m
r − 1 + m2

r2 sinh2 θ
) θ̇ṙ +

[
r + m(γ2 − γ− 2)

−
m(γ2 − 1)(1 + m

r sinh2 θ)
( 2m

r − 1
)(

2m
r − 1 + m2

r2 sinh2 θ
)

θ̇2 = 0, (44)
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θ̈ +
m2(γ2 − 1) sinh 2θ

2r4
( 2m

r − 1
)( 2m

r − 1 + m2

r2 sinh2 θ
) ṙ2

+ 2

1
r
+

m(γ− γ2)

r2
( 2m

r − 1
) + m(γ2 − 1)

(
1 + m

r sinh2 θ
)

r2
(

2m
r − 1 + m2

r2 sinh2 θ
)
θ̇ṙ

− m2(γ2 − 1) sinh 2θ

2r2
(

2m
r − 1 + m2

r2 sinh2 θ
) θ̇2 = 0. (45)

To simplify the calculations, we shall adopt a perturbative approach assuming
γ = 1 + ε, for ε << 1, and neglecting terms of order ε2 and higher. In doing so, we
obtain from (45) at order O(0) and O(ε), respectively,

(θ̇r2 )̇ = 0 ⇒ θ̇ =
c1

r2 , (46)

and

m2 sinh 2θ ṙ2

r4( 2m
r − 1)( 2m

r − 1 + m2

r2 sinh2 θ)

− m2 sinh 2θ θ̇2

r2( 2m
r − 1 + m2

r2 sinh2 θ)

− 2m
r2

 1− 2m
r + ( 2m

r −
3m2

r2 ) sinh2 θ

( 2m
r − 1)( 2m

r − 1 + m2

r2 sinh2 θ)

θ̇ ṙ = 0.

(47)

Introducing

ṙ = rθ θ̇, y =
m
r

, (48)

Equation (47) becomes

y2
θ +

2yθ

sinh 2θ

[
1− 2y + (2y− 3y2) sinh2 θ

]
− y2(2y− 1) = 0, (49)

whose integration produces
y = constant = 1/2. (50)

The order O(0) can be easily calculated from (25) and (46), producing

r̈− mE2

r2( 2m
r − 1)

+
m ṙ2

r2( 2m
r − 1)

+
(r− 2m)c2

1
r4 = 0, (51)

whose first integral reads

ṙ =

√
E2 − (

2m
r
− 1)(

c2
1

r2 + 1), (52)

or, introducing the variable z

ṙ = rθ θ̇, z ≡ 2y =
2m
r

, (53)

zθ =
1
k

√
E2 − (z− 1)(k2z2 + 1), (54)
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with c1 = −2mk.
This equation was already obtained and solved for the case γ = 1 (Equation (38)

in [13]), with the boundary condition that all trajectories coincide at θ = 0, z = 1. Here,
we present the integration of such an equation for the values indicated in Figure 2 (please
notice that for this figure we have used the variable z = 2y in order to keep the same
notation for the order O(0) as in [13]).

Let us now analyze in some detail the physical implications of Figure 2 and Equation (50).
As we can see, the solution of the order 0(ε) maintains a constant value of y which is the
same value assumed in the boundary condition. At order O(0), we see from Figure 2 that
the particle never reaches the center, which may only happen as k and E tend to infinity.
In either case, the particle never outwardly crosses the surface y = 1/2 (z = 1), thus
happening only along the radial geodesic θ = 0. The influence of γ in the final picture can
be deduced by combining Figure 2 and Equation (50).

Figure 2. z ≡ 2m
r as function of θ, for the values of k indicated on the figure and E = 3.

4. Discussion and Conclusions

Motivated by the relevance of the γ-metric (5) and the hyperbolically symmetric met-
ric (3), in this work we have proposed to analyze the physical properties of the hyperbolical
version of the γ-metric. Such a spacetime described by the line element (10) shares some
important features with the hyperbolically symmetric spacetime described by (3), the most
relevant of which is the repulsive character of gravity inside the surface r = 2m. On the
other hand, as for the γ-metric (5), the surface r = 2m is not regular, thereby describing a
naked singularity. The spacetime (10) is not hyperbolically symmetric in the sense that it
does not admit the Killing vectors (4), a fact suggesting the name “quasi–hyperbolically
symmetric” for such a spacetime.

We have focused our study on the characteristics of the motion of test particles in
the spacetime described by (10), with special attention paid to the role of the parameter γ.
Thus, our main conclusions are as follows:

1. The test particles may cross the surface r = 2m outwardly but only along the axis
θ = 0. This situation appears in the study of the geodesics in (3) presented in [13];
however, in our case, the distinctive repulsive force of this spacetime is increased by
the parameter γ.

2. Like in the hyperbolically symmetric case, the test particles never reach the center;
however, in our case, the test particles radially directed to the center bounce back
farther from the center as γ increases. This result becomes intelligible from a simple
inspection of (40).

3. The motion of the test particles on any slice φ = constant, though qualitatively similar
to the case γ = 1, is affected by the value of γ as follows from the analysis of Figure 2
and (50).
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As we mentioned before, a new line of investigations based on observations of the
shadow images of the gravitationally collapsed objects aiming to test gravity theories and
the corresponding black hole (or naked singularities) solutions for strong gravitational
fields is right now attracting the interest of many researchers. Such studies are particularly
suitable for contrasting the physical relevance of different exact solutions to the field
equations. We believe that the metric exhibited here deserves to be considered as a suitable
candidate for such comparative studies. However, it is worth mentioning that we have
restricted our study to time-like geodesics, whereas any contrast with ETH observational
data would require results obtained from the study of null geodesics. Notwithstanding,
the results obtained for time-like geodesics here presented point to the potential of the
metric under consideration.

We would like to conclude with a mention to what we believe is one of the most
promising applications of hyperbolical metrics. We have in mind the modeling of extra-
galactic relativistic jets. It should be clear that, at present, such an application remains
within the realm of speculation; however, the comments below justify our (moderate)
optimism.

Relativistic jets are highly energetic phenomena which have been observed in many
systems (see [70–73] and the references therein), usually associated with the presence of
a compact object and exhibiting a high degree of collimation. Since no consensus has
been reached until now, concerning the basic mechanism explaining these two features of
jets (collimation and high energies), we feel motivated to speculate that the metric here
considered could be considered as a possible engine behind the jets.

Indeed, on the one hand, the collimation is ensured by the fact that test particles may
outwardly cross the naked singularity but only along the θ = 0 axis. On the other hand,
as implied by (40), the strength of the repulsive gravitational force acting on the particle
as r → 0 increases as 1

r(γ+2)
. This explains the high energies of particles bouncing back

from regions close to r = 0. More so, the fact that the repulsive force would be larger for
larger values of γ further enhances the efficiency of our model as the engine of such jets,
as compared with the γ = 1 case.

It goes without saying that confirmation of this mechanism requires a much more
detailed setup based on astronomical observations of jets, which is clearly out of the scope
of this work.
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