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Abstract: We examine the effects of imperfect phase estimation of a reference signal on the bit error
rate and mutual information over a communication channel influenced by fading and thermal noise.
The Two-Wave Diffuse-Power (TWDP) model is utilized for statistical characterization of propagation
environment where there are two dominant line-of-sight components together with diffuse ones.
We derive novel analytical expression of the Fourier series for probability density function arising
from the composite received signal phase. Further, the expression for the bit error rate is presented
and numerically evaluated. We develop efficient analytical, numerical and simulation methods
for estimating the value of the error floor and identifying the range of acceptable signal-to-noise
ratio (SNR) values in cases when the floor is present during the detection of multilevel phase-
shift keying (PSK) signals. In addition, we use Monte Carlo simulations in order to evaluate the
mutual information for modulation orders two, four and eight, and identify its dependence on
receiver hardware imperfections under the given channel conditions. Our results expose direct
correspondence between bit error rate and mutual information value on one side, and the parameters
of TWDP channel, SNR and phase noise standard deviation on the other side. The results illustrate
that the error floor values are strongly influenced by the phase noise when signals propagate over a
TWDP channel. In addition, the phase noise considerably affects the mutual information.

Keywords: fading channel; error probability; wireless communications; simulations

1. Introduction

Beyond 5G networks should satisfy many Quality-of-Service (QoS) requirements re-
lated to high data rates, reliability, energy efficiency and security, as well as low latency and
wide radio coverage [1]. In order to achieve high spectral efficiency, high-order modulations
are applied. However, as the order of modulation increases, transmission of information be-
comes more sensitive to both channel impairments and receiver hardware imperfections [2].
In general, signal detection can be coherent or incoherent. The application of coherent detec-
tion is motivated by potential energy gains. However, in order to realize coherent detection,
it is necessary to regenerate the phase of the reference carrier. The reference carrier phase
can be extracted using a phase-locked loop (PLL) [2–6]. The regenerated phase should
follow the random signal phase fluctuations generated due to multipath propagation. Even
in a channel with additive white Gaussian noise (AWGN), the extraction of the reference
carrier phase is not ideal [6]. In other words, there is a difference between the signal phase
at the receiver input and the regenerated carrier phase. The difference between these two
phases is called the phase error or phase noise. This phase error is a random process and is
known to lead to the significant degradation of the system performance [2–6].
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1.1. Literature Review

In wireless channels where, in addition to thermal noise, there is also multipath signal
propagation, the problem of imperfect phase estimation from the received signal becomes
even more actual. A number of distinct statistical models have been proposed so far in order
to represent the effect of multipath fading, such as Rayleigh, Rice, Nakagami-m, Nakagami-
q, etc. [2]. When multipath fading follows Nakagami-m distribution, its influence on error
probability in conjunction with phase noise is considered in [3], while shadowed multipath
fading is analyzed in a similar scenario in [4].The influence of the phase noise on the error
probability when multipath fading is modeled by Nakagami-m distribution was considered
in [3], while the effect of imperfect reference signal extraction on the error probability over
a shadowed multipath fading was analyzed in [4]. Smadi and Prabhu in [5] presented a
novel treatment in estimating the effect of phase noise on error performance of binary phase-
shift keying (BPSK) and quaternary phase-shift keying (QPSK) with equal gain combined
under Rayleigh, Rician and Nakagami-m fading environment. These papers show that
communication systems performance can be significantly impaired by imperfect reference
carrier recovery in adition to multipath fading effects alone, when signals propagate over
fading channels of Rayleigh, Rician, Nakagami-m and shadowed Nakagami-m type.

Recently, several papers suggested models for mm-Wave channels [1,7–13]. All of
these distributions are from the group of fluctuating multiple-ray models [1]. In a case when
two dominant line-of-sight (specular) waves reach the receiver, alongside the diffuse wave
components of the transmission, there is a suitable fading model of so-called Two-Way
Diffuse-Power (TWDP) that was initially proposed by Durgin et al. in [7]. In the paper
that introduces the TWDP model, the authors also present an approximate expression
for probability density function (PDF) regarding the statistical variations of the signal
envelope. The fading model has been continuously studied by other researchers [8–13].
In [8], Kim et al. discuss shortcomings of approximate expression from [7], and derive exact
and suitable approximate expressions for determining bit error rate (BER) in cases when the
BPSK signal is detected after being transmitted over a TWDP channel while retaining large
SNR values. In [9,10], Rao et al. develop novel expressions for system performance metrics
and present an interesting result showing that the received signal envelope conforming to
the TWDP fading model encompasses a closed-form moment generation function (MGF).
The authors of [11,12] propose a novel aspect on TWDP channel model parameters that
differs in comparison with parametrization formerly used in [7–10]. This parametrization is
actually based on formula originally derived in [14]. An experimental analysis has shown
recently that this fading model is well suited for signal description in outdoor and indoor
propagation environments in the 60 GHz range [13].

1.2. Contribution

To the best of our knowledge, all previous works considering the TWDP fading
model are based on the assumption of ideal reference carrier phase extraction [7–13].
The results obtained in such a way should be considered optimistic, in general. In this
paper, we consider the effect of imperfect phase recovery of reference signal on system
performance when signal propagates over a TWDP channel. The reference signal recovery
can be performed from modulated received signal or from pilot signal. Both ways for
reference signal phase recovery over TWDP channel are open problems. For illustrative
purposes, we are focusing on reference signal recovery from the pilot signal, where the
loop bandwidth is much lesser than the channel bandwidth [3–5]. The signal phase at
the voltage-controlled oscillator (VCO) output does not perfectly follow the phase of the
signal being detected. Generally, a stochastic difference exists between the incoming signal
phase and the signal phase at the VCO output. The phase noise is modeled by Tikhonov
distribution according to [2–6]. Our goal in this paper is to determine the impact of phase
noise on the BER performance and mutual information [15,16] when multilevel phase-shift
keying (PSK) signal is transmitted over a TWDP channel. We estimate the error probability
in three different ways. Firstly, we present the Fourier Series Method (FSM) for estimating
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the symbol-error rate (SER) in detecting multilevel PSK signals over a TWDP channel.
This method is based on representing the PDF of the composite received signal phase
in terms of Fourier series with coefficients depending on the channel conditions. This
method is presented in [2] for the case when multipath fading is described by Nakagami-m
distribution. The main challenge in application of FSM is to express the Fourier series
coefficients in appropriate analytical form for given propagation environment. Here,
we derive new analytical formulas for Fourier coefficients, which provide us with the
possibility to determine the SER for any value of the number of phase levels (denoted by
M) and for all numerical values of TWDP channel parameters encountered in practice.
Secondly, we provide formulas for numerically calculating the BER when detecting BPSK
and QPSK signals followed by explanations of numerical evaluations. Thirdly, numerical
values are verified by independent Monte Carlo simulations. Further, by using Monte
Carlo simulations, we calculate mutual information for modulation orders of two, four,
and eight. We connect error rate and mutual information with the standard deviation of
phase noise, channel parameters and SNR in the case when reference signal phase recovery
is performed from the pilot signal. The results presented here for QPSK correspond directly
to the fourth-order quadrature amplitude modulation (4QAM) format suggested for 5G
and beyond networks [17]. We show that our results can be reduced to already published
results from the literature in the special case when the assumption is introduced that the
reference signal phase recovery is perfect [9].

1.3. Structure

The paper is organized in the following way. In Section 2, we describe the model of
the system containing a transmitter, a channel, and a receiver. In Section 3, we explain the
evaluation of error probability and mutual information, while Section 4 presents numerical
and simulation results. Concluding remarks are emphasized in Section 5.

2. System Model

In this Section, we describe the system model (Figure 1) containing a transmitter, a
channel, and a receiver. The channel model and receiver imperfections are described in
greater detail.

 

Gray mapper
bits->symbol

{ }X
Interleaver

MPSK
modulator

Thermal
noise

mm-Wave
channel

MPSK
demodulator

Reference
signal phase
extraction

Deinterleaver
{ }Y Demapper

symbol->bits
Inf.
bits

Inf.
bits

Reference
signal phase
extraction

r, θ

θ

Discrete memoryless channel

Figure 1. System model.

2.1. Transmitter

The information bits are mapped into symbols using the Gray code. If we denote
the order of digital phase modulation by M, then one symbol contains log2 M bits. The
symbols are then written to the interleaver and read out from it. The interleaver is used
in order to make fading values over the channel to be mutually uncorrelated over the
adjacent symbols. Also, it is assumed that the values the thermal noise during the duration
of one symbol are uncorrelated with the values of this noise during the duration of the
next symbol, which also applies to the influence of the phase noise. In other words, by
using interleaving at the transmitter and complementary de-interleaving in the receiver, the
signal is transmitted over a memoryless channel. The interleaver output symbols are fed to
the MPSK modulator. Over the duration of one information symbol, the modulator outputs
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a signal of the following form: si = A e jφn , where the signal amplitude A is constant and
the modulated phase has a value from the set φn ∈ {0, 2π/M, · · · 2π(M− 1)/M}, where
M is the number of phase levels [2].

2.2. Channel

We assume that a wireless channel can be established between a transmitter and a
receiver, and the signal is transmitted over this channel. During the signal transmission,
there are multiple copies of the transmitted EM wave, and they simulataneously excite the
receiver antenna. The TWDP model is general and it assumes two dominant line-of-sight
(LOS) components and diffuse components. The two specular components have amplitudes
that are constant, and their phases are distributed uniformly over the interval from 0 to
2π. We denote the amplitudes of these specular components by V1 and V2, while their
phases are denoted by Ψ1 and Ψ2. The scattering component statistics correspond to a
Rayleigh distribution, i.e., it consists of two Gaussian-distributed in-phase and quadrature
components having zero mean and same standard deviations of σF. These random in-phase
and quadrature components are denoted by xF and yF, respectively. The resulting complex
signal envelope at the receiver is [7]

Vr = V1 e jΨ1 + V2 e jΨ2 + xF + jyF. (1)

The complex fading can be presented in terms of the envelope r and argument θ as

Vr = r e jθ . (2)

The resulting envelope is given by

r =
√
(V1 cos Ψ1 + V2 cos Ψ2 + xF)2 + (V1 sin Ψ1 + V2 sin Ψ2 + yF)2. (3)

The PDF of the fading envelope can be expressed in different forms. An approximation
is given by ([7], Equation (4)). However, some shortcomings of this approximation were
emphasized in [8]. By using an analogous with the situation when there are a useful signal,
co-channel interference and Gaussian noise, an infinite series form of PDF was presented
in [11], where the authors introduced the novel way for parametrization. Namely, this
fading model can be described using two parameters denoted by K and Γ. The value of
parameter K represents the power of the specular components-to-power of the diffuse
component, while parameter Γ is the ratio between the amplitudes of specular components.
These two parameters are defined as [11]

K = (V2
1 + V2

2 )/(2σ2
F), Γ = V2/V1. (4)

By varying the value of the basic parameter denoted by K in our work, it is possible to
make specular components dominant compared with diffuse components, and vice versa.
With increasing the value of parameter K, the specular components become dominant
in comparison to the diffuse component. For example, in the terrestrial mobile links,
parameter K has values that typicaly range from 0 dB to 15 dB [7–12]. In addition, by
varying the value of parameter Γ, it is possible to scale the values of amplitudes of two
specular components. The value of parameter Γ belongs to the interval between 0 and 1.
When Γ = 0, it follows that the one specular component is equal to zero, while when Γ = 1,
it follows that the amplitudes of specular components are equal. Instead of parameter Γ,
the authors of [7–10] used parameter ∆ defined as ∆ = 2V1V2/(V2

1 + V2
2 ).

Without losing generality, we introduce the assumption that the mean of squared
envelope value equals one, i.e.,

r2 = V2
1 + V2

2 + 2σ2
F = 1. (5)
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From (4) and (5), it follows that

V1 =
√

K/((1 + Γ2)(1 + K)), V2 = V1 · Γ, (6)

σF =
√

1/(2(1 + K)). (7)

Based on the derivation approach from [11], the PDF of the fading envelope can be
expressed in the form of

pR(r) =
r

σ2
F

e
− r2+V2

1 +V2
2

2σ2
F

{
I0

(
rV1

σ2
F

)
I0

(
rV2

σ2
F

)
I0

(
V1V2

σ2
F

)
+ 2

+∞

∑
m=1

(−1)m Im

(
rV1

σ2
F

)
Im

(
rV2

σ2
F

)
Im

(
V1V2

σ2
F

)}
, (8)

where Iν(·), ν = 0, 1, · · · denotes the modified Bessel function of the first kind and order
ν ([18], Equation (8.431)).

2.3. Receiver

The signal at the receiver input can be presented as

s0 = r e j(φn+θ) + n, (9)

where r is the fading envelope, θ is a random signal phase due to multipath propagation,
and n represents narrowband Gaussian noise. The in-phase and quadrature components of
noise n are random signals with Gaussian PDF whose mean values are zero, and standard
deviations are identical and denoted by σ.

The received signal random phase variations due to multipath fading should be
detected and removed during the demodulation process. Actually, PLL has the role to
follow these phase variations. In practice, the phase extractor in the receiver is not ideal,
and there is a difference between received signal phase and estimated phase. The difference
between these two phases is called the phase error, which is a random variable. It is well
known that in the case when there is only AWGN in the loop circuit, this phase error is
a random variable with Tikhonov PDF [3–6]. In this paper, we assume that the phase
error can be modeled by Tikhonov distribution because the reference signal recovery is
performed from pilot signal, and the PLL bandwidth is much lesser than the channel
bandwidth. It means that the PDF of the phase error can be written in the form of [3–6]

pϕ(ϕ) =
e ρPD cos ϕ

2π I0(ρPD)
, |ϕ| ≤ π, (10)

where ρPD is SNR in the PLL circuit. This ρPD can be linked to the phase noise standard
deviation as ρPD = 1/σ2

ϕ [3–6]. Formula (10) can be presented in the form of [3,4]

pϕ(ϕ) =
1
π

+
+∞

∑
n=0

cn cos(nϕ), |ϕ| ≤ π, (11)

where coefficients cn are defined as cn = In(ρPD)/(πI0(ρPD)).
After signal demodulation, the in-phase and quadrature signal components in the

upper and lower branches of the receiver can be presented as

sx = r cos(φn + ϕ) + nx,

sy = r sin(φn + ϕ) + ny, (12)

where nx and ny have zero mean value and standard deviation denoted by σ. The detection
is performed based on the value of

tan δ = sy/sx. (13)
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3. Performance Evaluation

Due to the presence of noise and other disturbances like fading and hardware imper-
fections, the detected bits in the receiver contain errors. In addition, it is well known that
noise and other interferences over a channel constraint the mutual information. Because
of that, the primary aim is to estimate BER and mutual information in the presence of
the previously mentioned effects. In this Section, we offer formulas for analytical and
numerical evaluation of BER and present the model for Monte Carlo simulations. After
that, we present a procedure for estimating numerical values of the mutual information
under given constraints.

3.1. Error Probability
3.1.1. Analytical Approach

The conditional PDF of the phase of the composite signal at the receiver input can be
presented in the form of

p∆|R(δ|r) =
1

2π
+

+∞

∑
n=0

an(r) cos(nδ), |δ| ≤ π, (14)

where coefficients an(r) are defined by [3,4]

an(r) =
1

n!π
Γ
(

1 +
n
2

)( r√
2σ

)n
exp

(
− r2

2σ2

)
1F1

(
n
2
+ 1; n + 1;

r2

2σ2

)
. (15)

Unlike in our previous paper [4] in which the coefficients an were given as a function of
the instantaneous SNR, here, we offer those coefficients as a function of the signal envelope.
The average PDF of the composite signal phase can be written as

p∆(δ) =
1

2π
+

+∞

∑
n=0

bn cos(nδ), |δ| ≤ π, (16)

where coefficients bn can be determined based on

bn =

+∞∫
0

an(r)pR(r)dr. (17)

The result is due to the fact that integrals and countable sums are interchangeable for
non-negative functions, such as an(r)pR(r), according to Tonelli’s theorem. Obviously,
an(r) is nonnegative, and the same is true by definition for any PDF pR(r) on [0,+∞).

The CDF of the signal envelope can be presented in the form of [19]

FR(r) =
r2 e
− r2

2σ2
F

2σ2
F

+∞

∑
m=0

(−1)m

m!
h2m

1 2F1

(
−m,−m; 1; h2

2

)
1F1

(
1−m; 2;

r2

2σ2
F

)
, (18)

where h2
1 =

V2
1

2σ2
F

, h2
2 =

V2
2

V2
1

. Using [20], we write the expansion using Laguerre orthogo-

nal polynomials:

FR(r) =
r2

2σ2
F

e
− r2

2σ2
F

[
1F1

(
1; 2;

r2

2σ2
F

)

+
+∞

∑
m=1

(−1)m

m
h2m

1
m! 2F1

(
−m,−m; 1; h2

2

)
L1

m−1

(
r2

2σ2
F

)]
. (19)
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Using integration by part, we obtain

bn = lim
r→+∞

an(r)FR(r)− lim
r→0+

an(r)FR(r)−
+∞∫
0

d
dr

[
an(r)

]
FR(r)dr. (20)

Limits lim
r→+∞

FR(r) = 1 and lim
r→0+

FR(r) = 0 exist, and thus

bn =
1
π
−

+∞∫
0

d
dr

[
an(r)

]
FR(r)dr. (21)

The derivative from the previous equation can be expressed as

dan

dr
=

n exp
(
− r2

4σ2

)( r
σ

)n−1

√
πσ323(2+n)/2

8σ2
0F1

(
;

n + 1
2

;
r4

64σ4

)
Γ
(

n + 1
2

) − r2
0F1

(
;

n + 3
2

;
r4

64σ4

)
Γ
(

n + 3
2

)
. (22)

Using x = r/(2σ) and ([21], 07.17.27.0003.01 ), the derivative expression is shortened to

dan

dr
=

ne−x2

2
√

2πσ

[
I(n−1)/2(x2)− I(n+1)/2(x2)

]
. (23)

It can be shown that the derivative is nonnegative, dan/dr ≥ 0, r ≥ 0. Next, we pro-
ceed to prove that FR(r) converges uniformly. We start with Weierstrass M-test on series (19)
by finding the supremum over r, or supx x2 e−x2 ∣∣L1

m−1(x2)
∣∣. Using ([22], 10.18(14)), ([23],

(18.14.8)), we notice that xe−x
∣∣L1

m−1(x)
∣∣ ≤ mxe−x/2 ≤ 2m/e. We can now set the M values

for the test as Mm = 2/e 2F1
(
−m,−m; 1; h2

2
)
h2m

1 /m!. Convergence of the ∑+∞
m=1 Mm series

can further be proven with D’Alembert criterion using limm→+∞ Mm+1/Mm. Because of
limm→+∞ 2F1

(
−m− 1,−m− 1; 1; h2

2
)
/2F1

(
−m,−m; 1; h2

2
)
= (1+ h2)

2, which can be derived
using ([21], 07.23.03.0195.01, 05.03.17.0001.01), it folows that limm→+∞ Mm+1/Mm = 0.
Now, as ∑+∞

m=1 Mm converges for all −∞ < h1, h2 < +∞, the FR(r) series converges uni-
formly according to the test, which justifies interchange of integration and summation in
computing bn after (21). Therefore, we continue by defining

dn,m =
(−1)mh2m

1
(m + 1)! 2F1

(
−m,−m; 1; h2

2

) +∞∫
0

dan

dr
r2 e
− r2

2σ2
F

2σ2
F

L1
m−1

(
r2

2σ2
F

)
dr, m > 0. (24)

The integral in the previous equation transforms into

+∞∫
0

dan

dr
r2 e
− r2

2σ2
F

2σ2
F

L1
m−1

(
r2

2σ2
F

)
dr (25)

=
n

2
√

2πσ

+∞∫
0

e−
r2

4σ2

[
I(n−1)/2(

r2

4σ2 )− I(n+1)/2(
r2

4σ2 )

]
r2 e
− r2

2σ2
F

2σ2
F

L1
m−1

(
r2

2σ2
F

)
dr.

We introduce α = 2σ2/σ2
F and x = r/(2σ);

nα√
2π

+∞∫
0

x2e−(1+α)x2
[
I(n−1)/2(x2)− I(n+1)/2(x2)

]
L1

m−1

(
αx2
)

dx. (26)
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In principle, these are solvable in a closed form by using identity

ξk,n(β) =

+∞∫
0

x2+ke−βx2
In/2(x2)dx (27)

=
1

2 · 2n/2

Γ(
3 + k + n

2
)

β(3+k+n)/2 2F̃1

(
1 +

k + n− 1
4

, 1 +
k + n + 1

4
; 1 +

n
2

;
1
β2

)
.

In the previous equation, symbol 2F̃1(a, b; c; d) stands for regularized hypergeometric func-
tion 2F̃1(a, b; c; d) = 2F1(a, b; c; d)/Γ(c). Now,

nα√
2π

+∞∫
0

x2+ke−(1+α)x2
[
I(n−1)/2(x2)− I(n+1)/2(x2)

]
dx

=
nα√
2π

[ξk,n−1(1 + α)− ξk,n+1(1 + α)]. (28)

The Laguerre polynomials are expressed as L1
m(x) =

m
∑

i=0
`ixi, and, accordingly, we define

Ξm,j(z) =
m

∑
i=0

`i(z− 1)iξ2i,j(z). (29)

Therefore, we can write

dn,m =
nα√
2π

(−1)m

m
h2m

1
m! 2F1

(
−m,−m; 1; h2

2

)[
Ξm−1,n−1(1 + α)− Ξm−1,n+1(1 + α)

]
, (30)

except for m = 0. This case needs to be examined separately, since the hypergeometric

function involved is not of polynomial form, 1F1(1; 2; x) =
ex − 1

x
. Further analysis yields

+∞∫
0

dan

dr
· r2 e

− r2

2σ2
F

2σ2
F

1F1

(
1; 2;

r2

2σ2
F

)
dr =

1
π
−

+∞∫
0

dan

dr
e
− r2

2σ2
F dr, (31)

taking into account that limr→0+ an = 0, and limr→+∞ an = 1/π. Moreover,

+∞∫
0

dan

dr
e
− r2

2σ2
F dr =

n
2
√

2πσ

+∞∫
0

e−
r2

4σ2

[
I(n−1)/2

(
r2

4σ2

)
− I(n+1)/2

(
r2

4σ2

)]
e
− r2

2σ2
F dr. (32)

The solution of the previous integral is already found as ξ−2,n(1 + 2σ2/σ2
F),

Equation (27). This enables the following identity:

dn,0 =
1
π
− n√

2π

[
ξ−2,n−1(1 + α) + ξ−2,n+1(1 + α)

]
, (33)

which extends the validity of dn,m to m = 0 and covers the required range of values.
Therefore,

bn =
1
π
−

+∞

∑
m=0

dn,m. (34)

After finishing the derivation of coefficients in Fourier series representation of the
composite received signal phase, we are ready to define the probability of the transmitted
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symbol being wrongly detected. Following the method based on PDF of the received signal
phase [3], we can express the conditional SER as

Pe(ϕ) = 1−
π/M+ϕ∫
−π/M+ϕ

p∆(δ)dδ. (35)

The average SER is

Pe =

π∫
−π

Pe(ϕ)pϕ(ϕ)dϕ. (36)

Invoking Tonelli’s theorem once again, the formula can be evaluated as

Pe = 1− 1
M
− 2π

+∞

∑
n=1

cnbn

n
sin(

nπ

M
). (37)

Computing the SER using (37) requires a summation of double series, as bn are
themselves infinite series over m. Clearly, this requires truncation after a certain number
of terms in both directions. In Figure 2, we numerically analyze the precision of such
truncation for typical system parameters. It can be seen that the numerical error decays
quickly after the number of terms increases over a certain threshold. In this particular
example, truncation to 1 ≤ n ≤ 22, and 0 ≤ m ≤ 48 provides precision of about two
significant digits.
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Figure 2. Relative truncation error magnitude during computation of a SER value for typical system
paramters: BPSK, K = 10 dB, Γ = 0.5, σ = 10°, SNR = 20 dB.

In the case when Gray coding is used for mapping bits into symbols, the approximate
error probability per bit can be calculated based on symbol error probability by using
Peba = Pe/ log2 M. In the following text, these bit error probabilities for BPSK, QPSK and
8PSK are denoted by PBPSK

eba , PQPSK
eba and P8PSK

eba , respectively. Here, the novel formula is
derived for calculating coefficients bn. Although this formula is given in the form of an
infinite sum, it enables us to evaluate SER in (37) in detecting MPSK signals over the TWDP
channel taking imperfect reference signal phase recovery into account.

3.1.2. Numerical Approach

After analyzing the signal detection in the presence of imperfect reference phase
recovery, the formulas for BER in detecting BPSK and QPSK signals can be, respectively,
written in the form of [24]

PBPSK
e =

1
2

+∞∫
r=0

π∫
ϕ=−π

erfc
(

r cos ϕ√
2σ

)
pR(r)pϕ(ϕ)dϕdr, (38)
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PQPSK
e =

1
4

+∞∫
r=0

π∫
ϕ=−π

{
erfc

(
r cos(π/4− ϕ)√

2σ

)
+ erfc

(
r cos(π/4 + ϕ)√

2σ

)}
pR(r)pϕ(ϕ)dϕdr, (39)

where erfc(·) is notation for the complementary error function defined as ([18], Equation (7.1.2)).
In order to calculate a numerical value of BER, it is necessary to evaluate twofold

integrals in (38) and (39). The problem of accurately calculating BER is not to be under-
estimated, as the procedure includes a double integral over a function that includes an
infinite alternating series. Obviously, the first concern is the sum, and it is easily proven
that the series converges since terms tend to zero and are decreasing. For computing the
PDF involved, we use partial sum and the alternating series remainder theorem [25] to
determine the number of summands necessary. The precision of summation is set to the
level of 10−8. As for double integrals, we employ integration using the Cartesian rule in
which the cubature abscissas are the Cartesian product of two independent quadrature
rules for variables r and ϕ. Since the dimensionality is only of second order, the number of
points at which the functions must be computed is not forbiddingly large. We set the goal
for computing the values of the integrals to at least two significant digits. Since the number
of Gaussian points in quadrature rules is a significant parameter, in Figure 3, we explore
this influence on the time required for computing a single BER value for the following
parameters: BPSK modulation, K = 10 dB, Γ = 0.8, σϕ = 30°, and SNR = 24 dB, using the
Mathematica 13 software package. From Figure 3b,c, we conclude that the least amount
of time is taken when we choose the number of points to be 7 in the direction of r and 15
in the direction of ϕ. Applying the numerical integration in this sense requires less than
10 s of processor time for computing BER for the given SNR on a 3 GHz i7 processor. When
computing multiple values to show the BER curve for a range of SNR values, parallelization
can be used to significantly reduce the required time.
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Figure 3. (a) Time required for computing BER for a given SNR, showing dependence on the number
of Gaussian quadrature points in r and ϕ directions; (b) Fixed number of points is seven in the ϕ

direction; (c) Fixed number of points is seven in the r direction.

3.1.3. Monte Carlo Simulations

Independently from the approaches based on analytical derivation and numerical
integration, the BER values are also estimated using Monte Carlo simulations. Monte
Carlo simulations are performed according to (12) and (13). The samples of the TWDP
fading are generated based on (3) with parameters given by (6) and (7). Samples of a
uniformly-distributed random variable are obtained according to the algorithm presented
in ([26], p. 340), while a Gaussian random variable is generated using the Box–Muller
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method ([27], p. 383). The random variables with Tikhonov distribution can be generated
by applying the Modified acceptance/rejection method ([27], p. 382).

The criteria for estimating a single BER value are as follows: the simulation terminates
if at least 104 erroneous symbols are detected, or when a maximum of 2× 109 symbols have
been transmitted in total.

3.2. Mutual Information

The discrete channel (Figure 1) is described by input and output alphabets, as well
as the set of conditional (transition or crossover) probabilities. The input and output
alphabets are denoted by {X} = {x1, x2, · · · xM} and {Y} = {y1, y2, · · · yM}, respectively.
The probability of an input symbol xi, i = 1, 2, · · ·M, is denoted by P(xi), i = 1, 2, · · ·M.
The conditional probability, P

(
yj | xi

)
, denotes the probability that symbol yj will appear

at the channel output if symbol xi appears at the channel input. Since the conditional
probability depends only on the current transmitted symbol, the channel is memoryless.

Mutual (transmitted) information ([15], (2.43)) is defined as a difference between a
priori ([15], (2.1)) and a posteriori ([16], p. 98) entropies of the input list of symbols. After
some mathematical manipulations, the mutual information can be presented in the form of

I(X; Y) =
M

∑
i=1

M

∑
j=1

P(xi)P(yj | xi) log2
P(yj | xi)

M
∑

k=1
P(xk)P(yj | xk)

[
bit

symb

]
. (40)

It is evident that the mutual information depends on the probabilities of input symbols
and crossover probabilities. In our analysis, we assume that probabilities of input symbols
are equal. Crossover probabilities depend on channel conditions and process of detection.
These crossover probabilities are estimated by Monte Carlo simulations that are described
in Section 3.1.2. For estimating a value of crossover probability, 105 symbols are transmitted
over a channel.

4. Results and Discussion

On the basis of definitions introduced in Section 2 and expressions presented in
Section 3, we present some numerical and simulation results in this Section and offer
some discussions of the results. Figures 4a,b and 5a,b present numerical results evaluated
on the basis of Formula (37) together with Monte Carlo simulation results that verify
the correctness of the mathematical derivations. Figure 6a,b present results evaluated by
applying numerical integration based on (38). Although Monte Carlo simulation results
are not presented in these figures due to clarity, we claim that they overlap with those
obtained by numerical integration. The numerical results related to the mutual information
presented in Figures 7a,b and 8 are evaluated by means of Monte Carlo simulations based
on explanations from Section 3.2.

A typical influence of average signal-to-noise ratio per bit ρb on system BER is il-
lustrated in Figure 4a. Increasing ρb has an effect of decreasing the BER, which is an
improvement in system performance. However, the BER decrease is not uniform in the
entire range of ρb shown, but is pronounced for low and moderate values of ρb. In the
range of higher ρb values, we observe that the BER values do not decrease significantly
following the increase in ρb. On the contrary, the BER tends towards a constant value,
which is called the error floor. The appearance of this floor is directly caused by the phase
noise resulting from non-ideal recovery of the reference carrier phase. A particular value
of the BER floor is dependant on standard deviation of the phase noise. Increase in the
phase noise level directly corresponds to higher BER floors and poorer system performance.
The BER floor value cannot be reduced by increasing the signal power, and it can only be
influenced by the correct design of the subsystem responsible for estimating the incoming
sugnal reference phase .
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Figure 4. (a) BER performance of QPSK receiver for different values of standard deviation of phase
noise; (b) BER performance of BPSK and QPSK modulation formats in the presence of phase noise.

Figure 4b shows the influence of phase noise level on the BER values during the
demodulation of BPSK, QPSK and 8PSK signals. Firstly, it is obvious that BER increases with
increasing standard deviation of phase noise. Secondly, the 8PSK modulation format starts
to be sensitive to phase noise starting from four degrees of standard deviation. Regarding
the QPSK format, the BER value remains unaffected until the standard deviation reaches
about 8 degrees, while the BPSK format is insensitive to phase noise below 16 degrees. In
other words, the BPSK format is more resistant to the influence of the phase noise. This
result is also logical because the areas of decision-making in the BPSK format are wider
than those in the QPSK and 8PSK formats, so that the phase noise has less possibility to
shift the point from one to another area of decision-making.
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Figure 5. BER performance for different values of fading parameters. (a) BER dependence on
parameter K; (b) BER dependence on parameter Γ.
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The influence of the average power ratio of specular-to-diffuse components (i.e.,
parameter K) is shown in Figure 5a. In the range of large values of ρb, error floor appears.
In that range, the phase noise has the dominant effect on system performance and the value
of error probability does not depend on the value of parameter K, but only on the value
of standard deviation of phase noise. However, in the range of low and moderate values
of ρb, the effect of the propagation environment conditions is stronger in comparison to
effects of phase noise. Also, when the value of the standard deviation is lower, i.e., under
conditions when PLL better follows changes in stochastic received signal phase, the effect
of parameter K is stronger.

Similar conclusions to the previous case can be drawn regarding the influence of
parameter Γ on the BER value (Figure 5b). Namely, parameter Γ also has a strong influence
on the BER values in the middle SNR range, and almost no effect for strong signal levels,
i.e., when the system reaches the BER floor. Also, when the phase noise is stronger and has
higher standard deviation, i.e., when the non-ideal extraction dominates, performance is
less sensitive to parameter Γ changes, in comparison to the case where the reference phase
recovery is more precise.
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Figure 6. Influence of imperfect reference signal phase recovery on BER performance. (a) Different
fading conditions: Γ vs. K, constant BER curves (BPSK) for fixed SNR, and phase error as parameter.
(b) Different phase noise levels. Black line corresponds to [9].

In general, fading parameters K and Γ influence performance in a way that is not
directly visible from the model presented. For example, if a system has fixed thermal
SNR and phase noise levels, then its performance predominantly depends on these fading
parameters. We explore this situation in Figure 6a. We analyze the case of BPSK by fixing
the BER at 10−5, and we calculate the combinations of fading parameters that are required
to attain the requested BER performance. These constant BER curves show that an increase
in the K parameter can be compensated by an increase in Γ along the presented curves.
Below the curves and to the right lays the area of improved performance that corresponds
to the LOS scenario (larger K) and/or single dominant specular component (smaller Γ
values). Phase noise shifts the curves towards this direction, indicating that more favorable
fading conditions are required when significant phase noise is present. Above the curves
and to the left is the region that leads to poorer BER performance, and it corresponds to
NLOS and/or balanced specular components.

Figure 6b shows the dependence of BER on ρb for the BPSK modulation format. Firstly,
it should be noted that, as in the case of QPSK (Figure 4a), for large values of ρb, an
error floor appears. Secondly, when in our numerical and simulation model, σϕ = 0° is
set, which means that the phase estimation is ideal; the same dependence is obtained
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as in ([9], Figure 6). Therefore, apart from the fact that the results obtained by analytical
approach and numerical integration were verified by independent Monte Carlo simulations,
this figure shows that our results are reduced to the results from [9], where the assumption
about the ideal estimation of the carrier phase was set.

Figure 7 illustrates the influence of the phase noise on mutual information. When
transmitting an MPSK signal, the maximum mutual information value that can be achieved
is log2 M (bits/symbol). In order to reach this value of mutual information, the channel
should be good enough, i.e., the signal power should be sufficiently large in relation to
the noise power. Figure 7a shows the mutual information for the QPSK and 8PSK formats.
Firstly, it should be noted that the phase noise affects the mutual information in such a way
that its maximum value cannot be reached in the presence of the phase noise regardless of
the increase in signal power. For example, if σϕ = 20°, the maximum mutual information
values for 8PSK and QPSK are 1.8 bits/symb and 1.75 bits/symb, respectively, and not
3 bits/symb and 2 bits/symb, like it is the case when reference signal phase recovery is
perfect. The relative decrease in mutual information is larger for 8PSK than for QPSK. This
saturation value of mutual information can be increased only by decreasing the phase noise
standard deviation, i.e., by proper design of PLL, and not by increasing the signal power.
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Figure 7. (a) Mutual information performance of BPSK and QPSK receiver for different values of
phase noise standard deviation. (b) Mutual information performance of QPSK and 8PSK modulation
formats in the presence of phase noise.

In Figure 7b, the SNR is fixed at 30 dB, i.e., the SNR value is fixed when the maximum
value of mutual information is reached for all modulation formats, which is 3 bits/symb,
2 bits/symb and 1 bit/symb for 8PSK, QPSK and BPSK, respectively. We observe the
sensitivity of this mutual information to the change in the standard deviation of the phase
noise. Mutual information for 8PSK begins to decrease as early as σϕ = 5°, while mutual
information for QPSK begins to decrease at σϕ = 15°, and mutual information for BPSK
becomes sensitive to standard deviation of phase noise at σϕ = 25°. The higher the order
of modulation, the stronger the mutual information sensitive to phase noise. As was
mentioned, the mutual information for BPSK, QPSK and 8PSK when there is no phase noise
under given conditions is 1 bit/symb, 2 bits/symb and 3 bit/symb. However, when phase
noise appears and if the standard deviation of phase noise is 20°, the mutual information
for BPSK, QPSK and 8PSK is 1 bits/symb, 1.48 bits/symb and 1.86 bits/symb, respectively.

Depending on the fading conditions in a certain environment, increasing SNR causes
transmitted information to also increase towards its limiting value for the specific mod-
ulation format, but at varying rates. Moreover, phase noise causes the limiting values to
decrease, which introduces another level of complexity into analysis. To address this, we
analyze the power penalty that the system incurs due to multipath fading when phase
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noise is present. Taking the transmitted information limit for a fixed phase noise level as a
reference, we calculate the amount of additional power that is required in order to recover
certain level of transmitted information in fading conditions. This is shown in Figure 8 for
the 8PSK modulation example. From the figure, we can conclude that unfavorable fading
conditions corresponding to the case when specular components are not dominant over
diffuse components (K = 5 dB) impose significant power penalties when a less than 10%
decrease in transmitted information is allowed. On the other hand, LOS (K = 15 dB) causes
only negligible penalty that is under 1 dB for the considered conditions.
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Figure 8. Power penalty versus transmitted information decrease threshold for 8PSK.

5. Conclusions

In this paper, we analyzed the transmission of PSK signals over a TWDP channel in
the presence of imperfect reference signal phase estimation. Non-perfect estimation of the
incoming signal phase directly causes the appearance of the BER floor. The specific value
of this BER floor is reducible only by decreasing the phase noise level, i.e., by improving
the received signal phase estimation, while the BER floor is insensitive to a further increase
in signal power, as well as changing the values of parameters K and Γ. The obtained
results showed that parameters K and Γ strongly influence BER over the range of moderate
SNR values. In addition, the results showed that for typical channel conditions, the BPSK
modulation format can tolerate phase noise until its standard deviation reaches 16 degrees,
while in the same environment, the QPSK/8PSK format is resistant to this phenomenon
only up to the standard deviation of eight/four degrees. The results illustrated that the
maximum value of mutual information cannot be reached in the presence of the phase noise
regardless of the increase in signal power. The saturation value of mutual information can
be increased only by decreasing the phase noise standard deviation, i.e., by proper design
of PLL, and not by increasing the signal power. In an illustrative scenario, we showed that
the maximum value of mutual information for 8PSK, QPSK and BPSK begins to decrease
at σϕ = 5°, 15° and 25°, respectively. The higher the order of modulation, the stronger the
mutual information shows sensitivity to phase noise.

These values of standard deviation are the starting condition for the correct design of
the phase estimator, i.e., the design of the extraction circuit should be undertaken in such a
way that the predetermined phase noise levels in terms of its standard deviation are not
exceeded. This standard deviation value is determined based on the tolerable BER (mutual
information) value and under given channel conditions.

In this paper, we focused on MPSK because it is a simple example that is very close to
practical applications. We emphasized that the solution for M = 4 directly corresponds to
the case of the 4QAM modulation format proposed for modern 5G systems. Our solution for
Fourier coefficients in composite signal phase expansion will be useful for all propagation
environments that can be described by the TWDP model. In further work, our attention
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will be focused on finding a general solution for MQAM formats as well. We will improve
the model of the receiver part for reference signal recovery, and will consider recovery
circuits based on signal squaring and maximum a posteriori estimation.
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MPSK Multilevel phase shift keying
TWDP Two-Wave Diffuse-Power
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MGF Moment-generating function
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BPSK Binary phase shift keying
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16. Ivaniš, P.; Drajić, D. Information Theory and Coding-Solved Problems; Springer: New York, NY, USA, 2017. [CrossRef]
17. Baig, I.; Farooq, U.; Hasan, N.U.; Zghaibeh, M.; Jeoti, V. A multi-carrier waveform design for 5G and beyond communication

systems. Mathematics 2020, 8, 1466. [CrossRef]
18. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: San Diego, CA, USA, 2000.
19. Kostic, I. Cumulative distribution function of envelope of sum of signal, noise and interference. In Proceedings of the

Telecommunication Forum (TELFOR), Belgrade, Yugoslavia, 26–28 November 1996; pp. 301–303.
20. Marjanovic, Z.; Milic, D.N.; Djordjevic, G.T. Estimation of Truncation Error in Statistical Description of Communication Signals

over mm-Wave Channels. Axioms 2022, 11, 569. [CrossRef]
21. Wolfram Research, Inc. The Mathematical Functions Site. 1998–2023. Available online: http://functions.wolfram.com (accessed

on 4 September 2023).
22. Erldelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955;

Volume 2.
23. Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl,

H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: http://dlmf.nist.gov/ (accessed on 4
September 2023).

24. Prabhu, V. PSK performance with imperfect carrier phase recovery. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 275–286.
[CrossRef]

25. Milovanovic, G.; Djordjevic, R. Mathematical Analysis I; Faculty of Electronic Engineering, University of Nis: Nis, Serbia, 2005.
26. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge

University Press: Cambridge, MA, USA, 2007.
27. Jeruchim, M.C.; Balaban, P.; Shanmugan, K.S. Simulation of Communication Systems: Modeling, Methodology and Techniques; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2000. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/ett.1145
http://dx.doi.org/10.1016/j.jfranklin.2017.10.029
http://dx.doi.org/10.1109/TWC.2006.1611079
http://dx.doi.org/10.1109/TCOMM.2002.1010620
http://dx.doi.org/10.1587/transcom.2017EBP3108
http://dx.doi.org/10.1109/CISS.2014.6814106
http://dx.doi.org/10.1109/TWC.2014.2388213
http://dx.doi.org/10.3390/s21227513
http://www.ncbi.nlm.nih.gov/pubmed/34833592
http://dx.doi.org/10.3390/s22030774
http://dx.doi.org/10.1186/s13638-018-1336-6
http://dx.doi.org/10.1049/el:19780329
http://dx.doi.org/10.1002/047174882X
http://dx.doi.org/10.1007/978-3-319-49370-1
http://dx.doi.org/10.3390/math8091466
http://dx.doi.org/10.3390/axioms11100569
http://functions.wolfram.com
http://dlmf.nist.gov/
http://dx.doi.org/10.1109/TAES.1976.308305
http://dx.doi.org/10.1007/b117713

	Introduction
	Literature Review
	Contribution
	Structure

	System Model
	Transmitter
	Channel
	Receiver

	Performance Evaluation
	Error Probability
	Analytical Approach
	Numerical Approach
	Monte Carlo Simulations

	Mutual Information

	Results and Discussion
	Conclusions
	References 

