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Abstract: Anticipatory dynamics (AD) is unusual in that responses from an information receiver
can appear ahead of triggers from the source, and direction of information flow (DIF) is needed
to establish causality. Although it is believed that anticipatory dynamics is important for animals’
survival, natural examples are rare. Time series (trajectories) from a pair of interacting zebrafish
are used to look for the existence of AD in natural systems. In order to obtain the DIF between
the two trajectories, we have made use of a special experimental design to designate information
source. However, we have also used common statistical tools such as Granger causality and transfer
entropy to detect DIF. In our experiments, we found that a majority of the fish pairs do not show any
anticipatory behaviors and only a few pairs displayed possible AD. Interestingly, for fish in this latter
group, they do not display AD all the time. Our findings suggest that the formation of schooling
of fish might not need the help of AD, and new tools are needed in the detection of causality in
AD system.

Keywords: causality; direction of information flow; transfer entropy; anticipatory dynamics; zebrafish

1. Introduction

Active matters [1] can exhibit different collective phenomena because of their motions
and induced interactions with their surroundings. Animals, as a form of active matter,
are different from the usual physical active matters in that they can process information
to avoid predators and join their mates. One counter-intuitive phenomenon arises from
systems capable of information processing is anticipatory dynamics (AD), Ref. [2] in which
an information receiving system can produce responses ahead of the information source. It
is known that both physical and biological systems are capable of anticipating incoming
events. For example, in the phenomenon of anticipating synchronization (AS) proposed
by Voss [3], a slave system driven by a master can produce responses ahead of its master
in time. Also, our retina [4] can produce responses ahead of predictable stimulation [5].
It is natural to ask if such AD are involved during flocking [6] in birds or schooling [7]
in fish, phenomena that are still poorly understood. Presumably, during flocking or
schooling, animals do not normally run into each other because they can anticipate the
future positions of their group members. Therefore, it is natural to ask if AD can be detected
during interactions between moving animals in nature.

If the trajectories of two interacting animals are given as U(t) and V(t), one would
need to know how does one detect the existence of anticipatory dynamics between them.
Because anticipatory dynamics is unusual in that causal events between the two time series
is not ordered by time, if the events in times series U(t) is found to be ahead of the time
series V(t), there are two possible scenarios: either “V(t) follows U(t)” or “U(t) anticipates
V(t)”. The correct scenario can only be resolved by knowing the direction of information
flow (DIF) between them. In this example, if DIF is from U(t) to V(t), it is the case of
anticipation; otherwise, it is just simply the case that later events in V(t) follow earlier
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events in U(t). However, the detection of information flow is non-trivial, and tools such as
Granger causality, transfer entropy, etc., Ref. [8] have been developed for such purpose.

In this article, we report results of our experiments designed to test for the existence
of anticipatory interaction between a pair of interacting zebrafish through their motion
trajectories. The method of time lag mutual information (TLMI) [9] is used to first establish
the temporal relation between U(t) and V(t). Then, usual methods of causality are applied
to determined the DIF. We found that these methods just confirm the idea that information
flows from leading events to following events and therefore do not indicate any AD in
experiments. However, by allowing the fish to have a choice between two channels, we
were able to determine which fish is in control of the interaction and therefore use it as
a indicator of DIF. With this experimental method, we found that a majority of the fish
pairs do not show any anticipatory behaviors, and only a few pairs displayed possible
AD. Interestingly, for the latter group, the interaction between the fish pair is not always
anticipatory. Our result suggests that (a) new tools are needed to detect AD between two
time series, and (b) AD might not be needed for the formation of schooling.

2. Materials and Methods

In this section, we describe the experimental method and the information theoretic
tools to determine the temporal order of the time series and the direction of information
flow between them. These methods will help to distinguish between the cases of “anticipate”
or “follow” when the two time series are correlated with some time lag. However, this
method of anticipatory dynamic detection will fail when there is no significant time lag
between the two time series. We will address this problem in Section 4 below.

2.1. Experiments of Fish Pairs

In the experiments, a pair of zebrafish is placed in a two-channel rectangular glass
tank with the two channels separated by a wall with doors on it. The inner surface of the
channels (in contact with water), including the wall, are all opaque and non-reflective, so
the fish are not seeing their reflections from these surfaces. The doors allow the fish to
choose in which channel to stay and therefore provide a means to detect the DIF between
the two fish. The source must be the leading fish who is making the choice, whereas the
follower should be on the information receiving end. The rectangular channels are of size
21.6 cm × 14 cm. The fish are 1∼1.5 years old and of length 3.5∼4 cm. The water levels in
the two channels are kept around 2 cm deep. This depth was determined empirically to be
deep enough to avoid the jumping of fish out of the water and shallow enough to allow the
treatment of the channels as one-dimensional.

The tank is placed on top of a LCD monitor (40 cm × 70 cm), which is controlled by
a computer to provide different spatially uniform illuminations for the two channels. A
CCD camera (Basler, Ahrensburg, Germany acA4096-40um) placed 90 cm above the tank
is used to capture images of the fish. An infra-red LED (940 nm) linear array is also used
to provide illumination that is visible only to the CCD but not to the fish so that captured
image quality can still be maintained even when visible illumination levels in the channels
are low. The whole setup is kept inside a box with black walls, preventing the fish from
detecting visual cues from the environment.

A total of more than 20 fish were kept in a large tank, and selected fish pairs were then
placed into the tank for experiments. We found that a settlement time of 0, 2.5, 5, and 10
min before the start of an experiment recording did not affect the results of our experiments.
Trajectories of the two fish during experiments were obtained from video images recorded
at 30 or 60 frames per second (fps) with a spatial resolution of 1340 × 560 square pixels
covering an area of 21.6 cm × 9 cm. The recording duration is always set to 500 s. For the
health of the fish, the total experiment period per day is limited to 60 min. Trajectories of
the fish are extracted from recorded images by the python package: idTracker [10].

All experiments were performed at 25 ◦C. Data reported below were obtained from
experiments recorded at 30 fps; data from 60 fps recording gave similar results. Figure 1
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shows typical images captured in our experiments. The x-component of the trajectories of
one fish will be denoted by U = {u0, u1, u2...un} ≡ {ui} with ui being the position of the
fish at the ith step. The time step size is determined by the frame rate. All the experiments
reported below are of step size of 1/30 s. Similarly, V = {vi} is defined for the other fish.
For the computation of time lag mutual information and transfer entropy described below,
ui and vi are discretized to n bit resolution so that the horizontal span (x-component) of the
tank is divided into 2n states. Similarly, the y-component of the trajectories are discretized
into two states (1 bit) to indicate in which channel (upper or lower) the fish is located.

Figure 1. The tank used in the experiment with (a) one single door and (b) three doors. Directions
along the length and the width of the channels are referred to as the X-direction and Y-direction,
respectively, as shown in the figure. Note that the walls of the tanks are black.

2.2. Time Lag Mutual Information (TLMI)

As mentioned above, to establish anticipatory dynamics between two time series, we
need: (a) the temporal order of events between them and (b) the direction of information
flow. Usually, temporal order is the same as as DIF for normal behavior. However, for AD,
they should be reversed. To investigate the temporal order between two time series U and
V, we make use of the TLMI, which is defined as:

I(U, V, δt) = ∑
ut+δt ,vt

P(ut+δt, vt)log[
P(ut+δt, vt)

P(ut+δt)P(vt)
] (1)

where P(. . .) is the probability distribution or joint distribution of the variables in (. . .). It
measures how much information is being shared between {ui} and {vi} when U is shifted
j step (δt = j∆t) ahead of V. Maximum information is being shared between the two time
series at the peak of I(U, V, δt).

The position of the peak in I(U, V, δt) as a function of δt will indicate the relation
between similar events between the two time series. If the peak is at positive lag (δp),
it indicates that the time series V is leading U by an amount of δtp. We will label the
TLMI between two different time series as the cross-TLMI and that between the same time
series as auto-TLMI. Obviously, the peak of the auto-TLMI will always be at zero lag. By
comparing the peak heights of auto-TLMI and and cross-TLMI, we will be able to quantify
the strength of interaction between the two fish. If there is no sharing of information
between the two fish, there will be no peak, and, therefore, peak height equals zero.

2.3. Detection of Direction of Information Flow (DIF)

Although the method of time lag mutual information described above can provide the
temporal orders of events in the two time series U and V, it cannot distinguish between
“anticipatory” and “following” dynamics. Both the cases of U anticipates V and V follows
U give the same characteristic peak position in the cross-TLMI between U and V because
in both cases U will be leading V. The two cases can be separated only when the direction
of information flow (DIF) is known. For example, for the case of either U anticipates V
or V follows U, it is the anticipatory case when information flow from V to U. Here, we
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employ three different methods for the detection of information flow. They are described
briefly below.

2.3.1. Granger Causality (GC)

Intuitively, if a signal is predictable, one can make guesses about the future of the signal
based on its past history. In 1948, Wiener [11] used this idea to predict ui (auto-regression)
with constant coefficients {ai} based on {ui−1, ui−2, . . . } as

ui =
p

∑
j=1

ajui−j + ϵi (2)

where p is the history length or order of the auto-regression with {ϵi} being the error
(residuals) of the linear regression model. If V is correlated with U, one can also use the
past of V to help for the prediction of the future of U with constant coefficients {bi} based
on {vi−1, vi−2, ...} as:

ui =
p

∑
j=1

ajui−j +
p

∑
j=1

bjvi−j + ηi (3)

where ηi are the residuals. The idea of GC is that if the inclusion of V can help to improve
the prediction of the future of U, U is said to be GC-caused by V. One can then make use
of the F-test to establish if ∑ ϵ2

i is significantly larger than ∑ η2
i . The F-test will return a

p-value of the likelihood that the observed difference is caused by chance. Usually, a critical
p-value of 0.05 is used, and we will use the same value here. Symmetrically, one can also
interchange the roles of U and V to see if V is GC-caused by U. Here, we used the matlab
package MVGC (Multi-Variate Granger Causality) [12] to detect the GC causal relation
between U and V. Note that a quantity related to the F-test is used in MVGC to establish
causality; namely FU→V , which is defined as:

FV→U = loge
|∑′

χχ |
|∑χχ |

(4)

where ∑′
χχ = cov(ϵi) and ∑χχ = cov(ηi) are the residuals covariance matrices of mod-

els (2) and (3), respectively. With this method, GC is established as “U causes V” or DIF from
U to V when FU→V > FV→U , and the likelihood is characterized by the corresponding
p-value.

2.3.2. Liang’s T Method

By considering the rate of information flow between U and V, Liang [13] derived a
tight formula to describe the information flow between U and V using only the covariance
between the four time series U, U̇, V, and V̇ as

TV→U =
CUUCUVCV,U̇ − C2

UVCU,U̇

C2
UUCVV − CUUC2

UV
(5)

where Cij(i, j = U, V, U̇, V̇) is the covariance between two time series, with U̇ and V̇ being
the derivatives of U and V, respectively. Note that U̇ = {u̇i}, with u̇i =

ui+1−ui
∆t , and

similarly for V̇. With this formulation, Liang was able to show that TV→U is the maximum
likelihood estimator for a linear system. For such a system, if |TV→U | is non-zero, V is
causal to U; otherwise, it is non-causal.

2.3.3. Transfer Entropy (TE)

We follow the definition of TE of Schreiber [14] and calculate the TE from time series
U to V as
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TU→V(k, l, u) = H(V(t)|V(k)
t−1

; U(k)
t−1

)− H(V(t)|V(k)
t−1

) (6)

where H(|) denotes the conditional entropy. The notation V(k)
t−1

= {vt−k, vt−k+1, ..., vt−1}
represents the history of V with a length of k time step before the time bin t and similarly
for U. This TE measures the reduction of entropy of the V(t) by using both V’s own
history and that of U with history length k and l time step, respectively. If TU→V is
positive, we will have information transfer from U to V. Since there might be information
flow in both directions, the net information flow between U and V is the difference as
∆TU→V ≡ TU→V − TV→U . If ∆TU→V is positive, there will be a net flow of information
from U to V, and vice versa. To simplify analysis, we have set the history lengths in both U
and V to be the same and labeled it as h. In the results reported below, we are using the
python package PyInform [15].

2.4. Simulation of Anticipatory Data

It is known that one can generate anticipatory responses (Z(t)) from a predictable
signal (S(t)) by using a negative group delay (NGD) filter [2]. This NGD model was later
improved to understand the response from anticipatory dynamics of a retina [5], and the
original model has the following form:

Ż(t) = −αZ(t) + k(S(t)− Z(t − td)) (7)

where α is a damping constant, with k being the gain of the system. One can think of Z(t) is
the response to drive S(t) with a negative feedback (Z(t − td)) of delay td. We will use this
model to generate anticipatory responses to verify validity of the causality tests mentioned
above. The time series S(t) is sometimes labeled as the master or “driver” signal and as
slave or “target” signal for Z(t).

3. Results
3.1. Trajectories in One- and Three-Door Tanks

Figure 2a,b show typical trajectories of the two fish in the tank with one and three
doors, respectively and Table 1 is the measured probabilities of the choice of doors by the
fish. It can be seen that, although there are two channels in the tank, the fish prefer to stay
together. That is, when one of the fish choose to move to the other channel, the other fish
will follow, indicating that there is some kind of attractive interaction between them. From
the figure, it is clear that the main difference between the one-door and three-door tank
is that the fish prefer not to use the doors located at the middle of the channel. This last
observation can be understood by the observation that the fish spend most of their time at
the ends of the channel, as the ends are bounded by three walls. If the probability of going
through a door is a random process, the probability of choosing which door to use is then
just proportional to the probability of the fish located in the vicinity of the door. Below, we
will focus only on the results from the tank with a single door.

Since the channels are shaped as a quasi-1D system, we would assume that the
dynamics in the X-direction and Y-direction are different. In the X-direction, the fish are
interacting naturally. In the Y-direction, it is meaningful in the sense that the fish choose in
which channel to stay. Therefore, we decompose the trajectories into their Y-direction time
course and X-direction time course as shown in Figure 3 and Figure 4, respectively.
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Figure 2. Trajectories of the two fish in (a) the tank with one door and (b) the tank with three doors.
Note that the separation between the two channels is opaque so that the two fish can see each other
only through the doors when they are located in different channels. The red horizontal line with
openings in the figures indicates the separation between the two channels and the opening of the
doors located at y = 70 mm. The fish can freely move between the two channels through the doors.

Table 1. Probability of the choice of doors by the fish measured in four experiments.

Experiment Number Number of Passages
Left Middle Right

1 28 19 33
2 28 20 20
3 51 16 31
4 20 6 18

Probability 43.8% 21.0% 35.2%

Figure 3. Typical time course of the y-component of the trajectories of the two fish in (a) long time
scale and (b) in short time scale. It can be seen that Fish 1 has faster dynamics, swimming around
Fish 0. It also follows Fish 0 from the lower channel to the upper channel. The red horizontal line in
the figures indicates the opaque separation between the two channels located at y = 70 mm.

Figure 4. Time course of the x-component of the trajectories shown in Figure 3 of the two fish in
(a) long time scale and (b) short time scale. The “*” marks the time point at which the two fish can be
quite far apart.
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It can be seen from Figure 3 that the two fish are in the same channel most of the
time. They are in different channels only briefly, because once one fish starts to move into
another channel, the other fish will invariably follow after some short period of time. This
phenomenon can be seen as two closely spaced vertical lines in the figure when the fish
change their channel. That is, the two fish always stay close together. Sometimes, the two
fish can be quite far apart, as shown with the point * in Figure 4b. But very quickly, one of
the fish will go the location of the other fish.

3.2. Time Lag Mutual Information from the X Component (xTLMI)

Figure 5a shows a typical result of the measured xTLMI between the two fish for
trajectories similar those shown in Figure 4 when the two fish can swim freely in the tank
with the door open. Note that the auto-TLMI always has a peak at zero time lag, and
its decay time indicates how fast memory is fading in time. In Figure 5a, the measured
auto-TLMI for both fish are similar, indicating that they have similar dynamics. A decay
time of the order of second for the auto-TLMI suggests that the trajectories of the fish within
a second is strongly correlated. It can also be seen from the figure that the two fish are
interacting quite well because the cross-TLMI has a peak height close to 50% of that of the
auto-TLMI. The observation that one fish is leading the other fish in the experiments can
also be seen from the location of the peak at non-zero time lag.

Figure 5. A typical TLMI based on the time course of x-component of the trajectories of the two
fish when (a) the door in the tank is open and they are almost always in the same channel and
(b) when the door is blocked and they are in different channels. It can be seen that there is little
mutual information when the two fish are in separate channels with a blocked door because they
cannot see each other. Auto(0): auto-TLMI of fish 0 and Cross(0,1): cross-TLMI between fish 0 and
fish 1. The labels 0 and 1 are arbitrarily assigned to the two fish here.

In order calibrate the effect of interaction strength between the two fish, we have also
performed experiments with the door blocked when the two fish were kept in different
channels. Figure 5b shows the result of such an experiment. There are two two remarkable
differences shown in Figure 5a,b. First, the auto-TLMI for two fish are quite different when
they cannot see each other. This observation shows that the interaction between the two fish
enable them to have similar dynamics. Second, the cross-TLMI has a prominent peak for
the interacting case, whereas it is almost flat and close to zero when there is no interaction.
The height of the peak indicates how strongly the two fish interact. Furthermore, we can
use Figure 5b as the baseline of mutual interaction between the two fish.

Note that a 2-bit resolution for the computation of TLMI was used in Figure 5 and the
theoretical value of the peak height is 2 bit. We have also checked that similar results can be
obtained when a 4-bit resolution was used. However, for a 4-bit resolution, the measured
results were more noisy because of the increased number of states in the trajectories. Results
of xTLMI reported below are all based on 2-bit resolution.
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3.3. yTLMI and DIF Detection

The results from xTLMI tell us about which fish is leading during their interaction.
However, it does not tell us the direction of information flow. Here, we will use properties
of the y-component of their trajectories to infer the DIF when they are interacting when
the door is open. Since there are two channels in the system and the fish are free to move
between them, we will treat the fish as being in two different states (“0” or “1”) when they
are in the upper or lower channel, respectively. With this description, the fish changes its
state when they go from one channel to the other channel through the door. Our rationale
is that the information emitting fish will decide which channel it will take, whereas the
information receiving fish will just follow.

Figure 6a shows the time course of the y-component of the trajectories of the two
fish in term of the states of the fish during the experiment. It can be seen that once a fish
changed its state, the other fish follows suit. In other words, one of the fish will first decide
to which channel it will go and then the other fish will follow. That means the leading fish
is the information source and the following fish is the information receiver. If we assume
that the role of the fish is constant in time (during experimental recording time), we can
then use the yTLMI to determine the direction of information flow with the leader in the
yTLMI as the information source. Figure 6b shows a typical result of the computed yTLMI
from the time course of the state of the two fish.

Figure 6. (a) A typical time course of the state of the two fish and (b) the computed yTLMI based on
the time course of the states. The peak position of the yTLMI based on states confirms our observation
in (a) that Fish 0 changes its state first.

One of the main differences between properties of xTLMI and yTLMI is that the decay
time scales of their auto-TLMI are very different, as demonstrated by Figures 5 and 6.
For xTLMI, the dynamics is dominated by the quasi-1d interaction between the two fish
in a single channel. For the yTLMI, the dynamics is dominated by the decision of which
channels to take by the leader fish. Intuitively, these two dynamics should be very different.
For the xTLMI, the dynamics is determined by how fish interact in short term time scales
when they want to be close to each other. As shown in Figure 5, it is on the order of 500 ms.
For the yTLMI, the leading fish can choose which channel to take only when it is next to the
door. Therefore, the time scale is much longer, on the order of a few seconds, in Figure 6.
However, these differences in time scales of auto-TLMI does not impose any limitation
to the peak positions of their corresponding cross-TLMI because the peak position of
cross-TLMI is determined only by how fast one fish is responding to the other fish.

3.4. Summary of Experimental Results

Table 2 is a summary of the important properties of xTLMI and yTLMI obtained
from experiments similar to those shown in Figures 5 and 6 above. Here, the peak values
of xTLMI (yTLMI) are normalized by the peak height of the corresponding auto-TLMI.
With this method, the peak value will be independent of the number of states used in the
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discretization of the trajectories. As mentioned above, the peak height indicates the strength
of interaction between the two fish; we have only included data that have a x-TLMI peak
value at least 10% of the peak of the auto-TLMI in the x-component.

Table 2. Summary of cross-TLMI of experimental data. There are a total of 16 experiments (Expt)
reported, but there are only 12 pairs of fish. The peak height is reported as the ratio between peak
heights from the cross and auto-TLMI. The decay time is taken as the half decay time of the auto-TLMI.

Properties of Cross xTLMI Properties of Cross yTLMI
Expt

Number Fish Pair Peak
Position(s)

Peak
Height

Decay
Time(s)

Peak
Position(s)

Peak
Height

Decay
Time(s)

1 A −0.83 0.22 0.57 −1.10 0.41 6.13
2 B 0.63 0.09 0.53 −3.87 0.35 7.90
3 B −0.23 0.31 0.53 −0.53 0.48 6.03
4 C −0.60 0.12 0.87 −0.73 0.19 3.97
5 D 0.50 0.09 0.47 −3.30 0.28 9.30
6 D −0.63 0.12 0.60 −11.17 0.20 19.97
7 E −0.77 0.20 0.40 −1.43 0.36 19.97
8 F 0.47 0.13 0.50 −0.53 0.26 2.53
9 F −0.27 0.16 0.53 −1.13 0.19 2.47

10 G −0.63 0.22 0.63 −1.73 0.39 13.47
11 H −0.60 0.26 0.63 −1.37 0.26 4.67
12 I −0.30 0.17 1.23 −0.67 0.22 7.40
13 J −0.43 0.25 0.47 −0.53 0.34 4.93
14 L 0.57 0.23 0.83 −0.33 0.30 17.53
15 L −0.67 0.27 1.03 −1.33 0.31 9.47
16 M −0.40 0.21 0.87 −1.43 0.23 3.73

When peak position takes a value other than zero, it indicates that one fish is leading
the other. Since the labels of the fish are arbitrary, we have chosen the convention that the
peak position of the cross y-TLMI is always negative. Therefore, when one also detects a
negative peak position in the cross xTLMI, we have the same leading fish in both the x and
y components of the trajectories. That means one fish just follows another fish (the case of
“following” dynamics). However, when one detects a positive peak position in the cross
xTLMI, one would have the situation that the follower in the y-component becomes the
leader in the x-component. This is the situation of anticipatory dynamics (AD), because the
leading fish in xTLMI is the information receiver while the other fish is the information
source. Therefore, with this convention, any fish pair with a positive cross xTLMI peak
position is an indication of anticipatory dynamics. For example, in experiment number 5,
fish pair D produced a cross yTLMI with peak position at −3.3 s whereas the peak position
of cross xTLMI is located at +0.5 s.

However, it can be also seen from the table that the same fish pair D in experiment 4
does not produce peak positions in xTLMI and yTLMI with different signs. This latter
observation indicates that the leading fish in xTLMI is the same leading fish in yTLMI. Our
finding suggests that the role of information receiver/source for a fish pair is not necessarily
constant in time. Similar observations of changes in roles can also be seen for fish pairs B, F,
and L. From our experimental observations, fish pairs that exhibit anticipatory dynamics
also display follow behaviors. However, the reverse is not true. One interesting observation
from Table 2 is that interaction strength is smaller for anticipatory pairs.

3.5. DIF Detection by Statistical Methods

As mentioned above, three statistical methods are used to determine DIF by the time
series obtained in the experiments. The results of GC test and Liang’s T test are summarized
in Table 3. For the GC computation to obtain F , one needs to determine the order (lag)
used in the computation of GC in the models of Equations (2) and (3). Figure 7 shows
the order (time lag) dependence of the Akaike information criterion (AIC) and Bayesian
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information criterion (BIC) using the code of MVGC. Ideally, the order of the model is
determined by the location of the minimum of the AIC/BIC curve. As can be seen from
the figure, there seems to be no minimum, only saturation. The order shown in the table
is determined automatically by MVGC. We have checked that if we fixed the order to be
10, some numerical values of the table will be changed, but the conclusion from Table 3
discussed below will not be changed.

Table 3. Summary of GC test and Liang’s T using data from experiments listed in Table 2.

Expt
Number Fish Order F (MVGC) p-Value (MVGC) Liang’s T

Pair (BIC) F0→1 F1→0 p0→1 p1→0 T0→1 T1→0

1 A 20 1.37 × 10−2 1.90 × 10−4 0.00 × 100 1.00 × 100 1.15 × 10−2 1.04 × 10−2

2 B 20 1.17 × 10−3 6.13 × 10−3 7.90 × 10−3 4.61 × 10−7 1.29 × 10−3 1.49 × 10−3

3 B 20 6.20 × 10−2 3.78 × 10−3 0.00 × 100 1.25 × 10−2 4.20 × 10−2 3.75 × 10−2

4 C 15 6.48 × 10−3 2.64 × 10−4 1.43 × 10−7 1.00 × 100 3.20 × 10−3 2.97 × 10−3

5 D 11 7.89 × 10−4 1.02 × 10−2 8.10 × 10−1 2.22 × 10−16 2.56 × 10−3 2.73 × 10−3

6 D 18 6.55 × 10−3 3.15 × 10−4 2.14 × 10−8 1.00 × 100 1.55 × 10−3 1.41 × 10−3

7 E 20 19.91 × 10−2 4.01 × 10−4 0.00 × 100 1.00 × 100 1.20 × 10−2 1.12 × 10−2

8 F 14 1.26 × 10−3 5.66 × 10−3 5.35 × 10−1 2.03 × 10−7 2.92 × 10−3 3.27 × 10−3

9 F 20 6.45 × 10−3 2.03 × 10−3 6.01 × 10−6 5.32 × 10−1 2.50 × 10−3 1.53 × 10−3

10 G 20 1.72 × 10−2 1.39 × 10−3 0.00 × 100 6.03 × 10−1 1.08 × 10−2 1.01 × 10−2

11 H 20 2.14 × 10−2 1.77 × 10−4 0.00 × 100 1.00 × 100 1.37 × 10−2 1.22 × 10−2

12 I 10 1.33 × 10−2 1.07 × 10−3 0.00 × 100 5.05 × 10−1 4.48 × 10−3 3.65 × 10−3

13 J 20 2.39 × 10−2 3.27 × 10−2 0.00 × 100 4.35 × 10−2 2.03 × 10−2 1.82 × 10−2

14 L 10 5.07 × 10−4 6.16 × 10−3 9.96 × 10−1 3.30 × 10−8 4.95 × 10−3 5.89 × 10−3

15 L 10 1.35 × 10−2 2.22 × 10−4 0.00 × 100 1.00 × 100 1.09 × 10−2 9.95 × 10−3

16 M 20 1.27 × 10−2 1.97 × 10−4 1.11 × 10−16 1.00 × 100 8.84 × 10−3 7.32 × 10−3

Figure 7. A typical estimation of order of auto-regressive model base on Bayesian information
criterion (BIC) and Akaike information criterion (AIC) obtained from programs provided by the
MVGC tool box. The order shown in the figure is related to the time step of our data of 1/30 s.

Figure 8a,b are the GC test results and the corresponding p-values from Table 3. A
remarkable feature of Figure 8a is that all the F0→1 > F1→0 for all the experiments except
for experiment numbers 2, 5, 8, and 14. That means that the computed F values correctly
predict that Fish 1 (follower) is receiving information from Fish 0 (leader) except for these
four experiments. This difference is significant, as can also be seen from the p-value shown
in Figure 8b.
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Figure 8. Results of F values from Granger causality based on the programs provided by MVGC.
(a) F values for different experiments shown in Table 2 and (b) their responding p-value.

The implication of the results of the GC test for experiments 2, 5, 8, and 14 is interesting
because they are the cases for anticipatory dynamics. That means if we merely look at the
x-component for their trajectories, one could have concluded that Fish 1 is the leader. It is
only through the y-component of their trajectories that we conclude that these are cases for
anticipatory dynamics; namely, information flow from Fish 0 to Fish 1, but Fish 1 is leading
in action. Therefore, the use of the GC test to detect direction of information flow fails for
anticipatory dynamics.

Following Liang [13], we have also computed |T0→1| and |T1→0| for our experimental
dataset, and they are also shown in Table 2 and Figure 9. It is clear that all T are non-
zero and all |T0→1| are close to |T1→0|. Therefore, there is no clear indication of causality.
However, upon close examination, similar to the GC test, all the |T0→1| are larger than
|T1→0| except for experiments 2, 5, 8, and 14. Although there is no clear indication of
direction of information flow from using Liang’s analysis, our results show that Liang’s T
method, similar to the GC test, fails to detect DIF in the cases of anticipatory dynamics.

Figure 9. Results of Liang’s T-value computation from experiments shown in Table 2. It can be seen
that T0→1 are all larger than T1→0 except for experiments 2, 5, 8, and 14, similar to the finding of
using GC.

We have also computed the TE between the two time series from the experiments. For
the computation of TE from our experimental data, we need to first specify a history length
that is similar to the order of the model in the method of GC. In the package of MVGC, the
order is determined automatically by the package. However, for TE, we need to specify it
manually when we use the python package PyInform to compute the TE. Since the number
of permissible states in the system increases exponentially with history length, there will
be a strong bias [16] because the data length is short or history length is long. For example,
in our case of the trajectories in the X-direction divided into fiur states, the number of
permissible states of the system will increase as 4h+1, where h is the history length. For
h = 1, 2, 4, and 8, the corresponding number of permissible states are 16, 64, 1024, and
262,144, respectively. Since our data length is only 18,000, the results of TE computation
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will be unreliable when h is larger than 4. But in view of Figure 7, our history length should
be chosen to be at least 5, which corresponds to a lag of about 165 ms.

Figure 10 shows the results of TE computation of data from Table 3 for different history
lengths from 2 to 5. It can be seen from the figure that, in general, T0→1 is greater than T1→0,
although their differences are small. This last finding shows that the DIF for most of the
cases in the experiment are from 0 to 1. However, if we look closely at experiments 2, 5,
8, and 14, we find that T0→1 is either very close to or smaller than T1→0. The last finding
shows that the DIF for these cases are from 1 to 0. Therefore, the DIF obtained from the
method of TE are the same as those determined by the GC test and Liang’s T. All these
methods failed to detect the correct DIF for anticipatory dynamics.

Figure 10. Computation of transfer entropy of experiments listed in Table 2 using the package
PyInform. Here, h is the history length, and the two directions of transfer entropy are shown as
blue and red. It can be seen that for most of the cases, TE is higher from 0 to 1, but the difference
between the two directions are small. Similar to the computation of TLMI, the discretization here is
also 2 bit, but a 4 bit discretization will give similar results but with different numerical values for the
computed TE.

3.6. Testing of DIF Detection with Simulated Anticipatory Data

The results from the three methods (GC, Liang’s T, and TE) are similar in that they all
determine that the leading time series is detected as the information source and therefore
fail to detect the possible anticipatory dynamics in experiments 2, 5, 8, and 14. To further
demonstrate this property of these tools, we have also used simulated anticipatory dynam-
ics for these tests. Our source signal, S(t), is a lowpass Ornstein–Uhlenbeck time series
that has been demonstrated to be able to produce anticipatory response from a negative
group delay model [5]. The model of Equation (7) is then used to create the anticipatory
responses Z(t).

The simulation of Equation (7) and the corresponding TLMIs between S(t) and Z(t)
are shown in Figure 11. From the peak position of the cross-TLMI, it is clear that Z(t)
is leading S(t). This is exactly the situation for anticipatory dynamics: information flow
from S(t) to Z(t) while Z(t) is leading S(t). When we perform the GC and the Liang’s T
analysis with these two signals, we find that Fz→s > Fs→z and |Tz→s| > |Ts→z|. In other
words, both GC and Liang’s method fail to detect the correct direction of information flow.
Therefore, the failure of the detection of AD in experiments 2, 5, 8, and 14 does not mean
that there is absence of AD in these experiments. We have also computed the corresponding
TE of this NGD model for various history lengths, and the result is shown in Figure 12. It
can be seen clearly from the figure that the direction of information flow is wrong because
TE from S to Z is always larger than those from Z to S. Note that the discretization of the
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trajectories used in Figures 11b and 12 are both 4 bit. Similar results can also be obtained
when the discretization is changed to 2 bit.

Figure 11. Simulation of anticipatory dynamics from Equation (7) with the following parameters:
α = 20s−1, k = 5s−1, and td = 1s. (a) The time course of lowpass OU signal, S(t), and the output
Z(t). (b) The corresponding TLMI between S(t) and Z(t). Here, S(t) is the lowpass (0.3 Hz) of W(t)
with Ẇ(t) = −W(t)/τ + σζ(t), where σ = 63.2s−1, τ = 1, and ζ(t) is a dimensionless Gaussian
white noise with zero mean and unit variance. Note that S(t), Z(t), and W(t) are all dimensionless,
and both Equation (7) and W(t) are obtained by using simple Euler’s method with a time step size
of 0.01 s. Similar results can also be obtained when a time step of 0.001 s is used. These results are
obtained with a duration of 300 s of simulated time.

Figure 12. Measured TE between S and Z of the NGD model for various history length. It can be
seen that TE from Z to S is always larger than that from the reverse direction. A history length is
measured in a simulation step to be 0.01 s.

4. Limitations
4.1. Predictive and True Causality

The argument we used above to obtain the direction of information flow (causality)
between two time series is based on the improvement of prediction of future values of one
time series by the inclusion of values of the other time series. The causality established
in this manner is also known, more precisely, as predictive causality [17]. It is natural
that we choose this methodology here because AD is predictive. In fact, all three methods
used here to detect direction of information flow are predictive in nature. However, we
would like to stress that predictive causality can be different from true causality [17], which
requires a direct cause-and-effect mechanism [18] between two agents. Therefore, our
results of detection of AD between a pair of fish should be taken with caution. We did not
present any experimental evidence of a direct cause-and-effect mechanism between the two
fish. Data needed to establish true causality will require adequately designed intervention
experiments [19]. The readers should keep in mind that anticipatory dynamics is predictive
in nature and its detection does not imply that a biological cause-and-effect mechanism
between the two fish has been inferred.
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4.2. Detection of Anticipatory Dynamics

In this work, we are using the usual definition of AD in which information flows from
the source to the receiver while the temporal order of the receiver is ahead of the source. In
the case of a retina [4,5], it is clear that information flows from the visual stimulation to the
retina. AD is said to be observed when the output the of the retina (receiver) is ahead of the
stimulation (source). With this definition of AD, our claim of detection of AD is based on
our observation that the motions of receiver fish is ahead of the source fish in some fish
pairs. In our experiment, the source and receiver fish assignment is based on the passing
order of the fish through the door and the assumption that the roles of the fish do not
change during the experiment. However, the readers are reminded that these assumptions
of the passing order and the constancy of the roles of the fish need to be further tested.

4.3. Issues of Entropy Based Causality

It is well known that one must be cautious when dealing with entropy, especially when
it is used to deal with causality [20]. The counter-intuitive anticipatory dynamics under
consideration here might even make matters worse. For example, in a simulation study of
using TE to determine the direction of causality in coupled logistic maps with anticipatory
properties, Hahs et al. [21] found that the direction of causality in this relatively simple case
is dependent on the data resolution being used. Correct direction of causality can be found
only when high enough data resolution is used to compute the transfer entropy. In fact, we
have also checked that, for our simulation model above, the results could be quite different
from that shown in Figure 12 if a higher data resolution is used in the computation of TE.

The two lines in Figure 12 will cross over at a certain history length when the data
resolution is 6 bit or higher, suggesting that the direction of information flow is reversed.
However, we find that this crossover can be removed by using longer simulated time
(larger sample size). It is not clear if this phenomenon originates from the bias of sample
size mentioned above or is related to the effect mentioned in Ref. [21]. Nevertheless, these
results from the NGD model simulation clearly demonstrated that TE based causality
must be taken with care. Unlike numerical simulations in which data resolution can be
increased relatively easily, our experimental data resolution is fixed by the setup. The use
of computed TE based causality in our experiments might not be conclusive. Of course,
our assumption that the “driver” fish will go through the door first in the experiment also
needs to be further tested.

4.4. Correlation and Causation

One common mistake in the study of causality between two time series is the confusion
between correlation and causality. In Ref. [3], where anticipatory synchronization is
considered, there is a master and a slave with identical intrinsic dynamics (before coupling).
These two systems will synchronize with the slave system ahead of the master system. It
would be easy to conclude that the slave system is the cause of the master system because
its time course is ahead of that from the master. However, in such a case, there is no
causal relation between them because, when the two systems are synchronized, there is no
information flow between them. In fact, the coupling term vanishes when the two systems
are synchronized. In such a case, these two systems are perfectly correlated, but there is no
casual relation between them.

However, in the case of Ref. [2], the NGD model (Equation (7)) in our manuscript,
S(t) and Z(t) are not only correlated but there is also a causal relation between them.
Note that the intrinsic dynamics of Z(t) is purely relaxation without the coupling term.
It is the coupling delayed feedback, k(S(t)− Z(t − td)), which uses S(t) as the drive for
the system Z(t). The system Z(t) can produce anticipatory output of S(t) because of the
negative group delay properties of system Z(t) as well as the predictability of signal S(t)
by using a lowpass filter on a random signal. Had S(t) been totally random, there will be
no anticipatory output from Z(t). For this NGD model, the causal direction is clearly from
S(t) to Z(t). This simple NGD model cannot be used to understand the interaction between
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the fish pair. It is used here simply to demonstrate that the common tools for causality
used here fail to detect the correct DIF when anticipatory data of known DIF are fed into
these tools. In our experiments, there is no common external stimulation to the fish pair.
Presumably, their correlated but not synchronized motions are the results of information
exchanges between them.

4.5. Problem of Bi-Directional Coupling

It should be stated again that our definition of anticipatory dynamics is quite narrow.
For example, if there are bi-directional anticipatory interactions between the two fish
with almost equal strength, the resultant cross-TLMI will peak very close to zero time lag.
In such a case, there will be no obvious leader in the two resultant time series and our
method will reach the wrong conclusion that there is no AD. Therefore, our method of
detecting AD probably cannot be used to detect causality in a closed-loop control system,
such as the coupling between heart rate and respiration rate [22] or auto-regulation of
blood pressure [23]. In a closed-loop control system, different variables of the system are
coupled directly or indirectly in such a way to maintain the system in some desirable state.
Therefore, the causal effects of different variables in such a system are investigated because
these causal relations might reveal the underlying control mechanism. Methods such as
Granger indices [24] have been used to infer the types of interaction between different
variables in the controlled system. However, such an approach is probably not suitable for
our investigation of the interaction between two fish. It is not clear if their trajectories can
be regarded as the result of some kind of control. We could have also extended our NGD
simulation model to have a bi-directional coupling. But as mentioned above, our detection
method would probably fail.

5. Discussion

Traditionally, causality refers to the relationship between cause and effect, where
a cause precedes an effect in time. It implies that the cause happens first, leading to
the subsequent occurrence of the effect. However, as shown above in our simple nu-
merical simulation, in the context of anticipatory dynamics, causality is not ordered by
time. This happens because the responding system can incorporate future information
of the source into its present behavior. Here, the future information of the source can be
learned/anticipated by the responding system as in the case of NDG model, or it may use
internal models or predictions to guide its behavior based on expected future conditions as
in the case of anticipatory synchronization [3].

Our challenge is: how do we determine the causality between two given correlated
time series as in our experiments in the context of anticipatory dynamics? From the
discussion above, it is clear that the method of TLMI can be used to detect the temporal
order of events between the two time series. Ideally, if DIF can also be computed from
the two time series, one will be able to distinguish between the cases of “anticipatory” or
“following”. However, it is non-trivial to determine DIF simply based on the data from
the two times series as demonstrated by our experiment and simple simulation. In our
experiments, we are able to tell the DIF because of the special design of using a door to
determine which fish is the information source. Unfortunately, the methods of the GC
test, Liang’s T analysis, and TE all failed to detect DIF for both experiments and our NGD
generated data. These tools seem to detect DIF based on temporal order of events in the
two time series. It is not clear if the existence of AD can be detected based only on the data
from two time series. If yes, new tools need to be developed to detect it.

One interesting aspect of anticipatory dynamics is that the leading in time course does
not necessary means the “leader” [25] is in control. In the phenomenon of anticipating
synchronization demonstrated in Ref [3], it can be clearly seen that the “leader” (time
course) can be the slave because the slave is actively anticipating the future movements
of the master. It is known that when birds flock, the birds from low pecking order can
lead (in the sense of time course) for some time. Perhaps, these low pecking order birds
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are just anticipating the future position/movement of their masters (birds of high pecking
order). We are still in the early stages of understanding these emerging behaviors from
these active entities in the sense they are not only self-propelling but at the same time
making active decisions. Our experimental finding that most of the fish pairs are interacting
by “following” dynamics suggests that during the schooling of fish, perhaps, most of the
fish are just following the trajectories of their neighbors. It would then be interesting to
investigate if the direction of movement of a school of fish is determined by some leaders
or it is just spontaneously reacting to the environment such as the currents in the sea or the
location of prey and/or predators.

Finally, we would like to note that the method of analysis presented here can be
further tested by using zebrafish with known altered behavior; for example, fish with
neuro-degenerative disease [26]. Presumably, the dynamics of interaction between these
fish might be quite different because of their impaired information processing capability.
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Abbreviations and Symbols
AD Anticipatory dynamics
DIF Direction of information flow
Expt Experiment
GC Granger causality
NGD Negative group delay
OU Ornstein–Uhlenbeck
TE Transfer Entropy
xTLMI Time lag mutual information from the x component
U, V Time series from the trajectories
S, Z Source and target time series in the NGD model
W Ornstein–Uhlenbeck noise
P Probability distribution
η, ϵ Error (residuals)
F F-test
p p-value
T Value of Liang’s T mnethod
C Covariance
T Value of transfer entropy
H Entropy

References
1. Fodor, É.; Marchetti, M.C. The statistical physics of active matter: From self-catalytic colloids to living cells. Phys. A Stat. Mech.

Its Appl. 2018, 504, 106–120. [CrossRef]
2. Voss, H.U. Signal prediction by anticipatory relaxation dynamics. Phys. Rev. E 2016, 93, 030201. [CrossRef] [PubMed]
3. Voss, H.U. Anticipating chaotic synchronization. Phys. Rev. E 2000, 61, 5115. [CrossRef] [PubMed]

http://doi.org/10.1016/j.physa.2017.12.137
http://dx.doi.org/10.1103/PhysRevE.93.030201
http://www.ncbi.nlm.nih.gov/pubmed/27078275
http://dx.doi.org/10.1103/PhysRevE.61.5115
http://www.ncbi.nlm.nih.gov/pubmed/11031554


Entropy 2024, 26, 13 17 of 17

4. Berry, M.J., II; Brivanlou, I.H.; Jordan, T.A.; Meister, M. Anticipation of moving stimuli by the retina. Nature 1999, 398, 334.
[CrossRef] [PubMed]

5. Chou, P.Y.; Chien, J.F.; Chen, K.S.; Huang, Y.T.; Chen, C.C.; Chan, C. Anticipation and negative group delay in a retina. Phys. Rev.
E 2021, 103, L020401. [CrossRef] [PubMed]

6. Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven particles.
Phys. Rev. Lett. 1995, 75, 1226. [CrossRef] [PubMed]

7. Katz, Y.; Tunstrøm, K.; Ioannou, C.C.; Huepe, C.; Couzin, I.D. Inferring the structure and dynamics of interactions in schooling
fish. Proc. Natl. Acad. Sci. USA 2011, 108, 18720–18725. [CrossRef]

8. Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information—Theoretic
approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [CrossRef]

9. Vastano, J.A.; Swinney, H.L. Information transport in spatiotemporal systems. Phys. Rev. Lett. 1988, 60, 1773. [CrossRef]
10. Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image

processing in Python. PeerJ 2014, 2, e453. [CrossRef]
11. Wiener, N. Cybernetics or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA , 2019.
12. Barnett, L.; Seth, A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J.

Neurosci. Methods 2014, 223, 50–68. [CrossRef] [PubMed]
13. San Liang, X. Unraveling the cause-effect relation between time series. Phys. Rev. E 2014, 90, 052150. [CrossRef] [PubMed]
14. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [CrossRef] [PubMed]
15. Moore, D.G.; Valentini, G.; Walker, S.I.; Levin, M. Inform: Efficient information-theoretic analysis of collective behaviors. Front.

Robot. AI 2018, 5, 60. [CrossRef] [PubMed]
16. Wibral, M.; Vicente, R.; Lindner, M. Transfer entropy in neuroscience. In Directed Information Measures in Neuroscience; Springer:

Berlin/Heidelberg, Germany, 2014; pp. 3–36.
17. Li, J.; Convertino, M. Inferring ecosystem networks as information flows. Sci. Rep. 2021, 11, 7094. [CrossRef] [PubMed]
18. Pearl, J. Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000; Volume 19, p. 3.
19. Hyttinen, A.; Eberhardt, F.; Hoyer, P.O. Experiment selection for causal discovery. J. Mach. Learn. Res. 2013, 14, 3041–3071.
20. Zenil, H.; Kiani, N.A.; Tegnér, J. Low-algorithmic-complexity entropy-deceiving graphs. Phys. Rev. E 2017, 96, 012308. [CrossRef]
21. Hahs, D.W.; Pethel, S.D. Distinguishing anticipation from causality: Anticipatory bias in the estimation of information flow. Phys.

Rev. Lett. 2011, 107, 128701. [CrossRef]
22. Porta, A.; Castiglioni, P.; Di Rienzo, M.; Bassani, T.; Bari, V.; Faes, L.; Nollo, G.; Cividjan, A.; Quintin, L. Cardiovascular control

and time domain Granger causality: Insights from selective autonomic blockade. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
2013, 371, 20120161. [CrossRef]

23. Gelpi, F.; Bari, V.; Cairo, B.; De Maria, B.; Tonon, D.; Rossato, G.; Faes, L.; Porta, A. Dynamic cerebrovascular autoregulation in
patients prone to postural syncope: Comparison of techniques assessing the autoregulation index from spontaneous variability
series. Auton. Neurosci. 2022, 237, 102920. [CrossRef]

24. Porta, A.; Catai, A.M.; Takahashi, A.C.; Magagnin, V.; Bassani, T.; Tobaldini, E.; Van De Borne, P.; Montano, N. Causal relationships
between heart period and systolic arterial pressure during graded head-up tilt. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011,
300, R378–R386. [CrossRef] [PubMed]

25. Nagy, M.; Akos, Z.; Biro, D.; Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 2010, 464, 890. [CrossRef] [PubMed]
26. Bashirzade, A.A.; Zabegalov, K.N.; Volgin, A.D.; Belova, A.S.; Demin, K.A.; de Abreu, M.S.; Babchenko, V.Y.; Bashirzade, K.A.;

Yenkoyan, K.B.; Tikhonova, M.A.; et al. Modeling neurodegenerative disorders in zebrafish. Neurosci. Biobehav. Rev. 2022,
138, 104679. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/18678
http://www.ncbi.nlm.nih.gov/pubmed/10192333
http://dx.doi.org/10.1103/PhysRevE.103.L020401
http://www.ncbi.nlm.nih.gov/pubmed/33736006
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://www.ncbi.nlm.nih.gov/pubmed/10060237
http://dx.doi.org/10.1073/pnas.1107583108
http://dx.doi.org/10.1016/j.physrep.2006.12.004
http://dx.doi.org/10.1103/PhysRevLett.60.1773
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
http://www.ncbi.nlm.nih.gov/pubmed/24200508
http://dx.doi.org/10.1103/PhysRevE.90.052150
http://www.ncbi.nlm.nih.gov/pubmed/25493782
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://www.ncbi.nlm.nih.gov/pubmed/10991308
http://dx.doi.org/10.3389/frobt.2018.00060
http://www.ncbi.nlm.nih.gov/pubmed/33718436
http://dx.doi.org/10.1038/s41598-021-86476-9
http://www.ncbi.nlm.nih.gov/pubmed/33782461
http://dx.doi.org/10.1103/PhysRevE.96.012308
http://dx.doi.org/10.1103/PhysRevLett.107.128701
http://dx.doi.org/10.1098/rsta.2012.0161
http://dx.doi.org/10.1016/j.autneu.2021.102920
http://dx.doi.org/10.1152/ajpregu.00553.2010
http://www.ncbi.nlm.nih.gov/pubmed/20962207
http://dx.doi.org/10.1038/nature08891
http://www.ncbi.nlm.nih.gov/pubmed/20376149
http://dx.doi.org/10.1016/j.neubiorev.2022.104679
http://www.ncbi.nlm.nih.gov/pubmed/35490912

	Introduction
	Materials and Methods
	Experiments of Fish Pairs
	Time Lag Mutual Information (TLMI)
	Detection of Direction of Information Flow (DIF)
	Granger Causality (GC)
	Liang's T Method
	Transfer Entropy (TE)

	Simulation of Anticipatory Data

	Results
	Trajectories in One- and Three-Door Tanks
	Time Lag Mutual Information from the X Component (xTLMI)
	yTLMI and DIF Detection
	Summary of Experimental Results
	DIF Detection by Statistical Methods
	Testing of DIF Detection with Simulated Anticipatory Data

	Limitations
	Predictive and True Causality
	Detection of Anticipatory Dynamics
	Issues of Entropy Based Causality
	Correlation and Causation
	Problem of Bi-Directional Coupling

	Discussion
	References 

