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Abstract: Cerebral hemodynamics describes an important physiological system affected by compo-
nents such as blood pressure, CO2 levels, and endothelial factors. Recently, novel techniques have
emerged to analyse cerebral hemodynamics based on the calculation of entropies, which quantifies or
describes changes in the complexity of this system when it is affected by a pathological or physiologi-
cal influence. One recently described measure is transfer entropy, which allows for the determination
of causality between the various components of a system in terms of their flow of information, and
has shown positive results in the multivariate analysis of physiological signals. This study aims to
determine whether conditional transfer entropy reflects the causality in terms of entropy generated
by hypocapnia on cerebral hemodynamics. To achieve this, non-invasive signals from 28 healthy
individuals who undertook a hyperventilation maneuver were analyzed using conditional transfer
entropy to assess the variation in the relevance of CO2 levels on cerebral blood velocity. By employing
a specific method to discretize the signals, it was possible to differentiate the influence of CO2 levels
during the hyperventilation phase (22.0% and 20.3% increase for the left and right hemispheres,
respectively) compared to normal breathing, which remained higher during the recovery phase
(15.3% and 15.2% increase, respectively).

Keywords: conditional transfer entropy; information theory; cerebral hemodynamics

1. Introduction

Cerebral hemodynamics refers to the regulation of cerebral blood flow and the mech-
anisms involved in maintaining it within normal ranges [1]. Several factors, including
changes in blood pressure, blood carbon dioxide (CO2) levels, and neurovascular patholo-
gies, can significantly impact cerebral hemodynamics.

Currently, there are several methods available for studying physiological systems,
with entropy-based methods being prominent among them [2]. These methods enable
the characterization of systems in terms of complexity, disorder, randomness, and other
factors. Many entropy-based calculations are univariate, which often limits the ability
to consider all relevant components. Additionally, certain multivariate methods, such as
mutual information, may fail to consider the dynamism and directionality of physiological
systems [3]. In light of these limitations, a measure of entropy called transfer entropy has
emerged. Transfer entropy aims to determine the causality present in a system by assessing
the information or entropy of its components, while considering both the dynamism
and temporal aspects of these components [3]. It is also known that transfer entropy is
equivalent to Granger causality under Gaussian variables [4].
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Transfer entropy has demonstrated promising results in the analysis of physiological
systems. For example, it has been instrumental in determining the influence of CO2 and
O2 effects on respiratory flow in lambs consuming domperidone [5]. Additionally, it has
been used to investigate the relationship between changes in the interaction between the
sympathetic and parasympathetic nervous systems and the presence of congestive heart
failure in individuals [6]. Transfer entropy has also been utilized to identify topological
differences between the brain networks of healthy individuals and those with schizophrenia.
Notably, individuals with schizophrenia often exhibit deteriorated or weakened interactions
within the network [7]. These examples illustrate the wide array of applications for transfer
entropy in physiology research. Transfer entropy is considered a valid alternative for
investigating cerebral hemodynamics because of its multivariate approach, which enables
the determination of the influence of various variables on its regulatory mechanisms.

It has been suggested that previous studies evaluating the influence of CO2 on cerebral
blood flow may have overestimated the impact of CO2 variations, as they usually attribute
all observed changes solely to changes in CO2, ignoring the contribution made by concur-
rent changes in arterial blood pressure, which are also induced by variations in CO2 [8].
Transfer entropy presents an opportunity to estimate the influence of CO2 on blood flow
while eliminating the confounding effect of arterial blood pressure.

The objective of this study is to investigate whether transfer entropy enables the
differentiation of the influence of blood CO2 levels on cerebral blood velocity during a
respiratory exercise in a group of healthy individuals.

2. Materials and Methods
2.1. Subjects and Signals

The data used in this study were selected from a set of biomedical signals utilized in
previous works [9,10]. A total of 28 healthy individuals participated in the study and their
data were collected while they were positioned in a supine position on a couch. Continuous
recordings of heart rate, arterial blood pressure (BP), end-tidal carbon dioxide (ETCO2),
and bilateral blood velocity in the middle cerebral arteries (left and right MCAv) were
acquired. The heart rate was measured using a 3-lead echocardiography system, BP was
monitored using a finger arterial clamping device, ETCO2 levels were measured with a
nasal capnography module, and MCAv was measured using transcranial Doppler with
2-MHz probes. The collected signals were preprocessed offline and synchronized using the
electrocardiography trace. Mean values of BP and MCAv were calculated for each cardiac
cycle. Synchronized ETCO2 and mean signals were sampled at a fixed rate of 5 Hz for
analysis. Ethical approval was obtained from the Northampton Research Ethics Committee,
UK (reference 11/EM/0369), and all participants provided written informed consent. For
more detailed information about the protocol used, please refer to [9].

All participants underwent a 3-phase respiratory exercise during which their signals
were monitored. During the first phase (rest), lasting 60 s, individuals were in a resting
state breathing normal room air. In the second phase (hyperventilation), which lasted 90 s,
participants synchronized their breathing with an electronic metronome which gradually
increased their respiratory rate to 25 breaths per minute. The third and final phase (recov-
ery) lasted for an additional 120 s, during which participants were at rest and resumed
normal breathing.

2.2. Transfer Entropy

Transfer entropy serves as an extension of Shannon entropy and mutual information,
enabling the consideration of dynamic, temporal, and directional characteristics within
a given system and its component interactions [3,11]. When given an input process X
and an output process Y (both discrete random variables), transfer entropy quantifies the
reduction in uncertainty observed in future values of Y by knowing the past values of X,
considering the past values of Y [11] (p. 68). This quantification represents the information
transferred from X to Y.
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The transfer entropy between time series X and Y is mathematically represented (when
considering one time lag only) by (1), where t denotes a specific point in the respective
series at a given time, and k and l indicate the number of past values to consider [5].
It is important to note that before applying this approach, the time series needs to be
transformed into a probability distribution function.

TX→Y = ∑
yt ,yt−1,xt−1

p(yt, y(k)t−1, x(l)t−1) log
p(yt|y(k)t−1, x(l)t−1)

p(yt|y(k)t−1)
(1)

This measure can also be expressed as a function of conditional entropies. By setting the
block lengths of past values in X and Y to one (i.e., k = l = 1), the expression in (2) can
be obtained.

TX→Y = H(yt|yt−1)− H(yt|yt−1, xt−1) (2)

If the transfer entropy TX→Y = 0, it indicates that the history of Y is independent of the
past of X.

In a system, multiple variables may interplay with each other, directly influencing their
behaviors. Therefore, it is essential to consider the influence of all variables that interact
with each other. However, the transfer entropy from X to Y alone may not detect synergy
caused by additional variables, potentially leading to redundant or spurious results [12].
One option is to modify the transfer entropy by incorporating the influence of additional
variables conditionally into (1).

This gives rise to the conditional transfer entropy, as shown in (3). In this case, the
conditional part of a third variable Z, which directionally influences variable Y, is added,
similar to variable X. This form allows for considering cases where the flow of information
develops as X → Z → Y and Z → X ∪ Z → Y ∪ X → Y [11].

TX→Y|Z = H(Yt|Yt−1, Zt−1)− H(Yt|Yt−1, Xt−1, Zt−1) (3)

This measure aims to quantify the reduction in uncertainty observed in future values of
Y by knowing the past values of X, Y, and X conditioned on the entire past of Z [13].
Effectively, this rules out the information shared between X and Y that is mediated by their
common interaction with Z [14]. Moreover, the synergistic and redundant influence of
other variables can be discounted with conditional transfer entropy [13] (p. 76).

To facilitate the comparison of transfer entropy results across different cases, it is
necessary to normalize the obtained values for better interpretation. The normalization
method used involves estimating the transfer entropy value TX→Y by averaging the transfer
entropy calculated on a set of input signals that have the same probability distribution as
the original signal X. To achieve this, the probability distribution of X is shuffled n times,
and for each new shuffled signal X(s), the transfer entropy is computed using the original
signal Y. Finally, the obtained values are averaged to obtain an estimated value of transfer
entropy, E[nT̂X(s)→Y]. This estimated value is then subtracted from the original transfer
entropy, and the result is divided by the entropy rate of Y, as shown in (4) [15].

nTX→Y =
TX→Y −E[nT̂X(s)→Y]

H(Yt|Yt−1)
(4)

This normalization process generates a value between 0 and 1, indicating the fraction of
information in Y that is not explained by its past but rather by X. It is worth noting that this
normalization is widely used in studies that utilize transfer entropy as a method [16–19].

2.3. Time Series Discretisation

As outlined earlier, to calculate transfer entropy based on discrete random variables,
it is necessary to discretize the time series in analysis. This involves transforming the
continuous values of these series into discrete or categorical variables.
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There are numerous methods for achieving this discretisation, each with advantages
and disadvantages [5,11,20]. For this study, it was preferred to use two methods that are
simple to compute (complexity proportional to the length of the series) and which do not
require complex parameterisations, namely discretisation based on fixed bins and equal
frequency bins.

Fixed bin discretization consists of splitting the range of observed values in the time
series into n equal-size intervals, where n is a user-supplied parameter [5]. Discretization
by equal frequency bins involves dividing the range of observed values in the time series
into n intervals, each containing a comparable number of data points. This is achieved by
sorting all values in ascending order and then distributing them into n disjoint sets, each
containing approximately the same number of elements [20].

Figure 1 illustrates the discretization of a sample time series by applying these methods
with five bins (n = 5). In both cases, the resulting bins are numbered from 1 to n. Subse-
quently, the series is discretized by ”replacing” each data point with the corresponding bin
number. It is evident that the central bins appear more frequently in the discrete sequence
when using fixed bins. In contrast, as expected, all bins show a similar occurrence when
equal frequency bins are applied.

1

2

3

4

5

0 100 200

Fixed Bins

1 2 3 4 5
Bins

Bin Distribution

1

2
3

4

5

0 100 200

Equal Frequency Bins

1 2 3 4 5
Bins

Bin Distribution

Figure 1. Example of the discretization of an MCAv signal from a healthy subject into five bins using
fixed bins (top left) and equal frequency bins (top right). The discretized sequence is dominated by
central bins in the case of fixed bins (bottom left), whereas all bins exhibit a similar occurrence with
equal frequency bins (bottom right).

For this study, each hemodynamic recording was discretized using the two methods
described above to obtain probability distributions with 12 bins. The decision to employ
this number of bins is grounded in considerations of potential information loss resulting
from using a smaller number of symbols to represent the volunteers’ signals. Figure 2
illustrate the effect of the number of bins employed for the discretization of the sample
signal used in Figure 1. It can be observed that the discrete signals progressively resemble
the original one as the number of bins increases. However, higher numbers of bins begin to
require much more computation time and memory, as the number of potential patterns to
consider grows exponentially.
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Figure 2. Comparison of the original MCAv signal from a healthy subject (bottom) with its discretized
versions using fixed bins (left) and equal frequency bins (right). The number of bins ranges from 2 to
12 (from top to bottom).

2.4. Procedure

The respiratory exercise performed by the volunteers enabled the registration of
cerebral hemodynamic signals during poikilocapnic (Phase 1, Rest) conditions. Previous
analyses have indicated that the mechanisms governing BP and MCAv responses to CO2 ex-
hibit dynamic characteristics, and that the association between CO2 and MCAv is nonlinear,
with effects of changes in BP induced by CO2 [8].

MCAv signals from each hemisphere were analyzed separately in each of the three
phases of the respiratory exercise. After discretization, conditional transfer entropy was
calculated between the ETCO2 signal, as input, and MCAv, as output, thus eliminating BP
contribution, using Equation (3) and normalized according to (4).
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Subject mean conditional transfer entropy values were compared using linear mixed-
effects models to identify significant differences across respiratory phases used as predictors.
A Tukey post hoc procedure was conducted to determine specific differences. A significance
threshold of p < 0.05 was applied.

3. Results

Figures 3 and 4 show paired mean values of conditional transfer entropy for each
subject in the left and right hemispheres, respectively, during the three respiratory phases
(Rest, Hyperventilation, and Recovery).

0.2

0.3

0.4

Rest Hyperventilation Recovery
Condition

V
al

ue

Phase Rest Hyperventilation Recovery
Fixed Bins

**
**

0.2

0.3

0.4

0.5

Rest Hyperventilation Recovery
Condition

V
al

ue

Phase Rest Hyperventilation Recovery
Equal Frequency Bins

Figure 3. Mean conditional transfer entropy values for all volunteers, estimated from left hemisphere
MCAv signals recorded during three respiratory phases (Rest, Hyperventilation, Recovery). The
signals were discretized into 12 symbols using fixed bins (top) and equal frequency bins (bottom).
The symbol ** indicates a significant difference.

Table 1 details mean ± standard deviations values of conditional transfer entropy
obtained from the left and right hemisphere MCAv signals during each phase of the
respiratory exercise.

Table 1. Subject mean values of conditional transfer entropy. FBD: Fixed bin discretization, EFD: Equal
frequency bin discretization. †: significant difference with mean conditional transfer entropy at Rest.

Brain Discretisation Respiratory Exercise Phase

Side Method Rest Hyperventilation Recovery

Right FBD 0.280 ± 0.070 0.235 ± 0.069 † 0.240 ± 0.045
EFD 0.296 ± 0.067 0.356 ± 0.067 † 0.341 ± 0.044 †

Left FBD 0.271 ± 0.070 0.243 ± 0.067 0.247 ± 0.042
EFD 0.295 ± 0.066 0.363 ± 0.056 † 0.340 ± 0.048 †
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Figure 4. Mean conditional transfer entropy values for all volunteers, estimated from right hemi-
sphere MCAv signals recorded during three respiratory phases (Rest, Hyperventilation, Recovery).
The signals were discretized into 12 symbols using fixed bins (top) and equal frequency bins (bottom).
The symbol ** indicates a significant difference.

Averaged measures of conditional transfer entropy on the left hemisphere were signif-
icantly lower during normal breathing (0.295 ± 0.066) than during both hyperventilation
(0.363 ± 0.056, p < 0.001, 22.0% increase) and the recovery phase (0.340 ± 0.048, p = 0.005,
15.3% increase) when equal frequency bin discretization was employed. However, no
significant differences were detected within this hemisphere using fixed bin discretization.

Within the right hemisphere, higher mean values of conditional transfer entropy
gauged with equal frequency bin discretization were also observed during hyperventila-
tion (0.356 ± 0.067, p < 0.001, 20.3% increase) and recovery (0.341 ± 0.044, p = 0.007, 15.2%
increase) than in the resting phase (0.296 ± 0.067). In this hemisphere, fixed bin discretiza-
tion yielded higher mean values of conditional transfer entropy during the rest phase
(0.280 ± 0.070) than during hyperventilation (0.235 ± 0.069, p = 0.025, 16.9% decrease).

4. Discussion

Both hypocapnia and hypercapnia have a profound impact on cerebral circulation,
with significant changes in MCAv and moderate changes in BP [21]. Previous studies
have often employed linear methods to assess MCAv responses to fluctuations in ETCO2,
disregarding the influence of BP and the dynamic characteristics of this relationship. This
may be due to technical difficulties in quantifying the contributions of these variables
separately [22]. However such an approach can lead to misinterpretations [23].

There have been several attempts to measure the individual contributions of ETCO2
and BP to the observed fluctuations in MCAv signals (e.g., [8,21,23–26]). However, the
nonlinear nature of the relationships between these variables has been considered less
frequently (e.g., [26]). Understanding these nonlinearities is crucial, and may provide
deeper insights into the physiological mechanisms at play.



Entropy 2024, 26, 23 8 of 10

Transfer entropy offers the possibility of surpassing linear methods and other bivariate
methods, such as mutual information, by capturing the relation in terms of information
flow between multiple variables. Moreover, the conditional version of transfer entropy
is explored here as a simple tool to additionally quantify the individual information
contribution of ETCO2 on MCAv fluctuations, excluding the effects of BP. This is highly
relevant as transfer entropy, in common with many other measures of predictability, can
be affected both by the presence of redundancy (input signals share features that are
useful in predicting the output signal) and by the presence of synergy (the input signals
together provide features that help predict the output signal and are not found when
analyzed individually) causing information transferred from the inputs to the output to be
underestimated or overestimated [27]. Conditional transfer entropy would not be affected
in this way as redundant information is conditioned out while capturing any synergistic
effects provided by the sources in combination [11] (p. 146).

Estimates of conditional transfer entropy with equal frequency bin discretization
suggest the influence of blood CO2 levels on MCAv was more pronounced in hypercapnic
(and semi-hypocapnic) conditions, compared to the poikilocapnic condition, which is
consistent with the literature [23]. This superiority was observed in both brain hemispheres.

In addition, the same approach could detect a more significant influence of CO2 levels
on MCAv during hyperventilation than during the recovery phase on the left hemisphere
only, as might be expected if there are no delays in the return to normocapnia.

Measures of conditional transfer entropy gauged with fixed bin discretization only
indicated a higher influence of CO2 during the rest phase compared to hyperventilation,
which contradicts the expected results.

These findings indicate that equal frequency bin discretization yielded a more sensitive
approach than fixed bin discretization. One plausible explanation for this discerning
superiority may lie in the more intricate representation provided by the former. In equal
frequency bin discretization, the signal is binned in a manner that ensures an equal number
of values fall into each bin. As a result, the symbols assigned to each bin tend to appear
with a similar frequency along the sequence representing the discretized signal (Figure 1),
fostering a richer variety of patterns. Conversely, in fixed bin discretization, where bins
have uniform sizes, symbols linked to bins closer to the median value appear much more
frequently than those associated with more extreme amplitudes (Figure 3). Consequently,
the observed patterns are less intricate.

It becomes clear that, at least in this application, conditional transfer entropy using
equal frequency bin discretization detected the augmented influence of CO2 expected
during hyperventilation, with the exception of the transition period to normal breathing
on the left hemisphere. This result may be explained by either a slower recovery to the
normocapnic state than the time period analyzed in this protocol or a lack of statistical
power. More research is needed to elucidate this. Moreover, these positive results were not
observed when the fixed bin discretization method was employed. It would be beneficial
to explore other methods to discretize the signals, such as adaptive partitioning and kernel
density estimation. However, it should be taken into consideration that these methods
involve parameterization and demand substantial computational time in their calculations,
unlike the methods applied in this study [5].

There are some limitations to this study. First, it cannot be guaranteed that volunteers,
while controlling their breathing following a metronome tempo, are not also engaged in a
cognitive task that may alter cerebral hemodynamics. Second, discrete probability func-
tions were used for the calculation of transfer entropy as an approximation of continuous
probability density functions. Finally, the approach was not assessed under hypercapnic
conditions. For completeness, future studies should aim to undertake these measurements.

5. Conclusions

This study has demonstrated that conditional transfer entropy can effectively detect
changes in the impact of CO2 levels on MCAv during poikilocapnic conditions, particularly
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in normocapnia and hypocapnia, while excluding the effects of blood pressure. This
detection was achieved using the equal frequency bin discretization method. Moreover, the
directionality of the change could be identified as the relevance of CO2 increased during
hyperventilation. This study is considered a precedent for understanding the capabilities
of transfer entropy in the study of cerebral hemodynamics. Future research is necessary to
evaluate the proposed approach to study the participation of other variables of interest,
such as BP and in hypercapnic conditions, on cerebral hemodynamics in both healthy
subjects and patients with cerebrovascular disease.
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Abbreviations
The following abbreviations are used in this manuscript:

BP Blood pressure
CO2 Carbon dioxide
EFD Equal frequency bin discretization
ETCO2 End-tidal carbon dioxide
FBD Fixed bin discretization
MCAv Middle cerebral artery blood flow velocity
TX→Y Transfer entropy from variable X to variable Y

TX→Y|Z
Conditional transfer entropy from variable X to variable Y, conditioned by
the interaction of the variable Z
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