Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology
Abstract
:1. Introduction
2. Methods and Materials
2.1. Overall CBS-PVT System Design
2.2. Design of the FSF
2.3. Modeling Approaches
3. Results and Discussions
3.1. Optical Characteristics
3.2. Thermodynamic Estimation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
APVCM | total area of solar cell (m2) |
c | velocity of light in the vacuum (m/s) |
CR | concentration ratio (-) |
Dt | diameter of the TCT (mm) |
e | charge of an electron (C) |
Eg | bandgap energy of the solar cells (eV) |
F | focal length (mm) |
FF | fill factor (-) |
h | Planck constant (J·s) |
Hf | installation height of FSF (mm) |
Hs | installation height of solar cell (mm) |
Ht | installation height of TCT (mm) |
Isc | short circuit current (A) |
kB | Boltzmann constant (m2kg/(s2∙K)) |
nf | diode ideality factor of solar cell (-) |
Ppvcm | maximum power of the PV cell (W) |
Pth | output power of the HUS (W) |
Ptotal | total output power (W) |
QE | external quantum efficiency (-) |
Qhtc,in | incident solar energy flux on the HTC (W) |
Qpvcm,bs | solar radiation flux delivered to the PVCM (W) |
Qtct | solar radiation energy reflected to the TCT (W) |
Qtct,loss | solar radiation energy loss of the TCT (W) |
Qtct,net | net heat flux obtained by the TCT (W) |
Ra | relative aperture (-) |
Rg | concentration ratio of the HTC (-) |
Rt | radius of the TCT (mm) |
T0 | environment temperature (°C) |
Tpvcm | temperature of solar cell (°C) |
Ttct | temperature of TCT (°C) |
Voc | open circuit voltage (V) |
W | width of the HTC (mm) |
Wf | width of the FSF (mm) |
Ws | width of the solar cell (mm) |
Z | focal depth (mm) |
Greek Symbols | |
ρ | reflectance (-) |
τ | transmittance (-) |
εtr | solar tracking error (deg) |
η | efficiency (-) |
λ | wavelength (nm) |
Subscripts | |
ave | average |
bs | beam splitting |
c | solar concentration |
cbs-pvt | CBS-PVT system |
exe | exergic |
fsf | film spectrum filter |
htc | half-trough concentrator |
opt | optical |
pv | PV |
pvcm | PV cell module |
sys | system |
tct | thermal collector tube |
th | thermal |
tr | tracking |
Abbreviations | |
CBS-PVT | concentrating beam splitting photovoltaic thermal |
C-PV | concentrating photovoltaic thermal |
EFD | energy flux density |
EG | ethylene glycol |
HTC | half-trough concentrator |
HTF | heat transfer fluid |
HUS | heat utilization subsystem |
ITO | indium tin oxide |
FSF | film spectral filter |
NSF | nanofluid spectral filter |
PDMS | polydimethylsiloxane |
PG | propylene glycol |
PV | photovoltaic |
PV–T | PV and thermal |
PVCM | PV cell module |
PVS | photovoltaic subsystem |
SF | spectral filter |
STE | solar tracking error |
TCT | thermal collector tube |
References
- Islam, M.T.; Huda, N.; Abdullah, A.B.; Saidur, R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev. 2018, 91, 987–1018. [Google Scholar] [CrossRef]
- Li, G.; Xuan, Q.; Pei, G.; Su, Y.; Ji, J. Effect of non-uniform illumination and temperature distribution on concentrating solar cell-A review. Energy 2018, 144, 1119–1136. [Google Scholar] [CrossRef]
- Ashok, K.L.; Lakshmiprasad, C.N.; Ramaraj, G.; Sivasurya, G. Design, simulation of different configurations and life-cycle cost analysis of solar photovoltaic–water-pumping system for agriculture applications: Use cases and implementation issues. Clean Energy 2022, 6, 335–352. [Google Scholar]
- Bandaru, S.H.; Becerra, V.; Khanna, S.; Radulovic, J.; Hutchinson, D.; Khusainov, R. A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities. Energies 2021, 14, 3853. [Google Scholar] [CrossRef]
- Baharoon, D.A.; Rahman, H.A.; Omar, W.Z.W.; Fadhl, S.O. Historical development of concentrating solar power technologies to generate clean electricity efficiently-A review. Renew. Sustain. Energy Rev. 2015, 41, 996–1027. [Google Scholar] [CrossRef]
- Tehrani, S.S.M.; Taylor, R.A.; Saberi, P.; Diarce, G. Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renew. Energy 2016, 96, 120–136. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, C.; Wang, X.; Wang, S.; Xu, X.; Li, Q.; Li, X. Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle. Renew. Energy 2022, 182, 119–133. [Google Scholar] [CrossRef]
- Ram, J.P.; Babu, T.S.; Rajasekar, N. A comprehensive review on solar PV maximum power point tracking techniques. Renew. Sustain. Energy Rev. 2017, 67, 826–847. [Google Scholar] [CrossRef]
- Sheik, M.A.; Aravindan, M.K.; Cuce, E.; Dasore, A.; Rajak, U.; Shaik, S.; Manokar, A.M.; Riffat, S. A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials. Int. J. Low-Carbon Technol. 2022, 17, 768–783. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Brekke, N.; Dale, J.; DeJarnette, D.; Hari, P.; Orosz, M.; Roberts, K.; Tunkara, E.; Otanicar, T. Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption. Renew. Energy 2018, 123, 683–693. [Google Scholar] [CrossRef]
- Alibakhsh, K.; Reza, D.; Rezaei, R.; Pourfayaz, F.; Kasaeian, G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J. Clean. Prod. 2017, 158, 276–284. [Google Scholar]
- Liew, N.J.Y.; Lee, H. Numerical analysis of hybrid photovoltaic-thermal systems utilizing different spectral bandpass filters. Renew. Energy 2019, 144, 15–29. [Google Scholar] [CrossRef]
- Han, X.; Zhao, X.; Chen, X. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renew. Energy 2020, 162, 55–70. [Google Scholar] [CrossRef]
- Ju, X.; Xu, C.; Han, X.; Du, X.; Wei, G.; Yang, Y. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Appl. Energy 2017, 187, 534–563. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, P.; Mo, S.; Chen, Z. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Sol. Energy Mater. Sol. Cells 2010, 94, 1686–1696. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, P.; Zhang, Q.; Chen, Z. Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels. Sol. Energy 2014, 103, 191–199. [Google Scholar] [CrossRef]
- Otanicar, T.; Dale, J.; Orosz, M.; Brekke, N.; DeJarnette, D.; Tunkara, E.; Roberts, K.; Harikumar, P. Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures. Appl. Energy 2018, 228, 1531–1539. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Z.; Chen, Z. Design and performance evaluation of a novel CPV-T system using nano-fluid spectrum filter and with high solar concentrating uniformity. Energy 2023, 267, 126616. [Google Scholar] [CrossRef]
- Joshi, S.; Dhoble, A. Photovoltaic-Thermal systems (PVT): Technology review and future trends. Renew. Sustain. Energy Rev. 2018, 92, 848–882. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, M.; Sui, Z.; Yi, K.; Jin, Y.; He, H. Porous antireflective coatings with controlled thickness and refractive index on glass. J. Non-Cryst. Solids 2013, 363, 26–31. [Google Scholar] [CrossRef]
- Zhang, X.X.; Cai, S.; You, D.; Yan, L.H.; Lv, H.B.; Yuan, X.D.; Jiang, B. Template-Free Sol-Gel Preparation of Superhydrophobic ORMOSIL Films for Double-Wavelength Broadband Antireflective Coatings. Adv. Funct. Mater. 2013, 23, 4361–4365. [Google Scholar] [CrossRef]
- Ju, X.; Wang, Z.; Flamant, G.; Li, P.; Zhao, W. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Sol. Energy 2012, 86, 1941–1954. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Myers, D.; Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 2002, 73, 443–467. [Google Scholar] [CrossRef]
- Cheng, Z.D.; He, Y.L.; Cui, F.Q. A new modelling method and unified code with MCRT for concentrating solar collectors and its applications. Appl. Energy 2013, 101, 686–698. [Google Scholar] [CrossRef]
- Widyolar, B.; Jiang, L.; Winston, R. Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation. Appl. Energy 2018, 209, 236–250. [Google Scholar] [CrossRef]
- Thornton, J.A.; Lamb, J.L. Sputter deposited Pt–Al2O3 graded cermet selective absorber coatings. Sol. Energy Mater. 1984, 9, 415–431. [Google Scholar] [CrossRef]
- Selvakumar, N.; Barshilia, H.C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Sol. Energy Mater. Sol. Cells 2012, 98, 1–23. [Google Scholar] [CrossRef]
- Liang, H.; Wang, F.; Zhang, D.; Cheng, Z.; Zhang, C.; Lin, B.; Xu, H. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 2020, 194, 116913. [Google Scholar]
Item | Value |
---|---|
HTC apertural diameter | 800 mm |
HTC focal distance | 1600 mm |
HTC length | 300 mm |
FSF height | 1506.25 mm |
FSF width | 50 mm |
PVCM height | 1543.75 mm |
PVCM width | 30 mm |
TCT diameter | 30 mm |
TCT height | 1355 mm |
Concentration ratio of the HTC | 25.67 |
Relative aperture of the HTC | 0.5 |
FSF Design Scheme | I | II | III | IV | V |
---|---|---|---|---|---|
Total layer number | 5 | 9 | 13 | 17 | 25 |
(380~1100 nm) | 0.059 | 0.065 | 0.105 | 0.082 | 0.095 |
(380~1100 nm) | 0.941 | 0.935 | 0.895 | 0.918 | 0.905 |
(<380 nm, >1100 nm) | 0.515 | 0.787 | 0.867 | 0.851 | 0.975 |
(<380 nm, >1100 nm) | 0.485 | 0.213 | 0.133 | 0.149 | 0.025 |
(250~2500 nm) | 0.164 | 0.232 | 0.279 | 0.258 | 0.272 |
(250~2500 nm) | 0.836 | 0.768 | 0.721 | 0.742 | 0.728 |
Item | Value | Item | Value |
---|---|---|---|
0.706 V | Ttct | 200 °C | |
0.012 | Atct | 0.471 m2 | |
Apvcm | 0.15 m2 | [27,28] | |
1100 nm | 0.9 | ||
25 °C | 0.9 | ||
Tpvcm | 30 °C | 1.28 |
Item | Result | Item | Result |
---|---|---|---|
Qhtc,in | 3850 W | 999.5 W | |
Qpvcm,bs | 2662.7 W | 0.314 | |
Qtct | 945.1 W | 0.816 | |
Ppvcm | 837.4 W | 0.211 | |
Ptct | 162.1 W | ηcbs-pvt | 0.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Liu, J.; Chen, Z. Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology. Entropy 2024, 26, 31. https://doi.org/10.3390/e26010031
Wang G, Liu J, Chen Z. Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology. Entropy. 2024; 26(1):31. https://doi.org/10.3390/e26010031
Chicago/Turabian StyleWang, Gang, Jialin Liu, and Zeshao Chen. 2024. "Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology" Entropy 26, no. 1: 31. https://doi.org/10.3390/e26010031
APA StyleWang, G., Liu, J., & Chen, Z. (2024). Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology. Entropy, 26(1), 31. https://doi.org/10.3390/e26010031