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Abstract: Analysis of the currently established Bayesian nearest neighbors classification model
points to a connection between the computation of its normalizing constant and issues of NP-
completeness. An alternative predictive model constructed by aggregating the predictive distributions
of simpler nonlocal models is proposed, and analytic expressions for the normalizing constants of
these nonlocal models are derived, ensuring polynomial time computation without approximations.
Experiments with synthetic and real datasets showcase the predictive performance of the proposed
predictive model.
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1. Introduction

The now classic nearest neighbors classification algorithm, introduced in a 1951 techni-
cal report by Fix and Hodges (reprinted in [1]), marked one of the early successes of machine
learning research. The basic idea is that, given some notion of proximity between pairs of
observations, the class of a new sample unit is determined by majority voting among its k
nearest neighbors in the training sample [2,3]. A natural question is whether it is possible
to develop a probabilistic model that captures the essence of the mechanism contained in
the classic nearest neighbors algorithm while adding proper uncertainty quantification of
predictions made by the model. In a pioneering paper, Holmes and Adams [4] defined a
probabilistic nearest neighbors model specifying a set of conditional distributions. A few
years later, Cucala et al. [5] pointed out the incompatibility of the conditional distributions
specified by Holmes and Adams, which do not define a proper joint model distribution. As
an alternative, Cucala et al. developed their own nearest neighbors classification model,
defining directly a proper, Boltzmann-like joint distribution. A major difficulty with the
Cucala et al. model is the fact that its likelihood function involves a seemingly intractable
normalizing constant. Consequently, in order to perform a Bayesian analysis of their model,
the authors engaged in a tour de force of Monte Carlo techniques, with varied computational
complexity and approximation quality.

In this paper, we introduce an alternative probabilistic nearest neighbors predictive
model constructed from an aggregation of simpler models whose normalizing constants
can be exactly summed in polynomial time. We begin by reviewing the Cucala et al. model
in Section 2, showing by an elementary argument that the computational complexity of
the exact summation of its normalizing constant is directly tied to the concept of NP-
completeness [6]. The necessary concepts from the theory of computational complexity are
briefly reviewed. Section 3 introduces a family of nonlocal models, whose joint distributions
take into account only the interactions between each sample unit and its r-th nearest
neighbor. For each nonlocal model, we derive an analytic expression for its normalizing
constant, which can be computed exactly in polynomial time. The nonlocal models are
combined in Section 4, yielding a predictive distribution that does not rely on costly Monte
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Carlo approximations. We run experiments with synthetic and real datasets, showing that
our model achieves the predictive performance of the Cucala et al. model, with a more
manageable computational cost. We present our conclusions in Section 5.

2. A Case of Intractable Normalization

This section sets the environment for the general classification problem discussed
in this paper. We begin in Section 2.1 with the definition of the Cucala et al. Bayesian
nearest neighbors classification model, whose normalizing constant requires an exponential
number of operations for brute force calculation. We indicate the Monte Carlo techniques
used by the authors to sample from the model posterior distribution, as well as the approx-
imations made to circumvent the computational complexity issues. Section 2.2 reviews
briefly the fundamental concepts of the theory of computational complexity, ending up with
the characterization of NP-complete decision problems, which are considered intractable.
Section 2.3 establishes by an elementary argument a connection between the summation
of the normalizing constant appearing on the likelihood of the Cucala et al. model and
one of the classical NP-complete problems. In a nutshell, we show that the availability
of an algorithm to exactly compute the normalizing constant of the Cucala et al. model
in polynomial time in an ordinary computer would imply that all so-called NP problems
could also be solved in polynomial time under equivalent conditions.

2.1. The Cucala et al. Model

Suppose that we have a size n training sample such that for each sample unit we know
the value of a vector xi ∈ Rp of predictor variables and a response variable yi belonging to
a set of class labels L = {1, 2, . . . , L}. Some notion of proximity between training sample
units is given in terms of the corresponding vectors of predictors. For example, we may use
the Euclidean distance between the vectors of predictors of every pair of training sample
units to establish a notion of neighborhood in the training sample. Given this neighborhood
structure, let the brackets [i]r denote the index of the sample unit in the training sample that
is the r-th nearest neighbor of the i-th sample unit, for i = 1, . . . , n, and r = 1, . . . , n− 1.

Introducing the notations x = (x1, . . . , xn) and y = (y1, . . . , yn), the Cucala et al.
model [5] is defined by the joint distribution

p(y | x, β, k) =
1

Z(β, k)
exp

(
β

k

n

∑
i=1

k

∑
r=1

I(yi = y[i]r )

)
,

in which β ≥ 0 and k = 1, . . . , n− 1 are model parameters and I( · ) denotes an indicator
function. Notice that dependence on the predictors occurs through the neighborhood
brackets [i]r, which are determined by the xi’s. The model normalizing constant is given by

Z(β, k) = ∑
y∈L n

exp

(
β

k

n

∑
i=1

k

∑
r=1

I(yi = y[i]r )

)
.

From this definition, we see that direct (brute force) summation of Z(β, k) would involve
an exponential number of operations (O(Ln)). The much more subtle question about
the possible existence of an algorithm that would allow us to exactly compute Z(β, k) in
polynomial time is addressed in Section 2.3.

In their paper [5], the authors relied on a series of techniques to implement Markov
Chain Monte Carlo (MCMC) frameworks in the presence of the seemingly intractable model
normalizing constant Z(β, k). They developed solutions based on pseudo-likelihood [7],
path sampling [8,9] (which essentially approximates Z(β, k) using a computationally inten-
sive process, for each value of the pair (β, k) appearing in the iterations of the underlying
MCMC procedure) and the Møller et al. auxiliary variable method [10]. Although there
is currently no publicly available source code for further experimentation, at the end of
Section 3.4 the authors report computation times ranging from twenty minutes to more
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than one week for the different methods using compiled code. We refer the reader to [5] for
the technical details.

2.2. Computational Complexity

Informally, by a deterministic computer we mean a device or process that executes
the instructions in a given algorithm one at a time in a single-threaded fashion. A decision
problem is one whose computation ends with a “yes” or “no” output after a certain number
of steps, which is referred to as the running time of the algorithm. The class of all decision
problems, with the input size measured by a positive integer n, for which there exists an
algorithm whose running time on a deterministic computer is bounded by a polynomial in
n, is denoted by P. We think of P as the class of computationally “easy” or tractable decision
problems. Notable P problems are the decision version of linear programming and the
problem of determining if a number is prime.

A nondeterministic computer is an idealized device whose programs are allowed to
branch the computation at each step into an arbitrary number of parallel threads. The class
of nondeterministic polynomial (NP) decision problems contains all decision problems for
which there is an algorithm or program that runs in polynomial time on a nondeterministic
computer. An alternative and equivalent view is that NP problems are those decision
problems whose solution is difficult to find but easy to verify. We think of NP problems
as the class of computationally “hard” or intractable decision problems. Notable NP
problems are the Boolean satisfiability (SAT) problem and the travelling salesman problem.
Every problem in P is obviously in NP. In principle, for any NP problem, it could be
possible to find an algorithm solving the problem in polynomial time on a deterministic
computer. However, a proof for a single NP problem that there is no algorithm running on
a deterministic computer that could solve it in polynomial time would establish that the
classes P and NP are not equal. The problem of whether P is or is not equal to NP is the
most famous open question of theoretical computer science.

Two given decision problems can be connected by the device of polynomial reduction.
Informally, suppose that there is a subroutine that solves the first problem. We say that
the first problem is polynomial time reducible to the second if both the time required to
transform the first problem into the second and the number of times the subroutine is called
are bounded by a polynomial in n.

In 1971, Stephen Cook [11] proved that all NP problems are polynomial-time-reducible
to SAT, meaning that 1) no NP problem is harder than SAT and 2) a polynomial time
algorithm that solves SAT on a deterministic computer would give a polynomial time
algorithm solving every other NP problem on a deterministic computer, ultimately implying
that P is equal to NP. In general terms, a problem is said to be NP-complete if it is NP and
all other NP problems can be polynomial-time reduced to it, and SAT was the first ever
problem proven to be NP-complete. In a sense, each NP-complete problem encodes the
quintessence of intractability.

2.3. Z(β, k) and NP-Completeness

Let G = (V, E) be an undirected graph, in which V is a set of vertices and E is a set
of edges e = {v, v′}, with v, v′ ∈ V. Given a function w : E→ Z+, we refer to w(e) as the
weight of the edge e ∈ E. A cut of G is a partition of V into disjoint sets V0 and V1. The
size of the cut is the sum of the weights of the edges in E with one endpoint in V0 and one
endpoint in V1. The decision problem known as the maximum cut can be stated as follows:
for a given integer m, is there a cut of G with size at least m? Karp [12] proved that the
general maximum cut problem is NP-complete. In what follows, we point to an elementary
link between the exact summation of the normalizing constant Z(β, k) of the Cucala et al.
model and the decision of an associated maximum cut problem.

Without a loss of generality, suppose that we are dealing with a binary classification
problem in which the response variable yi ∈ {0, 1}, for i = 1, . . . , n. Define the n × n
matrix A = (aij) by aij = 1 if j is one of the k nearest neighbors of i, and aij = 0 otherwise.
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Letting B = (bij) = A + A⊤, this is the adjacency matrix of a weighted undirected graph
G, whose vertices represent the training sample units, and the edges connecting these
vertices may have weights zero, one, or two, based on whether the corresponding training
sample units do not belong to each other’s k-neighborhoods, just one belongs to the other’s
k-neighborhood, or both are part of each other’s k-neighborhoods, respectively. The double
sum in the exponent of Z(β, k) can be rewritten as

T(y) =
n

∑
i=1

k

∑
r=1

I(yi = y[i]r ) =
n

∑
i,j=1

aij I(yi = yj) =
1
2

n

∑
i,j=1

bij I(yi = yj),

for every y ∈ {0, 1}n. Furthermore, each y ∈ {0, 1}n corresponds to a cut of the graph G if
we define the disjoint sets of vertices V0 = {i ∈ E : yi = 0} and V1 = {i ∈ E : yi = 1}. The
respective cut size is given by:

cut-size(y) =
1
2

n

∑
i,j=1

bij I(yi ̸= yj).

Since for every y ∈ {0, 1}n we have that

n

∑
i,j=1

bij =
n

∑
i,j=1

bij I(yi = yj) +
n

∑
i,j=1

bij I(yi ̸= yj),

it follows that

cut-size(y) =

(
1
2

n

∑
i,j=1

bij

)
− T(y). (∗)

Figure 1 gives an example for a specific neighborhood structure involving the three nearest
neighbors with respect to Euclidean distance.

Figure 1. Weighted undirected nonplanar graphs associated with a specific neighborhood structure,
determined by the three nearest neighbors according to Euclidean distance, and the sizes of three
different cuts, obtained by summing the weights of all edges linking two vertices of different colors.
On each graph, light gray and black edges have weights with values one and two, respectively,
according to the adjacency matrix B. Black and white vertices correspond to class labels being equal
to one and zero, respectively.
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By grouping each possible value of T(y) in the sum over y ∈ {0, 1}n appearing in the
definition of Z(β, k), we obtain the alternative polynomial representation

Z(β, k) =
nk

∑
t=0

dtzt,

in which z = eβ/k and dt = ∑y∈{0,1}n I(T(y) = t), for t = 0, 1, . . . , nk. Note that dt is the
number of vectors y ∈ {0, 1}n such that T(y) = t, and from (∗) we have that dt is also the
number of possible cuts of the graph G with size

(
1
2 ∑n

i,j=1 bij

)
− t.

Suppose that we have found a way to sum Z(β, k) in polynomial time on a deter-
ministic computer, for every possible value of β and k and any specified neighborhood
structure. By polynomial interpolation (see [13]), we would be able to compute the value
of each coefficient dt in polynomial time, thus determining the number of cuts of G with
all possible sizes, thereby solving any maximum cut decision problem associated with the
graph G. In other words: the existence of a polynomial time algorithm to sum Z(β, k) for an
arbitrary neighborhood structure on a deterministic computer would imply that P is equal
to NP.

3. Nonlocal Models Are Tractable

This section introduces a family of models that are related to the Cucala et al. model
but differ in two significant ways. First, making use of a physical analogy, while the
likelihood function of the Cucala et al. model is such that each sampling unit “interacts”
with all of its k nearest neighbors, for the models introduced in this section each sampling
unit interacts only with its r-th nearest neighbor, for some r = 1, . . . , n− 1. Keeping up
with the physical analogy, we say that we a have a family of nonlocal models (for the sake
of simplicity, we are abusing terminology a little bit here, since the model with r = 1 is
perfectly “local”). Second, the nice fact about the nonlocal models is that their normalizing
constants are tractable; the main result of this section being an explicit analytic expression
for the normalizing constant of a nonlocal model that is computable in polynomial time.
The purpose of these nonlocal models is to work as building blocks for our final aggregated
probabilistic predictive model in Section 4.

For r = 1, . . . , n− 1, the likelihood of the r-th nonlocal model is defined as

pr(y | x, βr) =
1

Zr(βr)
exp

(
βr

n

∑
i=1

I(yi = y[i]r )

)
,

in which the normalizing constant is given by

Zr(βr) = ∑
y∈L n

exp

(
βr

n

∑
i=1

I(yi = y[i]r )

)
,

with parameter βr ≥ 0.
In line with what was pointed out in our discussion of the normalizing constant

Z(β, k) of the Cucala et al. model, brute force computation of Zr(βr) is also hopeless for
the nonlocal models, requiring the summation of an exponential number of terms (O(Ln)).
However, the much simpler topology associated with the neighborhood structure of a
nonlocal model can be exploited to give us a path to sum Zr(βr) analytically, resulting in
an expression that can be computed exactly in polynomial time on an ordinary computer.

Throughout the remainder of this section, our goal is to derive a tractable closed form
for the normalizing constant Zr(βr). For the r-th nonlocal model, consider the directed
graph G = (V, E) representing the associated neighborhood structure of a given training
sample. For i = 1, . . . , n, each vertex i ∈ V corresponds to one training sample unit, and the
existence of an oriented edge (i, j) ∈ E, represented pictorially by an arrow pointing from i
to j, means that the j-th sample unit is the r-th nearest neighbor of the i-th sample unit.
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An example is given in Figure 2 for the nonlocal models with r = 1 and r = 2.
We see that in general G can be decomposed into totally disconnected subgraphs G′ =
(V′, E′), G′′ = (V′′, E′′), . . . , meaning that vertices in one subgraph have no arrows point-
ing to vertices in the other subgraphs. If V′ = {i1, . . . , ik}, we use the notation for the
multiple sum

L

∑
yi=1
i∈V′

:=
L

∑
yi1

=1
· · ·

L

∑
yik

=1
.

Since

∑
y∈L n

:=
L

∑
y1=1

L

∑
y2=1
· · ·

L

∑
yn=1

,

the normalizing constant Zr(βr) can be factored as a product of summations involving only
the yi’s associated with each subgraph:

Zr(βr) =

 L

∑
yi=1
i∈V′

exp

(
βr

n

∑
i=1

I(yi = y[i]r )

)×
 L

∑
yi=1
i∈V′′

exp

(
βr

n

∑
i=1

I(yi = y[i]r )

)× · · · .

For each subgraph, starting at some vertex and following the arrows pointing to each
subsequent vertex, if we return to the first vertex after m steps, we say that the subgraph has
a simple cycle of size m. The outdegree of a vertex is the number of arrows pointing from it
to other vertices; the indegree of a vertex is defined analogously. Figure 3 depicts the fact
that each subgraph has exactly one simple cycle: in a subgraph without simple cycles, there
would be at least one vertex with outdegree equal to zero. Moreover, a subgraph with more
than one simple cycle would have at least one vertex in one of the simple cycles pointing to
a vertex in another simple cycle, implying that such a vertex would have outdegree equal
to two. Both cases contradict the fact that every vertex of each subgraph has outdegree
equal to one, since each sample unit has exactly one r-th nearest neighbor.

Figure 2. Distance matrix D and directed graphs showing the neighborhood structure for the nonlocal
models with r = 1 and r = 2.
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Figure 3. Two impossible directed graphs for a nonlocal model. On the left graph, the white vertex
has outdegree equal to zero. On the right graph, the white vertex has outdegree equal to two. Both
graphs contradict the fact that each training sample unit has exactly one r-th nearest neighbor. The
conclusion is that in a directed graph describing the neighborhood structure of a nonlocal model each
subgraph contains exactly one simple cycle.

Figure 4 portrays the reduction process used to perform the summations for one
subgraph. For each vertex with indegree equal to zero, we sum over the correspondent
yi and remove the vertex from the graph. We repeat this process until we are left with a
summation over the vertices forming the simple cycle. The summation for each vertex i
with indegree equal to zero in this reduction process gives the factor

L

∑
yi=1

exp(βrI(yi = y[i]r )) = eβr + L− 1,

because—and this is a crucial aspect of the reduction process—in this sum the indicator
is equal to one just for a single term, and it is equal to zero for all the remaining L − 1
terms, whatever the value of y[i]r . Summation over the vertices forming the simple cycle is
performed as follows. Relabeling the indexes of the sample units if necessary, suppose that
the vertices forming a simple cycle of size m are labeled as 1, 2, . . . , m. Defining the matrix
S = (sa,b) by sa,b = exp(βrI(a = b)), we have

L

∑
y1=1

L

∑
y2=1
· · ·

L

∑
ym=1

exp(βrI(y1 = y2))× exp(βrI(y2 = y3))× · · · × exp(βrI(ym = y1))

=
L

∑
y1=1

L

∑
y2=1
· · ·

L

∑
ym=1

sy1,y2 × sy2,y3 × · · · × sym ,y1 =
L

∑
y1=1

(Sm)y1,y1 = Tr(Sm).

By the spectral decomposition [14], we have that S = QΛQ⊤, with QQ⊤ = Q⊤Q = I.
Therefore, Sm = QΛmQ⊤, implying that Tr(Sm) = Tr(ΛmQ⊤Q) = Tr(Λm) = ∑L

ℓ=1 λm
ℓ , in

which we used the cyclic property of the trace, and the λℓ’s are the eigenvalues of S, which
are easy to compute: the characteristic polynomial of S is

det(S− λI) = (eβr − 1− λ)L−1(eβr + L− 1− λ) = 0,

yielding
λ1 = λ2 = · · · = λL−1 = eβr − 1, and λL = eβr + L− 1.

For the r-th nonlocal model, let c(r)m be the number of simple cycles of size m, considering all
the associated subgraphs. Algorithm 1 shows how to compute c(r)m , for r = 1, . . . , n− 1 and
m = 2, . . . , n, in polynomial time. Taking into account all the subgraphs, and multiplying
all the factors, we arrive at the final expression:

Zr(βr) = (eβr + L− 1)n−∑n
m=2 m×c(r)m ×

n

∏
m=2

(
(eβr + L− 1)m + (L− 1)(eβr − 1)m

)c(r)m
.
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Figure 4. Example of the reduction process for the summation on each subgraph.

Algorithm 1 Count the occurrences of simple cycles of different sizes on the directed
subgraphs representing the neighborhood structures of all nonlocal models

Require: Neighborhood brackets {[i]r : i = 1, . . . , n; r = 1, . . . , n− 1}.

1: function COUNT_SIMPLE_CYCLES({[i]r : i = 1, . . . , n; r = 1, . . . , n− 1})
2: c(r)m ← 0 for (r, m) ∈ {1, . . . , n− 1} × {2, . . . , n}
3: for r ← 1 to n− 1 do
4: visited← ∅
5: for j← 1 to n do
6: next if j ∈ visited
7: i← j
8: walk← empty stack
9: while i /∈ visited do

10: visited← visited ∪ {i}
11: push i into walk
12: i← [i]r
13: end while
14: m← 1
15: while walk not empty do
16: delete top element from walk
17: if top element of walk = i then
18: c(r)m ← c(r)m + 1
19: break
20: end if
21: m← m + 1
22: end while
23: end for
24: end for
25: return {c(r)m : r = 1, . . . , n− 1; m = 2, . . . , n}
26: end function

4. Predictive Model

The nonlocal models developed in Section 3 will be the building blocks of our
probabilistic nearest neighbors classification model. Introducing a hyperparameter k =
1, . . . , n− 1, the first k nonlocal models can be combined; the heuristic being that a “super-
position” of nonlocal models could work as a model whose neighborhood structure takes
into account the sets of k nearest neighbors of each sample unit. Section 4.1 explains the
aggregation procedure leading to the predictive distribution of the combined model. The
results in Section 4.2 showcase the computational cost and the predictive performance of
the new model, examining the same synthetic and real datasets explored in [5].
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4.1. Aggregating the Predictions of the Nonlocal Models

For the r-th nonlocal model, with r = 1, . . . , n − 1, using the information in the
training sample and the analytic expression obtained for Zr(βr) in Section 3, we construct
an estimate β̂r for the parameter βr by maximizing the corresponding likelihood function:

β̂r = arg max
βr≥0

pr(y | x, βr) = arg max
βr≥0

(
1

Zr(βr)
exp

(
βr

n

∑
i=1

I(yi = y[i]r )

))
.

Using this estimate, we define the predictive distribution of the r-th nonlocal model as

pr(yn+1 | xn+1, x, y) := pr(yn+1 | xn+1, x, y, β̂r)

∝ exp

(
β̂r

(
I(yn+1 = y[n+1]r ) +

n

∑
i=1

I(yi = yn+1, [i]r = n + 1)

))
,

with ∑L
yn+1=1 pr(yn+1 | xn+1, x, y) = 1.

Finally, we aggregate the predictive distributions of the nonlocal models, introducing
a hyperparameter k = 1, . . . , n− 1 and defining

p(k)(yn+1 | xn+1, x, y) :=
1
k

k

∑
r=1

pr(yn+1 | xn+1, x, y).

The value of the hyperparameter k is chosen using leave-one-out cross validation [15] on
the training sample. From now on, we refer to this predictive model as the probabilistic
nearest neighbors classification model (pnnclass, for short).

An open source software library implementing the predictive model described in this
section is publicly available at https://github.com/paulocmarquesf/pnnclass (access on
29 December 2023). It is an R [16] library, having internal routines written in C++ [17] with
the help of Rcpp [18].

4.2. Experiments with Synthetic and Real Datasets

The first example examined in [5] was the simulated dataset proposed by Ripley in
his classic book [19]. It consists of training and testing samples with sizes 250 and 1 000,
respectively. The response variable is binary, and we have two generic real-valued predictor
variables. The pnnclass predictive model achieves a testing error rate of 8.4%, which is the
same as the best error rate reported in [5] for this dataset. Doing 100 replications, the median
running time using the pnnclass library was 124.45 milliseconds, on a standard notebook
with an Intel i7-11390H processor. Figure 5 shows the training sample and a heatmap
representing the probabilities produced by the pnnclass predictive model. Figure 6 reports
the classifier ROC curve obtained using the testing sample. The annotated summaries
correspond to the probability threshold maximizing the sum of the classifier sensitivity and
specificity.

The second example examined in [5] was the Pima Indian women diabetes dataset,
available in the MASS R library [20], with training and test samples of sizes 200 and 332,
respectively. In this dataset, for each sample unit we have the values of seven numerical
predictors, and the response variable is again binary, indicating the result of the diabetes
diagnosis for the corresponding sample unit. The pnnclass predictive model achieves a
testing error rate of 21.99%, which is close to the best error rate reported in [5] for this
dataset (20.9%). Performing 100 replications, the median running time using the pnnclass
library was 59.04 milliseconds. The ROC curve and summaries for the Pima Indian dataset
are given in Figure 6.

https://github.com/paulocmarquesf/pnnclass
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Figure 5. Training sample for the Ripley synthetic dataset. Circles and triangles indicate the two
possible values of the response variable. The heatmap represents the probabilities of class “triangle”
given by the predictive model pnnclass, ranging from pure cyan (probability zero) to pure orange
(probability one).

Figure 6. ROC curves for the Ripley and the Pima Indian datasets. Annotated summaries correspond
to the probability threshold maximizing the sum of the classifier sensitivity and specificity.

The third and final example considered in [5] was the multiclass Forensic Glass
fragments dataset described in [19]. In this dataset, we have nine numerical predictors, and
the response variable was coalesced into four classes. With randomly split training and
testing samples of sizes 89 and 96, respectively, the pnnclass predictive model achieves a
testing error rate of 28.04%, which is better than the error rate of 29% reported in [5] for
this dataset. Performing 100 replications, the median running time using the pnnclass
library was 9.15 milliseconds. Since in this dataset the predictor space is nine-dimensional,
in Figure 7 we use Principal Component Analysis (PCA) as a visualization tool to depict
the predictive performance on the the testing sample (PCA played no role in the modeling
process). The confusion matrix for the Forensic Glass testing sample is given in Table 1.
Table 2 gives more detailed summaries for the running times on the three datasets. Table 3
summarizes the predictive performance comparison between the pnnclass and the Cucala
et al. models for the three datasets. For comparison, we added the test errors of a Random
Forest [21,22] constructed by bootstrap aggregating 500 classification trees.
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Figure 7. Testing sample scores on the first two principal components of the predictors in the Forensic
Glass dataset. The different shapes indicate the four possible values of the response variable. The
colors blue or red mean, respectively, that the corresponding testing sample units were classified
correctly or incorrectly.

Table 1. Confusion matrix for the Forensic Glass testing sample.

Observed Class

Predicted class

0 1 2 3

0 29 2 0 5
1 2 27 1 7
2 0 1 14 2
3 7 3 0 7

Table 2. Descriptive summaries for the running times in milliseconds of the pnnclass predictive
model library based on 100 replications.

Dataset Median (ms) Min (ms) Max (ms)

Ripley 124.45 118.83 182.34
Pima Indian 59.04 52.68 114.97
Forensic Glass 9.15 8.80 16.38

Table 3. Testing errors for the three datasets. In the third column, we report the smallest errors
achieved in [5] considering all Monte Carlo approximations implemented by the authors.

Dataset pnnclass Cucala et al. Random Forest

Ripley 8.4% 8.4% 10.5%
Pima Indian 21.99% 20.9% 24.1%
Forensic Glass 28.04% 29% 24.3%

5. Concluding Remarks

This work can be seen as the construction of a probabilistic predictive model based
on the concept of nearest neighbors, wherein we shifted the algorithmic complexity of the
solution from an intractable class into the realm of polynomial time computation. It would
be interesting to explore how the ideas discussed in this paper could be adapted to assist
in the analysis of spatial data models or models with graph-type data in general, since
these models may pose similar challenges related to the presence of intractable normalizing
constants in the corresponding likelihood functions.



Entropy 2024, 26, 39 12 of 12

Author Contributions: Conceptualization, B.F., P.C.M.F. and H.F.L.; Methodology, B.F., P.C.M.F. and
H.F.L.; Software, B.F., P.C.M.F. and H.F.L. All authors have read and agreed to the published version
of the manuscript.

Funding: Hedibert F. Lopes and Paulo C. Marques F. receive support from FAPESP (Fundação de
Amparo à Pesquisa do Estado de São Paulo) through projects 2018/04654-9 and 2023/02538-0.

Data Availability Statement: The data used in the paper is available through the software library
developed by the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fix, E.; Hodges, J.L. Discriminatory analysis—Nonparametric discrimination: Consistency properties. Int. Stat. Rev. 1989,

57, 238–247. [CrossRef]
2. Devroye, L.; Györfi, L.; Lugosi, G. A Probabilistic Theory of Pattern Recognition; Springer: Berlin, Germany, 2013; Volume 31.
3. Biau, G.; Devroye, L. Lectures on the Nearest Neighbor Method; Springer: Berlin, Germany, 2015; Volume 246.
4. Holmes, C.; Adams, N. A probabilistic nearest neighbour method for statistical pattern recognition. J. R. Stat. Soc. B Stat.

Methodol. 2002, 64, 295–306. [CrossRef]
5. Cucala, L.; Marin, J.M.; Robert, C.P.; Titterington, D.M. A Bayesian Reassessment of Nearest-Neighbor Classification. J. Am. Stat.

Assoc. 2009, 104, 263–273. [CrossRef]
6. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman: New York, NY,

USA, 1979.
7. Besag, J. Spatial Interaction and the Statistical Analysis of Lattice Systems. J. R. Stat. Soc. B Stat. Methodol. 1974, 36, 192–236.

[CrossRef]
8. Ogata, Y. A Monte Carlo method for high dimensional integration. Numer. Math. 1989, 55, 137–157. [CrossRef]
9. Gelman, A.; Meng, X.L. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling.

Stat. Sci. 1998, 13, 163–185. [CrossRef]
10. Møller, J.; Pettitt, A.N.; Reeves, R.; Berthelsen, K.K. An Efficient Markov Chain Monte Carlo Method for Distributions with

Intractable Normalising Constants. Biometrika 2006, 93, 451–458. [CrossRef]
11. Cook, S.A. The Complexity of Theorem-Proving Procedures. In Proceedings of the STOC ’71: Third Annual ACM Symposium on

Theory of Computing, Shaker Heights, OH, USA, 3–May 1971; Association for Computing Machinery: New York, NY, USA, 1971;
pp. 151–158. [CrossRef]

12. Karp, R. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations; Miller, R., Thatcher, J., Eds.;
Plenum Press: New York, NY, USA, 1972; pp. 85–103.

13. Rivlin, T. An Introduction to the Approximation of Functions; Blaisdell Publishing Company: Waltham, MA, USA, 1969.
14. Strang, G. Linear Algebra and Its Applications; Thomson, Brooks/Cole: Pacific Grove, CA, USA, 2006.
15. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer:

Berlin, Germany, 2009.
16. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2017.
17. Stroustrup, B. The C++ Programming Language, 4th ed.; Addison-Wesley Professional: Reading, MA, USA, 2013.
18. Eddelbuettel, D. Seamless R and C++ Integration with Rcpp; Springer: Berlin, Germany, 2013.
19. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996.

[CrossRef]
20. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0.
21. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Marques F., P.C. Confidence intervals for the random forest generalization error. Pattern Recognit. Lett. 2022, 158, 171–175.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2307/1403797
http://dx.doi.org/10.1111/1467-9868.00338
http://dx.doi.org/10.1198/jasa.2009.0125
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00999.x
http://dx.doi.org/10.1007/BF01406511
http://dx.doi.org/10.1214/ss/1028905934
http://dx.doi.org/10.1093/biomet/93.2.451
https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1017/CBO9780511812651
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.patrec.2022.04.031

	Introduction
	A Case of Intractable Normalization
	The Cucala et al. Model
	Computational Complexity
	Z( ,k) and NP-Completeness

	Nonlocal Models Are Tractable
	Predictive Model
	Aggregating the Predictions of the Nonlocal Models
	Experiments with Synthetic and Real Datasets

	Concluding Remarks
	References

