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Abstract: In deep learning of classifiers, the cost function usually takes the form of a combination of
SoftMax and CrossEntropy functions. The SoftMax unit transforms the scores predicted by the model
network into assessments of the degree (probabilities) of an object’s membership to a given class. On
the other hand, CrossEntropy measures the divergence of this prediction from the distribution of
target scores. This work introduces the ISBE functionality, justifying the thesis about the redundancy
of cross-entropy computation in deep learning of classifiers. Not only can we omit the calculation of
entropy, but also, during back-propagation, there is no need to direct the error to the normalization
unit for its backward transformation. Instead, the error is sent directly to the model’s network.
Using examples of perceptron and convolutional networks as classifiers of images from the MNIST
collection, it is observed for ISBE that results are not degraded with SoftMax only but also with
other activation functions such as Sigmoid, Tanh, or their hard variants HardSigmoid and HardTanh.
Moreover, savings in the total number of operations were observed within the forward and backward
stages. The article is addressed to all deep learning enthusiasts but primarily to programmers and
students interested in the design of deep models. For example, it illustrates in code snippets possible
ways to implement ISBE functionality but also formally proves that the SoftMax trick only applies to
the class of dilated SoftMax functions with relocations.

Keywords: deep learning; cross entropy; normalization function; neural network; model inference;
gradient backpropagation

1. Introduction

A deep model is a kind of mental shortcut [1], broadly understood as a model created
in deep learning of a certain artificial neural network N , designed for a given applica-
tion. What, then, is an artificial neural network [2], its deep learning [3,4], and what
applications [5] are we interested in?

From a programmer’s perspective, an artificial neural network is a type of data process-
ing algorithm [6], in which subsequent steps are carried out by configurable computational
units, and the order of processing steps is determined by (dynamically created) computing
graph. The computing graph is always directed and acyclic (DAG). Interestingly, even
recurrent neural networks, such as the LSTM (Long Short-Term Memory) nets, which are
trained using gradient methods, have DAG-type computational graphs defined.

At the training stage, each group of input data X, i.e., each group of training examples,
technically each batch of training examples, first undergoes the inference (forward) phase on
the current model, i.e., processing through the networkN at its current parameters W. As a
result, network outputs Y ← FN (X; W) are produced [7]. The result of the entire network
N with the functionality FN and joined set of parameters W is the result of combining the
results of the activities for individual units U with individual functionalities FU and with
possible individual parameters WU , as well.
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Inference︷ ︸︸ ︷
X; W−−→ FN

Y←FN (X;W)−−−−−−−→ ≡

Inference︷ ︸︸ ︷
· · · Xu ; Wu−−−→ FU

Yu←FU (Xu ;Wu)−−−−−−−−−→ · · ·

After the inference phase comes the model update phase, where the current model is
modified (improved) according to the selected optimization procedure [8]. The model update
phase begins with calculating the loss (cost) value Z ← L(Y, Y◦) defined by the chosen loss
function L as well as the inference outcome Y and the target result Y◦.

Inference︷ ︸︸ ︷
X; W−−→ FN

Y←FN (X;W)−−−−−−−→ · · ·

Model update - start︷ ︸︸ ︷
Y,Y◦−−→ L Z←L(Y,Y◦)−−−−−−→

The loss Z depends (indirectly through Y) on all parameters W and what conditions
the next step of the update phase is the determination of sensitivity W of the loss function L
to their changes. The mathematical model of sensitivity is the gradient W .

= ∂L
∂W . Knowing

this gradient, the optimizer will make the actual modification of W in a direction that also
takes into account the values of gradients obtained for previous training batches.

Calculating the gradient with respect to parameters actually assigned to different
computational units required the development of an efficient algorithm for its propagation
in the opposite direction to inference [9,10].

Just as in the inference phase, each unit U has its formula Yu ← FU (Xu, Wu) for
processing data from input Xu to output Yu with parameters Wu, so in the backward gradient
propagation phase, it must have a formula Xu, Wu ← FU (Yu) for transforming the gradients
assigned to its outputs Yu into gradients assigned to its inputs Xu and its parameters Wu.

BackPropagation︷ ︸︸ ︷
X; W←FN (Y;X,Y,W)←−−−−−−−−−−−− FN

Y←− · · ·

Loss function gradient ∂L
∂Y︷ ︸︸ ︷

Y←L(Z;Y,Z)←−−−−−−− L
1= ∂Z

∂Z←−−−

Gradient BackPropagation︷ ︸︸ ︷
· · · Xu ; Wu←FU (Yu ;Xu ,Yu ,Wu)←−−−−−−−−−−−−−−− FU

Yu←− · · ·

Based on such local rules of gradient backpropagation and the created computation
graph, the backpropagation algorithm can determine the gradients of the cost function with
respect to each parameter in the network. The computation graph is created during the
inference phase and is essentially a stack of links between the arguments and results of
calculations performed in successive units [10,11].

Deep learning is precisely a concert of these inference and update phases in the form
of gradient propagation, calculated for randomly created groups of training examples.
These phases, intertwined, operate on multidimensional, deep tensors (arrays) of data,
processed with respect to network inputs, and on deep tensors of gradient data, processed
with respect to losses, determined for the output data of the trained network.

Here, by a deep tensor, we mean a multidimensional data array that has many feature
maps, i.e., its size along the feature axis is relatively large, e.g., 500, which means 500 scalar
feature maps. We then say that at this point in the network, our data has a deep representation
in a 500-dimensional space.

As for the applications we are interested in this work, the answer is those that have at
least one requirement for classification [12]. An example could be crop detection from satel-
lite images [13], building segmentation in aerial photos [14], but also text translation [15].
Classification is also related to voice command recognition [16], speaker recognition [17],
segmentation of the audio track according to speakers [18], recognition of speaker emo-
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tions with visual support [19], but also classification of objects of interest along with their
localization in the image [20].

It may be risky to say that after 2015, in all the aforementioned deep learning classifiers,
the cost function takes the form of a composition of the So f tMax function [21] and the
CrossEntropy function, i.e., cross-entropy [22]. The SoftMax unit normalizes the scores
predicted by the classifier model for the input object into SoftMax scores that sum up to one,
which can be treated as an estimation of the conditional probability distribution of classes.
Meanwhile, cross-entropy measures the divergence of this estimation from the target prob-
ability distribution (class scores). In practice, the target score may be taken from a training
set prepared manually by a so-called teacher [23] or may be calculated automatically by
another model component, e.g., in the knowledge distillation technique [24].

For K classes and nb training examples, the So f tMax function is defined for the raw
score matrix X ∈ Rnb×K as:

[Y ← So f tMax(X)] −→

Ybi ←
eXbi

∑
j∈[K]

eXbj
, b ∈ [nb], i ∈ [K]

 ,

where the notation [K] denotes any K-element set of indices—in this case, they are class labels.
The CrossEntropy function on the matrix Y, Y◦ ∈ Rnb×K is defined by the formula:

[Z ← CrossEntropy(Y, Y◦)] −→

Zb ← − ∑
j∈[K]

Y◦bj loge Ybj, b ∈ [nb], z ∈ Rnb


Classifier loss function: Separated Implementation︷ ︸︸ ︷

Scores Inference︷ ︸︸ ︷
classified object−−−−−−−−→ FN

raw scores X−−−−−−−→
Loss EstimationL︷ ︸︸ ︷

raw scores X−−−−−−−→ SoftMax
soft scores Y, Y◦−−−−−−−−→ CrossEntropy losses Z−−−−→

(1)

When classifiers began using a separated implementation of the combination of the
SoftMax normalization and the CrossEntropy loss, it quickly became evident in practice
that its implementation had problems with scores close to zero, both in the inference phase
and in the backward propagation of its gradient. In formulas of properties 1–3 in Theorem 1
of Section 2, we see from where the problem comes. Only the integration of CrossEntropy
with normalization SoftMax eliminated these inconveniences. The integrated approach has
the following form:

Classifier loss function - Integrated Implementation︷ ︸︸ ︷
Inference︷ ︸︸ ︷

classified object−−−−−−−−→ FN
raw scores X−−−−−−−→

Loss EstimationL︷ ︸︸ ︷
raw scores X,soft scores ,Y◦−−−−−−−−−−−−−−−→ CrossEntropy ◦ SoftMax losses Z−−−−→

The integrated functionality of these two features has the following redundant mathe-
matical notation:

Z ← [CrossEntropy ◦ So f tMax](X, Y◦) −→

Zb ← − ∑
j∈[K]

Y◦bj loge
eXbj

∑
i∈[K]

eXbi
, b ∈ [nb]
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This redundancy in notation was helpful in deriving the equation for the gradient
backpropagation for the integrated loss function CrossEntropy ◦ So f tMax. Later, we will
also use for such composition the name So f tCE.

The structure of this paper is as follows:

1. The second section is devoted to mathematics of the SoftMax trick. Its validity is
proved in two ways:

(a) Using gradient formulas for the composition of differentiable functions;
(b) Using the concept of the Jacobian matrix and linear algebra calculus.

2. In the third section titled ISBE Functionality, the conditions that a normalization
unit must meet for its combination with a cross-entropy unit to have a gradient at
the input equal to the difference in soft scores: X = Y − Y◦ are analyzed. Then
the definition of ISBE functionality is introduced, which in the inference phase (I)
normalizes the raw score to a soft score (S), and in the backward propagation phase
(B) returns an error (E), equal to the difference in soft scores. It is also justified why,
in the case of the So f tMax normalization function, the ISBE functionality has, from
the perspective of the learning process, the functionality of the integrated element
CrossEntropy ◦ SoftMax.

3. In the first subsection of the fourth section, using the example of the problem of
recognizing handwritten digits and the standard MNIST(60K) image collection [25],
numerous experiments show that in addition to the obvious savings in computational
resources, in the case of five activations serving as normalization functions, the
classifier’s effectiveness is not lower than that of the combination of the normalization
SoftMax and Cross Entropy. This ISBE property was verified for the activation units
SoftMax, Sigmoid, Hardsigmoid, and Tanh and Hardtanh. The second subsection
of the fourth section reports on how ISBE behaves for a more demanding dataset
CIFAR-10 and a more complex architecture VGG-16.

4. The final fifth section contains conclusions.
5. In Appendix A, the class of functions leading to the dilated SoftMax trick is fully

characterized using concepts of dilation and relocation of function domain.
6. In Appendix B the ISBE functionality is integrated with PyTorch class torch.autograd.

Function.

The main contributions of this research are:

1. Introducing ISBE functionality as simplification and, at the same time, extension of
the functional combination of SoftMax with CrossEntropy.

2. Verification of ISBE feasibility and efficiency on two datasets and three CNN architectures.
3. Enhancement of theoretical background for the concept of SoftMax trick via its general-

ization and full characterization of normalization functions which exhibit this property.

Concluding this introduction, I would like to emphasize that this work is not intended
to depreciate the concept of entropy in the context of machine learning. It has played and
continues to play a key role as a loss function. Its form appears naturally in many data
modeling tasks. For example, in the case of multi-class logistic regression, when computing
optimal weights, maximizing the negative logarithm of the likelihood function directly
leads to the cross-entropy function. In the context of modeling, cross-entropy will remain
an important research tool. The context of the ISBE functionality concerns only the specific
method of calculating the gradient of network parameters for the needs of SGD (Stochastic
Gradient Descent) optimizers. Only this, nothing more.

2. Discrete Cross-Entropy and the SoftMax Trick Property

This section is devoted to the mathematics of the SoftMax trick. Its validity will be
proved in two ways:

1. Using gradient formulas for the composition of differentiable functions,
2. Using the concept of Jacobian matrix and linear algebra calculus.
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The discrete cross-entropy function CE of a target discrete probability distribution
y◦ ∈ [0, 1]K, ∑i y◦i = 1, relative to the calculated by the classifier the probability distribution
y ∈ (0, 1)K, ∑i yi = 1, is defined by the formula:

CE(y◦, y) .
= − ∑

i∈[K]
y◦i loge yi (2)

The notation [K] refers to a sequence of K indexes, such as (1, . . . , K) or (0, 1, . . . , K− 1).
It appears that the gradient of the cross entropy CE(y◦, y) with respect to y is not

defined at the zero components:

∇yCE(y◦, y) = −y◦ ÷ y , (3)

where the operation ÷ for the expression w = u ÷ v, denotes the division of vector u
components by the components of vector v, i.e., wi

.
= ui/vi, i ∈ [K].

In the special case when the vector y ∈ (0, 1)K is calculated based on the vector x ∈ RK

according to the formula yi = So f tMax(x)i = exi / ∑k exk , the gradient of CE with respect
to x has a particularly simple resultant formula. Its simplicity was the reason for the term
SoftMax trick:

y(x) .
= y .

= So f tMax(x), So f tCE(y◦, x) .
= CE(y◦, So f tMax(x))

−→ ∇xSo f tCE(y◦, x)
SoftMax trick

= y− y◦
(4)

Some authors [26] also use the term SoftMax trick for that part of the proof showing
that the derivative of the natural logarithm of the sum of functions exi equals to the
So f tMax function.

The SoftMax trick can be described as a theorem and proved in two ways: the elemen-
tary one and via the matrix calculus. The following theorem includes elementary properties
of the cross-entropy function, optionally preceded by the So f tMax normalization.

Theorem 1. Let y◦ ∈ [0, 1]K, ∑k∈[K] y◦k = 1, be the target probability distribution and y ∈ (0, 1),
∑k∈[K] yk = 1, be the predicted probability distribution. Then

1. For any i ∈ [K], ∂CE(y◦ ,y)
∂yi

=
y◦i
yi

.

2. ∇yCE(y◦, y) = y◦ ÷ y .
=
[

y◦1
y1

, . . . , y◦K
yK

]⊺
3. The range of CE covers the positive part of the real axis:{

CE(y◦, y) : y◦ ∈ [0, 1]K, y ∈ (0, 1)K
}
= (0, ∞)

4. Let x ∈ RK be the vector of raw scores, and y◦ be the target probability distribution. Then
So f tMax normalization followed by CE, is defined as follows

So f tCE(y◦, x) .
= − ∑

j∈[K]
y◦j loge

exj

∑k∈[K] exk
.

Contrary to CE only, So f tCE exhibits the bounded gradient:

(a) The Jacobian of So f tMax equals to:

Jacobian(So f tMax)(x) =
∂So f tMax(x)

∂x
= diag[y]− yy⊺ where y = So f tMax(x) .

(b) For any i ∈ [K], ∂[So f tCE(y◦ ,x)]
∂xi

= yi − y◦i , where yi = (So f tMax(x))i .
(c) ∇xSo f tCE(y◦, x) = y− y◦, where y = So f tMax(x) .
(d) The range of So f tCE covers the interval (−1, 1) :
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{
So f tCE(y◦, x) : y◦ ∈ [0, 1]K, x ∈ RK

}
= (−1,+1)

Elementary proof of SoftCE properties.

yi
.
=

exi

∑k exk
−→

∂[loge(∑k exk )]

∂xi
= yi −→

∂So f tCE(y◦, x)
∂xi

=

∂

∑j y◦j loge(∑k exk )−∑j y◦j

xj︷ ︸︸ ︷
loge exj


∂xi

= yi

=1︷ ︸︸ ︷
∑

j
y◦j −y◦i = yi − y◦i

Proof of Sof tCE property using matrix calculus.
In matrix notation [27], the property of SoftMax trick has a longer proof, as we first

need to calculate the Jacobian of the So f tMax function [28].

If yj
.
=

exj

∑k∈[K] exk
, then

∂yj

∂xi
=



−exj · exi(
∑k∈[K] exk

)2 = −yi · yj, when i ̸= j

exi ·
(

∑k∈[K] exk
)
− exi · exi(

∑k∈[K] exk

)2 = yi − y2
i = (1− yi) · yi,

when i = j

The general formula is
∂yj

∂xi
= (δij − yi)yj . Therefore:(

∂y
∂x

)
ij

.
=

∂yj

∂xi
= δijyj − yiyj = (diag[y])ij − (yy⊺)ij .

Hence, ∂y
∂x = diag[y]− yy⊺. From the chain rule

∂[So f tCE(y◦, x)]
∂x

.
=

∂CE(y◦, y(x))
∂x

=

(
∂y
∂x

)⊺

· ∂[CE(y◦, y)]
∂y

, where y(x) .
= So f tMax(x)

and the symmetry of So f tMax Jacobian matrix ∂y
∂x , we obtain:

∂[So f tCE(y◦ ,x)]
∂x = (diag[y]− yy⊺)(−y◦ ÷ y)

= y (y÷ y)⊺y◦︸ ︷︷ ︸
1⊺Ky◦=1

− diag[y÷ y]︸ ︷︷ ︸
IK

y◦ = y− y◦ (5)

While looking at the above two proofs for the Theorem 1, a question can be raised: Is
it only the So f tMax function that has SoftMax trick property? The answer to this problem
can be found in Appendix A. You can understand why the second proof using Jacobian
matrix and matrix calculus has been presented here.
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3. ISBE Functionality

The ISBE functionality is a proposed simplification of the cost function, combining the
SoftMax normalization function with the cross-entropy function, hereafter abbreviated as
CEall . Its role is to punish those calculated probability distributions that significantly differ
from the distributions of scores proposed by the teacher.

To understand this idea, let us extend the inference diagram for CEall with the back-
ward propagation part for the gradient. We consider this diagram in its separate version,
omitting earlier descriptions for the diagram (1):

Loss InferenceL︷ ︸︸ ︷
X−→ SoftMax

Y, Y◦−−→ CrossEntropy Z−→

BackPropagation︷ ︸︸ ︷
X

Theorem 1←−−−−−Y−Y◦←−−−−−−−−−− SoftMax
Y; Y, Y◦←−−−− CrossEntropy Z=1←−−

(6)

The meaning of variables X, Y, Y◦, Z and Z, Y, X appearing in the above diagram (6):

X raw score at the input of the normalization function preceding cross-entropy CE, X ∈ RK,
Y normalization result, so-called soft score ,Y ∈ (0, 1)K,
Y◦ target soft score, assigned to the classified example ,
Z output of cross-entropy CE ,Z ∈ R,
Z formal gradient at the input of the backward propagation algorithm, Z = 1,
Y gradient of cross-entropy CE with respect to Y: Y = ∂Z

∂Y = −Y◦
Y ,

X gradient of cross-entropy CE with respect to X: X Theorem 1←−−−−− (Y−Y◦) .

The key formula here is X ← (Y − Y◦). Its validity comes from the mentioned
Theorem 1 which includes the proof for the Formula (4) associated with the SoftMax
trick property.

The generalized form of this property is given in the Appendix A within the Theorem A1
which includes interesting observations on necessary and sufficient conditions for the
SoftMax trick.

For instance, the Equation (A2) on the form of the Jacobian of the normalization unit
is both a sufficient and necessary condition for its combination with the cross-entropy unit
to ensure the equality (A3). Moreover, this condition implies that an activation function
with a Jacobian of the SoftMax type is a SoftMax function with optional relocation.

Theorem A1 leads us to a seemingly pessimistic conclusion: it is not possible to seek
further improvements by changing the activation and at the same time expect the SoftMax
trick property to hold. Thus, the question arises: what will happen if, along with changing
the activation unit, we change the cross-entropy unit to another or even omit it entirely?

In the ISBE approach, the aforementioned simplification of the CEall cost function
involves precisely omitting the cross-entropy operation in the inference stage and practically
omitting all backward operations for this cost function. So what remains? The answer is
also an opportunity to decode the acronym ISBE again:

1. In the inference phase (I), we normalize the raw score X to Y = So f tMax(X),
characterized as a soft score (S).

2. In the backward propagation phase (B), we return an error (E) equal to the difference
between the calculated soft score and the target score, i.e., X .

= Y−Y◦.

Why can we do this and still consider that in the case of the SoftMax activation function,
the value of the gradient transmitted to the network is identical: XCEall = X ISBE

.
= Y−Y◦?

The answer comes directly from the property XCEall = Y−Y◦, formulated in Equation (4),
which as it was already mentioned, was proved in the Theorem 1 as the SoftMax trick property.
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We thus have on the left the following diagram of data and gradient backpropagation
through such a unit. On the right, we have its generalization to a ScoreNormalization
unit instead of SoftMax unit.

ISBE Inference︷ ︸︸ ︷
X−→ SoftMax

Y, Y◦−−→

ISBE BackPropagation︷ ︸︸ ︷
X←Y−Y◦←−−−−− Subtract

Y, Y◦←−−


generalize−−−−−→



ISBE Inference︷ ︸︸ ︷
X−→ Score Normalization

Y, Y◦−−→

ISBE BackPropagation︷ ︸︸ ︷
X←Y−Y◦←−−−−− Subtract

Y, Y◦←−−

Which activation functions should we reach for in order to test them in the ISBE technique?

1. The SoftMax activation function should be the first candidate for comparison, as it
theoretically guarantees behavior comparable to the system containing cross-entropy.

2. Activations should be monotonic so that the largest value of the raw score remains
the largest score in the soft score sequence.

3. Soft scores should be within a limited range, e.g., [0, 1] as in the case of SoftMax and
Sigmoid, or [−1,+1] as for Tanh.

4. The activation function should not map two close scores to distant scores. For ex-
ample, normalizing a vector of scores by projecting onto a unit sphere in the p-th
Minkowski norm meets all the above conditions. However, it is not stable around zero.
Normalization x

∥x∥p
maps, for example, two points ϵ,−ϵ distant by 2 · ∥ϵ∥p to points

distant exactly by 2, thus changing their distance 1
∥ϵ∥p

times, e.g., a million times, when

∥ϵ∥p = 10−6. This operation is known in Pytorch library as normalize function.

The experiments conducted confirm the validity of the above recommendations.
The Pytorch library functions SoftMax, sigmoid, tanh, hardsigmoid, hardtanh meet
the above three conditions and provide effective classification at a level of effectiveness
higher than 99.5%, comparable to CrossEntropy ◦ SoftMax. In contrast, with the function
normalize, the optimizer failed to converge on the same MNIST(60K) collection and with
the same architectures.

What connects these good normalization functions F : RK → RK, of which two are
not even fully differentiable? Certainly, it is the Lipschitz condition occurring in a certain
neighborhood of zero [29]:

x ∈ RK, ∥x∥p ≤ ϵ −→ ∥F(x)∥p ≤ c∥x∥p , where c is a certain constant .

Note that the Lipschitz condition meets the expectations of the fourth requirement
on the above list of recommendations for ISBE. Moreover, we do not expect here that the
constant c be less than one, i.e., that the function F has a narrowing character.

We also need a recommendation for teachers preparing class labels, which we represent
as vectors blurred around the base vectors of axes IK = [e1, . . . , eK], ei[j]

.
= δij:

1. example blurring value µ, e.g., µ = 10−6:

ẽi[j]← (1− µ)δij +
µ

K− 1
(1− δij)

2. when the range of activation values is other than the interval [0, 1], we adjust the
vector ẽi to the new range, e.g., for tanh the range is the interval (−1,+1) and then
the adjustment has the form:

ẽi ← 2 · ẽi − 1, i = 1, . . . , K

Finally, let us take a look at the code for the main loop of the program implemented
on the Pytorch platform.



Entropy 2024, 26, 65 9 of 25

1. This is what the code looks like when loss_function is chosen as nn.CrossEntropyLoss:

for (labels,images) in tgen:
outputs = net(images)
loss = loss_function(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()

2. Now we introduce the ISBE option for SoftMax activation and replace the call for loss
function by soft error calculation:

for (labels,images) in tgen:
outputs = net(images)
soft_error = SoftMax(outputs) - labels
optimizer.zero_grad()
outputs.backward(soft_error)
optimizer.step()

More options, including the definition of ISBE functionality, can be found in Appendix B.
Of course, the above code snippets are only intended to illustrate how easy it is to add the
functionality of ISBE to an existing application.

4. Experiments

What do we want to learn from the planned experiments? We already know from
theory that in the case of the SoftMax activation, we cannot worsen the parameters of the
classifier using cross-entropy, both in terms of success rate and learning time.

Therefore, we first want to verify whether theory aligns with practice, but also to check
for which normalization functions the ISBE functionality does not degrade the model’s
effectiveness compared to CEall .

The learning time tISBE should be shorter than tCE. Still, to be independent of the
specific implementation, we will compare the percentage of the backpropagation time in
the total time of inference and backpropagation:

τ
.
=

backpropagation time
inference time + backpropagation time

× 100% (7)

From many quality metrics, for simplicity, we choose the success rate (also called
accuracy), defined as the percentage of correctly classified elements from the test collection
MNIST(10K)

α =
number of correct classifications

size of the test collection
× 100% (8)

We want to know how this value changes when we choose different architectures and
different activations in the ISBE technique, as well as different options for aggregating
cross-entropy over the elements of the training batch.

4.1. Experiments with MNIST Dataset

Firstly, we evaluate the efficiency of the ISBE idea on the standard MNIST(60K) image
collection and the problem of their classification.

We have the following degrees of freedom in our experiments:

1. Two architecture options

• Architecture N0 consists of two convolutions C and two linear units F ,

of which the last one is a projection from the space of deep feature vectors of
dimension 512 to the space of raw scores for each of the K = 10 classes:
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image
−−−−→I 1

28yx C32

3k2s C64

3k2s D20F
512F10 class scores−−−−−−−→

as by STNN notation [30], for instance

C32

3k2s
means 32 convolutions with 3 × 3 masks, sampled with a stride of 2,

D20
DropOut—a unit zeroing 20% of tensor elements,

F512
a linear unit with a matrix A ∈ R?×512,

here ? = 64—it is derived from the shape of
the tensor produced by the previous unit .

• Architecture N1 consists of two blocks, each with three convolutions—it is a
purely convolutional network, except for the final projection:

image
−−−−→I 1

28yx C32

3k C32

3k pC32

5k2s D40 C64

3k C64

3k pC64

5k2s D40 C128

4k F10 class scores−−−−−−−→

Note that the last convolution in each block has a p requirement for padding, i.e.,
filling the domain of the image with additional lines and rows so that the image
resolution does not change.

2. Three options for reducing the vector of losses in the CrossEntropyLoss element:
none, mean, sum.

3. Five options for activation functions used in the ISBE technique:

• SoftMax: yi ←
exi

∑
j∈[K]

exj
, i ∈ [K],

• Tanh: yi ←
exi − e−xi

exi + e−xi
, i ∈ [K],

• HardTanh: yi ←


−1 if xi ≤ −1
xi if − 1 < xi < +1
+1 if + 1 ≤ xi

, i ∈ [K],

• Sigmoid: yi ←
1

1 + e−xi
, i ∈ [K],

• HardSigmoid: yi ←


0 gdy xi ≤ −2

xi+2
4 gdy − 2 < xi < +2
+1 gdy + 2 ≤ xi

 =
HardTanh(xi/2) + 1

2
,

i ∈ [K].

The results of the experiments, on the one hand, confirm our assumption that the
conceptual Occam’s razor, i.e., the omission of the cross-entropy unit, results in time savings
τ, and on the other hand, the results are surprisingly positive with an improvement in the
metric of success rate α in the case of hard activation functions HardTanh and HardSigmoid.
It was observed that only the option of reduction by none behaves exactly according to
theory, i.e., the success rate is identical to the model using So f tMax normalization. Options
mean and sum for the model with entropy are slightly better than the model with SoftMax.

The consistency of models in this case means that the number of images incorrectly
classified out of 10 thousand is the same. The experiments did not check whether it concerns
the same images. A slight improvement, in this case, meant that there were less than a few
or a dozen errors, and the efficiency of the model above 99.6% meant at most 40 errors per
10 thousand of test images.
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4.1.1. Comparison of Time Complexity

We compare time complexity according to the metric given by the Formula (7).
In the context of time, Table 1 clearly shows that the total timeshare of backpropagation,

obviously depending on the complexity of the architecture, affects the time savings of the
ISBE technique compared to CrossEntropyLoss—Table 2. The absence of pluses in this
table, i.e., the fact that all solutions based on ISBE are relatively faster in the learning phase,
is an undeniable fact.

The greatest decrease in the share of backpropagation, over 3%, occurs for the Sigmoid
and So f tMax activations. The smallest decrease in architecture N0 is noted for the soft
(soft) normalization function Tanh and its hard version HardTanh. This decrease refers
to cross-entropy without reduction, which is an aggregation of losses calculated for all
training examples in a given group into one numerical value.

Table 1. Comparison of the metric τ, i.e., the percentage share of backpropagation time in the total
time with inference. The share τCE of cross-entropy with three types of reduction is compared with
five functions of soft normalization. The analysis was performed for architectures N0 and N1.

Net Mean None Sum Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 60.61% 59.56% 59.98% 58.31% 58.21% 57.38% 57.45% 59.07%

N1 54.89% 53.92% 53.98% 52.68% 52.33% 51.75% 51.95% 52.11%

N r
1 54.45% 53.92% 54.00% 52.78% 52.30% 51.67% 51.73% 52.11%

Table 2. Metric ∆τ
.
= τISBE − τCE, i.e., the decrease in the percentage share of backpropagation time

in the total time with inference. The analysis was performed for architectures N0 and N1.

Net CE Loss Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 mean −2.30% −2.40% −3.23% −3.16% −1.54%
N0 none −1.25% −1.35% −2.18% −2.11% −0.50%
N0 sum −1.67% −1.77% −2.60% −2.53% −0.92%

N1 mean −2.21% −2.56% −3.14% −2.94% −2.79%
N1 none −1.24% −1.59% −2.17% −1.97% −1.82%
N1 sum −1.30% −1.65% −2.23% −2.03% −1.87%

Inspired by the Theorem A1, which states that the relocation of the So f tMax function
preserves the SoftMax trick property, we also add data to the Table 1 for the network N r

1 .
This network differs from theN1 network only because the normalization unit has a trained
relocation parameter. In practice, we accomplish training with relocation for normalization
by training with the relocation of the linear unit immediately preceding it. This is done by
setting its parameter: bias = True.

As we can see, the general conclusion about the advantage of the ISBE technique in terms
of time reduction for the model with the relocation of the normalization function is the same.

4.1.2. Comparison of Classifier Accuracy

Comparison of classifier accuracy and differences in this metric are contained in
Tables 3 and 4. The accuracy is computed according to the Formula (8).

The number of pluses on the side of ISBE clearly exceeds the number of minuses. The
justification for this phenomenon requires separate research. Some light will be shed on
this aspect by the analysis of learning curves—the variance in the final phase of learning is
clearly lower. The learning process is more stable.
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Table 3. In the table, the success rate of three classifiers based on cross-entropy with different
aggregation options is compared with the success rate determined for five options of soft score
normalization functions. The analysis was performed for architectures N0 and N1.

Net Mean None Sum Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 99.45% 99.41% 99.47% 99.50% 99.50% 99.56% 99.41% 99.45%

N1 99.61% 99.58% 99.59% 99.64% 99.66% 99.64% 99.62% 99.63%

N r
1 99.55% 99.64% 99.64% 99.61% 99.66% 99.69% 99.63% 99.57%

Table 4. Change in success rate between models with cross-entropy and models with soft score
normalization function. The analysis was performed for architectures N0 and N1.

Net CE Loss Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 mean 0.05% 0.05% 0.11% −0.04% 0.00%
N0 none 0.09% 0.09% 0.15% 0.00% 0.00%
N0 sum 0.13% 0.03% 0.09% −0.06% −0.02%

N1 mean 0.03% 0.05% 0.03% 0.01% 0.02%
N1 none 0.06% 0.08% 0.06% 0.04% 0.05%
N1 sum 0.05% 0.07% 0.05% 0.03% 0.04%

In Table 4, we observe that, with the exception of the function So f tMax, which on
several images of digits performed worse than the model with cross-entropy, the soft
activations have an efficiency slightly or significantly better. However, we are talking about
levels of tenths or hundredths of a percent here. The largest difference noted for the option
SoftMax was 15-hundredths of a percent, meaning 15 more images correctly classified.
Such differences are within the margin of statistical error.

The use of relocation for the normalization function does not provide a clear conclusion—for
some models, there is a slight improvement; for others, there is a slight deterioration. It
is true that the ISBE functionality with sigmoid activation achieved the best efficiency of
99.69%, but this is only a matter of a few images.

Within the limits of statistical error, we can say that the ISBE functionality gives the
same results in recognizing MNIST classes. Its advantages are:

• of decrease time in the total time,
• simplification of architecture, and therefore playing the philosophical role of Occam’s razor.

4.1.3. Visual Analysis

Further analysis of the results will be based on the visual comparison of learning curves.
First, let us see on three models cross-entropy-mean, SoftMax, sigmoid their loss and

efficiency curves obtained on training data MNIST(54K) and on data intended solely for model
validation MNIST(6K). These two loss curves are calculated after each epoch. We supplement
them with a loss curve calculated progressively after each batch of training data (see Figure 1).

Let us note the correct course of the train loss curve with respect to the progres-
sive loss curve—both curves are close. The correct course is also for the validation loss
curve—the validation curve from about epoch 30 is below the training curve, maintaining
a significant distance. This effect was achieved only after applying a moderate input image
augmentation procedure via random affine transformations in the pixel domain.

Correct behavior of learning curves was recorded both for the models with entropy and
for models with the ISBE functionality. This also applies to classifier performance curves.
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1. Curves of loss functions can appear together as long as the type of function is identical,
which entails a similar range of variability for loss function values. One might wonder
what measure of loss to adopt in the case of ISBE since this technique, in fact, does not
calculate loss values. We opt for a natural choice of mean square error for errors in
soft scores:

LISBE = MSE(Y, Y◦) .
=

1
nb
· ∥Y−Y◦∥2

2

where nb is the batch size.
For such defined measures, it turns out that only the option of reduction by summing
has a different range of variability, and therefore it is not on the Figure 2.

2. In the case of classifier accuracy, a common percentage scale does not exclude placing
all eight curves for each considered architecture. However, due to the low trans-
parency of such a figure, it is also worth juxtaposing different groups of curves of the
dependency α(e). The accuracy α of the classifier MNIST(60K) is calculated on the test
set MNIST(10K).

Figure 1. Learning curves on training and validation data for the N1 network and three models:
cross-entropy-mean, SoftMax, sigmoid. The horizontal reference line represents the accuracy of
test data computed after the last epoch.

Sets of curves, which we visualize separately for architectures N0, N1 are:

• All options for loss functions (3) and soft score functions (5),
• CE none, CE mean, CE sum versus SoftMax,
• CE none, CE mean, CE sum versus tanh, hardtanh,
• SoftMax versus sigmoid, hardsigmoid,
• SoftMax versus tanh, hardtanh,
• SoftMax versus sigmoid, tanh.

Due to space constraints, we show learning curves and classifier effectiveness graphs
only for architecture N1 in Figures 2 and 3.
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Figure 2. Loss charts of learning in comparisons of CE versus ISBE options. In the first row:
(1) all options for loss functions and soft score functions; (2) CE none, CE mean versus SoftMax;
(3): CE none, CE mean versus tanh, hardtanh. In the second row: (1) SoftMax versus sigmoid,
hardsigmoid; (2) SoftMax versus tanh, hardtanh; (3) SoftMax versus sigmoid, tanh.

In Figure 2 we can clearly observe four clusters of models:

• CrossEntropyLoss based with reduction option sum (as out of common range it was
not shown),

• CrossEntropyLoss based with reduction options none, and mean,
• ISBE based with normalizations to range [0, 1] including functions

So f tMax, Sigmoid, and HardSigmoid,
• ISBE based with normalizations to range [−1, 1] including functions Tanh, and HardTanh.

Within a cluster, the loss curves behave very similarly. Interestingly, the loss curves in
ISBE-based clusters tend to the same value greater than zero. In contrast, cross-entropy-
based curves also tend to the same limit. However it is clearly greater than ISBE one.

Now, we will pay more attention to test learning curves. We generate test learning
curves on the full set of test data MNIST(10K). After each epoch, one point is scored towards
the test learning curve. We will show these curves in several comparative contexts.

Accuracy charts of learning (see Figure 3) were obtained to compare cross entropy
(CE) performances versus ISBE performance. We have:

• Comparison of CE versus soft options:

1. all options for loss functions and soft score functions
2. CE none, CE mean versus SoftMax,
3. CE none, CE mean versus tanh, hardtanh.
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• Comparison of SoftMax versus other soft options:

1. SoftMax versus sigmoid, hardsigmoid,
2. SoftMax versus tanh, hardtanh,
3. SoftMax versus sigmoid, tanh.

In the case of classifier accuracy curves, the variances in the clusters described above are
smaller than in the union of clusters. Close to the final epochs, all curves tend to be chaotic
within the range of (99.4, 99.7).

Figure 3. Accuracy charts of learning in comparisons of CE versus ISBE options. In the first row:
(1) all options for loss functions and soft score functions; (2) CE none, CE mean versus SoftMax;
(3): CE none, CE mean versus tanh, hardtanh. In the second row: (1) SoftMax versus sigmoid,
hardsigmoid; (2) SoftMax versus tanh, hardtanh; (3) SoftMax versus sigmoid, tanh.

Visualizing the effectiveness of classifiers for different architectures of different com-
plexities, although more obvious, also has research value (see Figure 4):

• CE none, CE mean, CE sum from N0 versus CE none, CE mean, CE sum from N1,
• CE none, SoftMax from N0 versus CE none, SoftMax from N1,
• SoftMax, sigmoid from N0 versus SoftMax, sigmoid from N1,
• sigmoid, tanh from N0 versus sigmoid, tanh from N1,
• sigmoid, hardsigmoid from N0 versus sigmoid, hardsigmoid from N1,
• tanh, hardtanh from N0 versus tanh, hardtanh from N1.

Figure 4 shows the better performance of N1 compared to N0. Moreover, we can
observe slightly more stable behavior for ISBN-based curves than for cross-entropy-based.
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Figure 4. Accuracy charts of learning in comparisons of CE versus ISBE options and architecture
N0 versusN1. In the first row: (1) CE none, CE mean, CE sum; (2) CE none, SoftMax; (3): SoftMax,
sigmoid. In the second row: (1) sigmoid, tanh; (2) sigmoid, hardsigmoid; (3) tanh, hardtanh.

4.2. Experiments with CIFAR-10 Dataset

In this subsection, the CIFAR-10—the more demanding than MNIST dataset is consid-
ered in the context of ISBE functionality. Moreover, the VGG feature extractor with more
than 14 M parameters, i.e., more than 10 times larger model than N1, is joined to make
further tests. In Figure 5, we can compare sample images from MNIST dataset and CIFAR-10
dataset. What is immediately observed is the background of objects classified—the uniform
black for MNIST and the natural scene in case of CIFAR-10. It is the main reason that despite
the almost perfect fit achieved by VGG-16 on the training set CIFAR-10 of 50 thousand
images,the best results on the independent testing dataset of 10 thousand images are near
93%. The best results known w CIFAR-10 for all architectures attempted so far are near
95%—about one percent more than the record achieved by human beings.

Figure 5. Comparing sample images from MNIST and CIFAR-10 datasets. CIFAR-10 classes: plane,
car, bird, cat, deer, dog, frog, horse, ship, truck.



Entropy 2024, 26, 65 17 of 25

The architecture VGG-16 was presented by Simonyan and Zisserman in their seminal
paper [31], Very Deep Convolutional Networks for Large-Scale Image Recognition. VGG-16 model
now serves the community as the universal image feature extractor. Its structure has the
following sequential form:

rgb−→I 3

32yx Cbr
64

3 Cbr
64

3 mP2

vgg1−−→Cbr
128

3 Cbr
128

3 mP2

vgg2−−→Cbr
256

3 Cbr
256

3 Cbr
256

3 mP2

vgg3−−→

Cbr
512

3 Cbr
512

3 Cbr
512

3 mP2

vgg4−−→Cbr
512

3 Cbr
512

3 Cbr
512

3 mP2

vgg5−−→F10 class scores−−−−−−→

Like for the two architectures N0,N1 tested for MNIST, the optimizer used for model
updates is still AdaM with exponential decay of learning rate with respect to epochs.
However, now the initial learning rate is 0.1, not 0.01.

In Figure 6, we can observe better convergence for all ISBE options than for the cross-
entropy. Moreover, during testing, the loss value for CE is slowly increasing, starting at
about epoch 30, while for all ISBE options, it is stabilizing on the fixed level.

Figure 6. Loss and accuracy charts for VGG-16 architecture and CIFAR-10 dataset. In the loss chart
for training, we can observe better convergence for all ISBE options than for cross-entropy.

From the results presented in Figure 7, it is visible that in the training and testing
stages, there are different clusterings for ISBE options:

• In training, there are three groups of ISBE options: {hardtanh}, {tanh, hardsigmoid},
{sigmoid, SoftMax}.

• In testing there are two groups: {tanh, hardtanh} and {SoftMax, sigmoid,
hardsigmoid}.

The significant gap between tanh, hardtanh and other ISBE options can be explained
by different ranges for the first group and for the second one, i.e., (−1,+1) versus (0, 1). It
is not fully clear why in the training stage hardtanh is separate to tanh.

Figure 7. Loss charts for VGG-16 architecture and CIFAR-10 dataset within epochs 40–80 and 80–120
(only ISBE options are shown). During testing, we can observe two clusters for convergence: the
sigmoid cluster and the tanh cluster.
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In Figure 8, the accuracy for cross-entropy and all ISBE options can be compared.
It is observed that hard versions are inferior to others. However, while testing, a slight
advantage is achieved by the hyperbolic tangent tanh.

Figure 8. Accuracy charts for VGG-16 architecture and CIFAR-10 dataset within epochs 40–80 and
80–120. Each horizontal line denotes the maximum accuracy for the option of the same color.

Ultimately, we have bad news on time savings when using autograd interface. Con-
trary to MNIST experiments where ISBE functionality was implemented by the direct re-
placement of CE loss in the main learning loop, the CIFAR-10 experiments were using the
definition of ISBE_func class being the extension to torch.autograd.Function class. It
seems that the general mechanism of interfacing to C++ used by PyTorch in this case, is
less efficient than for cross_entropy function. This is perhaps the reason that functionality
with fewer operations takes slightly more time while the same functionality without explicit
use of autograd mechanism gives always time savings up to 3%.

5. Conclusions

Cross-entropy CE as a loss function owes much to normalization performed by the
SoftMax activation function. In the backward gradient backpropagation phase, only this
activation, through perfect linearization, can prevent the explosion or suppression of the
gradient originating from CE. What we call the SoftMax trick, as a mathematical phe-
nomenon, is explained by the theory presented in the second section and its extension
in Appendix A. There is proof that such linearization can only be realized by a function
F : RK → RK with a Jacobian identical to that of the SoftMax function. In turn, such a
Jacobian can only be derived for the dilated and relocated versions of the SoftMax function.

For further research, there remain practical aspects of a more general Theorem A1
implying that dilated and relocated versions of SoftMax are the only ones having the
property of dilated SoftMax trick. However, it is quite intuitive that the dilation vector could
be used to deal with class unbalanced datasets.

Should we, therefore, celebrate this unique relationship between activation and cost
function? In this work, we have shown that it is rather beneficial to use the final effect of
the action of this pair, namely the linear value equal to Y − Y◦, which can be calculated
without their participation. This is exactly what the ISBE functionality does—it calculates
the soft score vector in the forward step to return in the backward step its error from the
target score.

To determine the normalized score, the ISBE functionality can use not only the SoftMax
function, as it is not necessary to meet the unity condition, i.e., to ensure a probability
distribution as scores of the trained classifier. At least four other activation functions
sigmoid, tanh and their hard versions HardSigmoid and HardTanh perform no worse.
The choice of these final activations was rather a matter of chance, so researchers face
further questions. How do we normalize raw scores and appropriately represent (encode)
class labels in relation to this normalization to not degrade the classifier’s results? What
properties should such normalization functions have? Experiments suggest that meeting
the Lipschitz condition in the vicinity of zero may be one of these properties.
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The theoretical considerations presented prove that the ISBE functionality in the
process of deep model learning correctly simulates the behavior of the CrossEntropy unit
preceded by the SoftMax normalization.

The experiments showed that the ISBE functionality saves the time of forward and
backward stages up to 3%, and the effectiveness of the classifier model remains unchanged
within the margin of statistical error. Obviously, those gains are strongly dependent on
datasets and network architectures.

In turn, a more complex case of integrating ISBE functionality with AD tools (Auto-
Grad) of a given platform can be solved for PyTorch by copying the proven code from
Appendix B. However, as we described in the section on experiments with CIFAR-10, the
time savings were consumed by this kind of interfacing to autograd system.
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Appendix A. Functions Giving the SoftMax Trick for Cross-Entropy

While looking on the two proofs for the Theorem 1 an interesting question arises: is it
only the So f tMax function that has SoftMax trick property? It seems possible that there are
others, as for any differentiable function F : Rn → Rn, the starting point for reasoning is
the same:

∂[CE(y◦, F(x))]
∂x

y .
=F(x)
=

(
∂F(x)

∂x

)⊺ ∂[CE(y◦, y)]
∂y︸ ︷︷ ︸
−y◦÷y

=

(
∂F(x)

∂x

)⊺

(−y◦ ÷ y)

The following theorem fully characterizes functions that have the dilated SoftMax
trick property.

Theorem A1 (On the properties of the SoftMax trick).
For a differentiable function F : RK → RK, the following three properties are equivalent:

1. F is a generalized SoftMax function if there exist a reference point c ∈ RK and a dilation
vector d ∈ RK, such that for every x ∈ RK:

y = F(x) = So f tMax(d⊙ x− c) , (A1)

where ⊙ operation is the component-wise multiplication.
2. F has a dilated SoftMax-type Jacobian, if there exists dilation vector d ∈ Rk, such that for

every x ∈ RK:

Jacobian(F)(x) .
=

∂F(x)
∂x

= diag[d⊙ y]− y(d⊙ y)⊺ .
= (Dy − yy⊺)Dd , (A2)

where y = F(x), Dy
.
= diag[y], Dd

.
= diag[d] .

3. F possesses the dilated SoftMax trick property, if for every target vector y◦ ∈ [0, 1]K, and

x ∈ RK its Jacobian matrix ∂F(x)
∂x satisfies the following equation:(

∂F(x)
∂x

)⊺

(−y◦ ÷ y) = Dd(y− y◦) = d⊙ (y− y◦) , where y = F(x) . (A3)
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Proof of Theorem A1.
We prove the implications in the following order: (2) −→ (3), (3) −→ (2), (1) −→ (2),

(2) −→ (1) .

• Proof of implication (2) −→ (3):

If the Jacobian ∂F(x)
∂x of the function F is of the dilated SoftMax type, then for y = F(x):(

∂F(x)
∂x

)⊺
(−y◦ ÷ y) = Dd(Dy − yy⊺)(−y◦ ÷ y)

= Dd

y

1⊺Ky◦=1︷ ︸︸ ︷
(y÷ y)⊺y◦− diag[y÷ y]︸ ︷︷ ︸

IK

y◦

 = Dd(y− y◦) = d⊙ (y− y◦)

• Proof of implication (3) −→ (2): Denote the axis unit vector j by ej ∈ RK. Then
(ej)i = δij. Substitute into property (A3) the target score vector y◦ .

= ej. Then

di(yi − (ej)i) =

(
∂F(x)

∂xi

)⊺

(−ej ÷ y) = ∑
k∈[K]

∂yk
∂xi
·
(−δkj

yk

)
=

∂yj

∂xi
·
(
−1
yj

)

Therefore
∂yj
∂xi

= di · ((ej)i − yi)yj
(ej)i=δij
= di · (δij − yi)yj. Swapping i with j we obtain:

∂yi
∂xj

= (δji − yi) · dj.
Thus,

∂y
∂x

= (diag[y]− yy⊺)⊙ d = (Dy − yy⊺)Dd = diag[d⊙ y]− y(d⊙ y)⊺ .

• Proof of implication (1) −→ (2):

If yj
.
=

edjxj−cj

∑k∈[K] edkxk−ck
, then

∂yj

∂xi
=



−edjxj−cj · edixi−ci · di(
∑k∈[K] edkxk−ck

)2 = −(diyi) · yj, when i ̸= j

di · edixi−ci ·
(

∑k∈[K] edkxk−ck
)
− edixi−ci · edixi−ci · di(

∑k∈[K] edkxk−ck

)2

= di(yi − y2
i ) = (1− yi) · (diyi), when i = j

The general formula is
∂yj

∂xi
= (δij − yj)(diyi) . Therefore:(

∂y
∂x

)
ji

.
=

∂yj

∂xi
= δij(diyi)− yj(diyi) = (diag[d⊙ y])ji −

(
y(d⊙ y)⊺

)
ji .

Hence, ∂y
∂x = diag[d⊙ y]− y(d⊙ y)⊺ = (Dy − yy⊺)Dd

• Proof of implication (2) −→ (1):

If ∂yi
∂xi

= ((1− yi) · yi) · di and
∂yj
∂xi

= −yjyidi then the diagonal of the Jacobian matrix
gives us differential Equations [32], from which we can determine the general form of
the function yi(x), i ∈ [K] :
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∂yi
(1− yi) · yi

= di∂xi −→
∫ ( 1

yi
+

1
1− yi

)
∂yi =

∫
di∂xi

−→ loge
yi

1− yi
= dixi + C(k ̸= i) −→ yi =

edixi

edixi + e−C(k ̸=i)︸ ︷︷ ︸
zi

−→ yi =
edixi

zi
, where zi = zi(x1, . . . , xK) > 0

−→ loge zi = dixi − loge yi

Now we calculate the partial derivatives
∂loge zj

∂xi
. If i ̸= j, then

∂[loge zj]

∂xi
=

∂[djxj − loge yj]

∂xi
= − 1

yj

−yjyidi︷︸︸︷
∂yj

∂xi
= yidi

For i = j, the result is the same:

∂[loge zi]

∂xi
=

∂[dixi − loge yi]

∂xi
= di −

1
yi

(1−yi)yidi︷︸︸︷
∂yi
∂xi

= di −
(1− yi)yidi

yi
= yidi

Therefore, for any j ∈ [K], we have K equalities:
∂[loge zj ]

∂xi
= diyi =

∂[loge z1]
∂xi

, i ∈ [K].
This means that vector fields for each pair of functions loge zj and loge z1 are identical.
Integrating these fields yields the same function up to a constant cj: loge zj = loge z1 +

cj, j ∈ [K]. Consequently, zj = z1 · ecj , j ∈ [K], and therefore yj =
edjxj

z1ecj
=

edjxj−cj

z1
.

From the unity condition, we can now determine the value of z1:

1 = ∑
k∈[K]

yk = ∑
k∈[K]

edkxk−ck

z1
−→ z1 = ∑

k∈[K]
edkxk−ck −→ yj =

edjxj−cj

∑
k∈[K]

edkxk−ck
.

Note that the above theorem excludes the functions Sigmoid, Tanh and HardSigmoid,
HardTanh from the group of functions for which we can apply the SoftMax trick. Namely,
in the vector version, all these functions, none of them can be considered as the special
form of the generalized SoftMax function. It is obvious fact, but to give a formal reason, we
observe that all those functions operate on each component of vector x independently, i.e.,
the result yi depends only on argument xi. In the generalized SoftMax function, yi depends
on all arguments x1, . . . , xn.

Appendix B. ISBEISBEISBE Functionality in PyTorchPyTorchPyTorch

Appendix B.1. Testing Soft Options-Direct Way

ISBE functionality can be introduced to our training procedures in many ways.

1. The simplest way of replacing the call of the cross-entropy function is by calling
So f tMax and, after, subtracting target hot vectors or their soften versions, calling the
backward for the net output:

for (labels,images) in tgen:
outputs = net(images)
soft_error = SoftMax(outputs) - labels
optimizer.zero_grad()
outputs.backward(soft_error)
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optimizer.step()

2. If we want to test more options and compare them with cross-entropy, the loop code
will extend a bit:

for (labels,images) in tgen:
outputs = net(images)
if no_cross_entropy:

if soft_option=="SoftMax":
soft_error = SoftMax(outputs) - labels

if soft_option=="tanh":
soft_error = tanh(outputs) - (2.*labels-1.)

elif soft_option=="hardtanh":
soft_error = hardtanh(outputs) - (2.*labels-1.)

elif # ...
# next options

optimizer.zero_grad()
outputs.backward(soft_error)

else:
loss = loss_function(outputs, labels)
optimizer.zero_grad()
loss.backward()

optimizer.step()

3. If we prefer to have a visually shorter loop, then by introducing the variable soft_function
and extending the class DataProvider with matching target labels for a given soft
option, we finally obtain a compact form:

for (labels,images) in tgen:
outputs = net(images)
if no_cross_entropy:

soft_error = soft_function(outputs) - labels
optimizer.zero_grad()
outputs.backward(soft_error)

else:
loss = loss_function(outputs, labels)
optimizer.zero_grad()
loss.backward()

optimizer.step()

4. However, if we want to register ISBE functionality as torch.autograd.Function then
we have to follow the instruction of PyTorch on this kind registration. The effect is
described in the next subsection.

Appendix B.2. ISBE Functionality with Automatic Differentiation

In order to make ISBE_func callable in both inference and backpropagation stage we
have to define three static methods in extension of class torch.autograd.Function:

class ISBE_func(torch.autograd.Function):
@staticmethod
def forward(...)
<body of forward>

@staticmethod
def setup_context(...)
<body of setup_context>

@staticmethod
def backward(...)
<body of backward>
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The whole job is performed in the body of forward static method. Other two methods
simply switch tensors:

1. Body of forward:

def forward(raw_scores, labels,
options=dict(soft=’SoftMax’, num_classes=10, eps=1e-8)):

K = options[’num_classes’]
eps = options[’eps’]; soft_option = options[’soft’]
one_hots = torch.nn.functional.one_hot(\

labels, num_classes=K)*(1-K*eps)+eps)
if soft_option==’SoftMax’:

soft_scores = torch.nn.functional.SoftMax(raw_scores,dim=1)
target_scores = one_hots

elif soft_option==’sigmoid’:
soft_scores = torch.nn.functional.sigmoid(raw_scores)
target_scores = one_hots

elif soft_option==’hardsigmoid’:
soft_scores = torch.nn.functional.hardsigmoid(raw_scores)
target_scores = one_hots

elif soft_option==’tanh’:
soft_scores = torch.nn.functional.tanh(raw_scores)
target_scores = 2.*one_hots-1.

elif soft_option==’hardtanh’:
soft_scores = torch.nn.functional.hardtanh(raw_scores)
target_scores = 2.*one_hots-1.

soft_scores.requires_grad = False
soft_errors = soft_scores - target_scores
mse_soft = torch.mean(soft_errors**2)
return mse_soft, soft_errors, soft_scores

2. Body of setup_context:

def setup_context(ctx, inputs, output):
raw_scores, labels, options = inputs
mse_soft, soft_errors, soft_scores = output
ctx.set_materialize_grads(False)
ctx.soft_errors = soft_errors

3. Body of backward:

def backward(ctx, grad_mse, grad_errors, grad_scores):
return ctx.soft_errors, None, None

We cannot directly call the forward static function. We have to use apply method.

def isbe_func_(raw_scores, labels,
options=dict(soft=’SoftMax’, num_classes=10, eps=1e-8)):

return ISBE_func.apply(raw_scores, labels, options)

We could also simplify the use of options if there is a global object ‘ex’ which includes
its reference:

isbe_func = lambda raw_scores,labels:\
isbe_func_(raw_scores, labels, options=ex.loss_options)[0]

Instead of a method backwardon PyTorch tensor we could use its wrapper isbe_backward:

isbe_backward = lambda soft_error: soft_error.backward()
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Finally we can also hide the options for the F.cross_entropy function:

tones_ = torch.ones(ex.batch_size).to(ex.device)
cross_entropy_func = lambda x,t:\

F.cross_entropy(x,t,reduction=ex.loss_options[’reduction’],
label_smoothing=ex.loss_options[’label_smoothing’])

ce_backward = lambda loss: loss.backward(tones_[:loss.size(0)])\
if ex.loss_options[’reduction’]==’none’ else loss.backward()
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