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Abstract: A better understanding of protein–protein interaction (PPI) networks representing physical
interactions between proteins could be beneficial for evolutionary insights as well as for practical ap-
plications such as drug development. As a statistical model for PPI networks, duplication–divergence
models have been proposed, but they suffer from resulting in either very sparse networks in which
most of the proteins are isolated, or in networks which are much denser than what is usually observed,
having almost no isolated proteins. Moreover, in real networks, where a gene codes a protein, gene
loss may occur. The loss of nodes has not been captured in duplication–divergence models to date.
Here, we introduce a new duplication–divergence model which includes node loss. This mechanism
results in networks in which the proportion of isolated proteins can take on values which are strictly
between 0 and 1. To understand this new model, we apply strong and weak attacks to networks
from duplication–divergence models with and without node loss, and compare the results to those
obtained when carrying out similar attacks on two real PPI networks of E. coli and of S. cerevisiae. We
find that the new model more closely reflects the damage caused by strong and weak attacks found
in the PPI networks.

Keywords: duplication–divergence model; gene loss; weak attack; protein–protein interaction networks

1. Introduction

From virtual internet to practical traffic control systems, from small social networks
to large biological systems, networks are ubiquitous, and so are attacks on networks.
For example, an internet cyber attack can slow down information transmission or cause
information leakage, and drugs can target a number of different proteins. Reference [1]
shows that partial inactivation of multiple nodes simultaneously in a network can be more
effective than the complete elimination of a node, by measuring the sum of the inverse of
the shortest path between any two nodes of biological networks (the network efficiency).

This result motivates the study of weak attacks in pharmaceutical designs. For exam-
ple, broader-specificity, lower-affinity compounds or multidrug therapies may cause larger
damage in network efficiency than high-affinity, high-specificity compounds. The success of
multitarget drugs, like non-steroidal anti-inflammatory drugs (NSAIDs) [2], metformin [3],
and Gleevec [4], to treat diseases including AIDS, cancer, atherosclerosis, and Alzheimer’s
disease, all suggest that attacking multiple targets may be a useful therapeutic strategy.

To anticipate the effect of an attack, a well-fitting parametric network model could help
gain insights. For protein–protein interaction (PPI) networks, duplication–divergence (DD)
models have been suggested, see for example [5–7]. This paper hence starts with practically
simulating weak attacks in a duplication–divergence model. Simulations from [8] suggest
that DD models can generate networks which resemble PPI networks more than a basic
Bernoulli random graph model. However, ref. [9] found that while Monte Carlo tests based
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on network comparison statistics do not reject the DD model for some small-virus PPI
networks, they do reject it (at the 5% level) for E. coli, worm, fly, S. cerevisiae, and human
PPI networks. Indeed, DD models are known not to be very realistic; for example, ref. [10]
proved that as the number of nodes tends to infinity, the proportion of isolated nodes in a
standard DD model converges to either 0 or 1, neither of which is realistic.

To understand theoretically how weak attacks damage PPI networks, it is instructive
to consider a simple Bernoulli G(n, M) random graph with n nodes and M edges. We
derive a Poisson approximation for the number of isolated nodes in a G(n, M) via Stein’s
method, which gives explicit bounds in total variation distance, and we prove similar
bounds for the number of isolated nodes after different attack strategies. These results
lead to a clear statistical rejection of the hypothesis that the real PPI networks in this paper
follow a G(n, M) model.

To identify a more realistic model for PPI networks, we notice that the current DD
models ignore gene losses, a biological function [11] which can potentially balance the
proportion of isolated nodes. As genes code for proteins, it is plausible that a model
with node loss may perform better than standard duplication–divergence models for PPI
networks. This paper introduces a new DD model with node loss, where a node can be lost
with probability q if it is isolated. We compare the simulation results of weak attacks in a
standard DD model and the DD model with node loss, and conclude that the new model
indeed generates a more realistic performance.

This paper is structured as follows. Section 2 describes the datasets and attack strategies
that are employed, as well as the damage strategy and measures of damage. Section 4
introduces the new DD model with node loss. Simulations of various attack strategies on
PPI networks on real and synthetic networks are provided in Section 5. The results are
discussed in Section 6. Appendix A contains details of the Poisson approximation results
and Appendix B contains additional figures. The code is available at https://github.com/
rh-zhang/Entropy_CNC2023 (accessed on 24 August 2024).

2. Data and Methods
2.1. Datasets

We use PPI networks for E. coli and S. cerevisiae downloaded from STRING (version
12.0, accessed on 11 March 2024), restricted to physical interactions between proteins only.
The resulting networks are unweighted, undirected physical subnetworks representing
direct interactions between proteins only, excluding indirect functional associations. We
remove interactions with a STRING score [12] less than 0.500 for the E. coli PPI network and
less than 0.400 for the S. cerevisiae PPI network, taking all evidence channels into account.
The 0.400 threshold is the default threshold in STRING; the 0.500 threshold for E. coli is
chosen such that the number of isolated nodes is of a similar magnitude (around 1100) in
both networks, see Table 1. As shown in Figure 1, the number of isolated nodes increases as
the threshold of STRING scores increases. However, the overall trend regarding the impact
of weak attacks on the networks remains consistent in our results, as shown in Figure A9.

We note that there is no claim that all possible protein–protein interactions have been
detected, and hence the STRING database is unlikely to contain all true interactions; it
may also contain some false positive interactions. Our study is conceptual and hence not
severely affected by such false positives and false negatives, under the assumption that
there is no strong systematic connection between errors in the data and isolated proteins.

We assign a uniform weight of 1 to all the remaining edges in the datasets, with the
summary statistics shown in Table 1. The reason for ignoring weights is conceptual simplicity.

https://github.com/rh-zhang/Entropy_CNC2023
https://github.com/rh-zhang/Entropy_CNC2023
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Table 1. Summary statistics for the analysed networks; No. stands for Number of.

Networks E. coli S. cerevisiae

No. nodes 3043 5925

No. edges 52,914 140,402

No. isolated nodes 1141 1100

Average degree 28.05 59.51

Average local clustering coefficient 0.31 0.40

Global clustering coefficient 0.25 0.80

Figure 1. Sensitivity analysis for the number of isolated nodes in the E. coli and S. cerevisiae PPI
networks across varying STRING score thresholds.

2.2. Attack Strategies

The attack strategies used in this paper follow those from [1]. While in [1], networks
with weighted edges are allowed, in our investigative study we set all edge weights equal
to 1 initially; some attacks lead to a reduction in some of the edge weights. The attack
strategies are split into three categories.

Type A: Complete knockout: the attack of a single target by eliminating all interactions
of a given node, as shown in Figure 2A.

Type B: Partial inactivation of a target, as shown in Figure 2: B, which is modelled in
two different ways:

B1: Partial knockout: half of the interactions of a given node are removed (the number
of interactions removed is rounded down when the degree of the target is odd). If a node
is attacked partially once, it will not be attacked again to ensure no node is completely
knocked out. This is shown in Figure 2B1.

B2: Attenuation: all interactions of a given node are attenuated by halving their weight.
Type C: A distributed, system-wide attack, which can affect any interactions (i.e.,

edges) within a network. Again, such an attack is modelled in two different ways:
C1: Distributed knockout: edges are deleted independently at random, with the same

deletion probability, as shown in Figure 2C1.
C2: Distributed attenuation: edges are chosen independently at random, with the

same probability, and their weights are halved.
These attacks can be interpreted in pharmaceutical terms; a high-affinity drug com-

pletely eliminates an interaction while a low-affinity drug attenuates it, and a highly
specific drug targets one single interaction only, while less specific drugs affect some or all
interactions of a given node.
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Figure 2. Attack strategies. (A) Complete knockout attack: all edges connected to the attacked node
are eliminated. (B1) Partial knockout attack: half of the edges connected to the attacked node are
eliminated. (C1) Distributed knockout attack: randomly selected edges are eliminated. Adapted from
FIG.1 in [1].

2.3. Successive Maximal Damage Strategy

As in [1], the nodes being attacked in the simulation of this paper are selected based
on a successive maximal damage strategy. The search for maximal damage caused by
multiple attacks is computationally very intensive. For instance, to determine which 5 of
the 1000 edges of a given network need to be deleted in order to produce a maximal effect
on the network efficiency, one would need to test 1000!/(5!995!) ≈ 8.25 × 1012 cases in a
single-simulation experiment.

Instead, we use a greedy algorithm: for each type of attack, in each step we choose
the action that produces the largest damage. The greedy algorithm is carried out by first
determining the damage caused by the removal of each individual node or edge, depending
on the strategy. The node or edge causing the maximum damage is selected for removal
in the subsequent attack. We note that the damage calculated in this manner is only an
estimate of the maximal damage, since there may be more efficient combinations.

2.4. Measures of Damage

The damage induced by the attacks on the networks is measured by three metrics: the
network efficiency for the transcriptions regulator networks, as used in [1], the average
number of edges in the 1-step ego network for the PPI networks, as proposed in [13] for
assessing the robustness of network metrics, and the number of isolated nodes.

The network efficiency (NE) of an undirected, unweighted graph of n nodes is
∑i ̸=j

1
dij

, where dij is the length of a shortest path between nodes i and j. If the network is
weighted, dij is the weight of a path between nodes i and j with a minimum weight. If any
two nodes i ̸= j are disconnected, then dij = ∞, and their contribution to the calculation
of network efficiency is 0. NE measures how efficiently a network exchanges information.
The underlying idea is that the more distant two nodes are in a network, the less efficient
their exchange of information will be.

The second measure is the average number of edges in the 1-step ego network, where
a 1-step ego network consists of a focal node (the ego), the nodes to which the ego is directly
connected (the alters), and the edges, if any, among the alters.

The third measure is the number of isolated nodes. We add this measure be-
cause an ideal attack would isolate a deleterious node. Moreover, in a Bernoulli random
graph model this measure can be analysed analytically and thus is useful for providing
theoretical underpinning.
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2.5. Bernoulli Random Graphs

Given the number n nodes and the number M of edges in a simple network, in the
absence of further information one may model the network as a G(n, M) graph. This is a
random graph that is chosen uniformly at random from the collection of all simple graphs
which have n nodes and M edges, where 0 ≤ M ≤ (n

2).
The distribution of the degree of a node v, D(v), in a G(n, M) graph is hypergeometric;

there are n − 1 edges that are adjacent to v, out of the (n
2) potential edges, of which we

choose M. Abbreviating the number of node pairs by N = (n
2) we thus have

P(D(v) = k) =
(n−1

k )(N−(n−1)
M−k )

(N
M)

, k = 0, 1, . . . , M.

We can calculate the expected number of isolated nodes from this distribution, but not
its variance, due to the dependence between edges. To clarify the dependence, for example,
if we know that the first n − 1 nodes have degree 0, then node n necessarily must have
degree 0. As this dependence is usually weak, we derive a Poisson approximation for the
number of isolated nodes in the total variation distance. The total variation distance dTV
measures the largest absolute difference between the probabilities of the actual probability
distribution and the Poisson approximation. For distributions P and Q taking values in
Z+ = {0, 1, . . .}, the total variation distance is defined as

dTV(P, Q) = sup
A⊂Z+

|P(A)− Q(A)|. (1)

For M ≤ N − (n − 1), the probability that node i is isolated is

P(Ii = 1) =
(N−(n−1)

M )

(N
M)

:= π.

With W denoting the number of isolated nodes, its expectation is E(W) = nπ =: λ, and
this is the parameter which we choose for the approximating Poisson distribution.

Theorem 1. It holds that

dTV(L(W); Po(λ)) ≤ min(1, λ−1)e−np(1+ n−2
N+2−n )+p(1+ n−2

N+2−n )+
2−3n+n2
N+2−n(

1 + np
(

1 +
n + Np − 2

N − Np − n + 2

))
.

This bound tends to zero as p := M/N → 1. The proof and more details can be found
in Appendix A.1. Appendix A.1 also gives Poisson approximations for the number of
isolated nodes after an attack for the different attack strategies. These results may be of
independent interest.

3. Duplication–Divergence Models

Simulations suggest that duplication–divergence (DD) models generate networks
which provide a better fit to protein interaction networks than the standard models [8].
There are different variations of duplication–divergence models in the literature, see for
example [6,7,14,15]. Here, we use a version, from [15], which incorporates the parameters of
the probability of edge divergence, p, but we exclude the possibility of a parent–child edge.

A standard duplication–divergence model DD(t0; p) starts from a complete graph Gt0

on t0 nodes (labelled from 1 to t0), and then repeats the following steps until a graph of the
desired size is obtained:
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• Duplication: at time t, a node u is selected uniformly at random. A node labelled as
t + 1 is added, as well as the edges between node t + 1 and the neighbours of node u
in the graph.

• Divergence: edges involving node t + 1 are randomly retained with probability p.

An illustration of a DD model is shown in Figure 3.

Figure 3. Graph illustration of a duplication–divergence model.

Reference [15] found that the degree distributions of the DD model described above
are in reasonable agreement with the distributions observed in real protein networks, and
tuning the parameter p reveals a rich behaviour of the model. When p is large, the network
growth lacks self-averaging and results in a great diversity of networks grown out of the
same initial condition. For p < 0.5, the average degree increases very slowly or tends to
a constant, and the degree distribution has a power-law tail. Several real protein–protein
networks are estimated to have a p value of around 0.4 [15]. As shown in Figure A1, the
choice of p does not affect the qualitative behaviour of the models against attacks.

4. A New Duplication–Divergence Model Which Allows for Node Loss

Although simulations have shown that the DD model described above is more realistic
than a G(n, M) model, ref. [10] proved that the proportion of isolated nodes in a DD model
either converges to 0 or 1. This behaviour does not match biological intuition, and other
network models do not exhibit it; for example, we prove in Appendix A that the proportion
of isolated nodes in a G(n, M) model does not have to converge to either 0 or 1.

The quality of a network model has to be judged by the research question to be
addressed. In a series of Monte Carlo tests for E. coli, worm, fly, S. cerevisiae, and human PPI
networks and some small-virus PPI networks [9], a DD model (allowing for a non-zero
probability of a parent–child edge) is rejected as a model for the large PPI networks based
on network comparison statistics including graphlet correlation distance, graphlet degree
distribution agreement, Netal, and Netdis. In contrast, in the small-virus PPI networks
investigated in [9], the DD model is not rejected by most of these network comparison
statistics. These statistics do not include the number of isolated nodes, but Netdis is based
on subgraph counts in ego networks, and is thus related to our outcome measure of the
average number of edges in 1-step ego networks. Hence, these Monte Carlo results indicate
that the DD model may not be a good fit for larger PPI networks when the interest is in
modelling the effect of attacks.

From a biological viewpoint, genes and the proteins they code for can not only du-
plicate, but can also be lost. For example, gene loss can occur during natural mutations
and frameshifts [16]. Furthermore, many examples support the idea that gene loss can be
an adaptive evolutionary force that is especially common when organisms are faced with
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abrupt environmental challenges [11]. Adaptive gene loss, or gene loss in general, can be
of potential interest in the study of both biomedicine and evolution.

Therefore, we modify the DD model to allow for both node addition and for the loss of
nodes. In addition to the process that generates a DD model, a node loss step is added after
every duplication-and-divergence step. In particular, we focus on the node loss mechanism
that a node can be lost with probability q if it is isolated.

• Duplication: at time t, a node u is selected uniformly at random. A node labelled as
t + 1 is added, as well as the edges between node t + 1 and the neighbours of node u
in the graph.

• Divergence: edges involving node t + 1 are randomly retained with probability p.
• Node loss: a node is randomly lost with probability q if it is isolated.

A graph illustration of our new model is present in Figure 4.

Figure 4. Graph illustration of a new duplication divergence model with node loss.

5. Results
5.1. Simulation of Weak Attacks in Real PPI Networks

Here, we apply the various attack strategies to our PPI networks datasets with 10 re-
peats. Figure 5 shows that as for the PPI networks of E. coli and S. cerevisiae the number of
targets that are subject to weak attacks increases, and the damage caused by weak attacks
becomes larger and is significantly greater than the damage caused by complete knockout.

To understand the expected effects of attacks, a parametric model may be useful. Next,
we investigate two such models.
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(a) E. coli (b) S. cerevisiae
Figure 5. The average number of edges in the 1-step ego network of an E. coli and S. cerevisiea PPI
network after 25 attacks. (a) shows the average number of edges in the 1-step ego network in a E. coli
PPI network under 25 knockout attacks. Blue line: complete knockout; red line: partial knockout with
half of the edges connected to one node being removed at each attack; green line: partial knockout
with half of the edges connected to two nodes being removed at each attack; orange line: partial
knockout with half of the edges connected to five nodes being removed at each attack. (b) shows the
average number of edges in the 1-step ego network in a S. cerevisiae PPI network under 25 attenuation
attacks. Since a one-node halved knockout only deletes half of the edges connected to the selected
node, when a node has a degree of at least 2 it causes less damage than a complete knockout which
removes all the edges connected to the selected node.

5.2. The Number of Isolated Nodes in a Bernoulli Random Graph

As a baseline model for a PPI network, we use a G(n, M) model. In Appendix A we
derive an upper bound for the total variation distance for the number of isolated nodes in
real PPI networks using a G(n, M) graph under Poisson approximation, see Appendix A.1.
The Poisson approximation comes with an explicit bound, which we abbreviate here as
∆, on the total variation distance (1). If W denotes the number of isolated nodes, λ its
expectation under the G(n, M) model, and Z a Poisson-distributed random variable with
mean λ, then it follows that for all k,

P(Z ≥ k)− ∆ ≤ P(W ≥ k) = P(Z ≥ k) + (P(W ≥ k)−P(Z ≥ k)) ≤ P(Z ≥ k) + ∆.

Thus, the Poisson approximation can be used to assess statistical significance.
For our E. coli and S. cerevisiae data, the estimated upper bound for the total variation

distance is 3.73 × 10−15 and 9.28 × 10−19, respectively. While these bounds are small, the
p-values associated with these bounds are 0 up to 6 significant digits under a two-sided test
in which the null hypothesis of the G(n, M) model is rejected for very small or very large
numbers of isolated nodes, lending evidence to the explanation that the G(n, M) model
does not explain the observed number of isolated nodes well. The observed number of
isolated nodes in E. coli and S. cerevisiae is 833 and 1100, respectively, whereas the expected
number of isolated nodes under the G(n, M) model is 2.99 × 10−14 and 1.27 × 10−17. This
suggests that a G(n, M) graph may not be suitable for modelling these real PPI networks
when the interest is in the number of isolated nodes as a summary statistics.
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We further derived upper bounds for the total variation distance under Poisson approxi-
mation for the number of isolated nodes after different types of attack, see Appendices A.2–A.4.
Again, the results are highly significant, with p-values equal to 0 up to 6 significant digits,
indicating that after an attack, the G(n, M) model still does not fit the data well. Hence, a dif-
ferent model for the data is needed. Next, we investigate the standard duplication–divergence
model from Section 3.

5.3. Simulation of Weak Attacks in Duplication–Divergence Model

In this section, we present the simulation results of applying weak attacks to realisa-
tions of the standard duplication–divergence model DD(t0; p) from Section 3. The model
is undirected, and all edges are set to have unit weight; we take t0 = 3, and start the
simulation of the graph with a triangle. This choice ensures that the generated networks
can include triangles, resulting in non-zero local and global clustering coefficients; thus they
are able to match this key characteristic of PPI networks. In contrast, if the graph is initiated
with just a connected pair of nodes, the generated graphs cannot have any triangles; the
corresponding simulation results, shown in Appendix B, are, however, similar regarding
the effect of attacks. Reference [10] proves that p∗ solving the equation pep = 1 is a critical
value, in the sense that for p > p∗ there is no limiting degree distribution. In this paper, we
take p to be 0.4, a value smaller than p∗ ≈ 0.567. The simulations are run for 1000 steps,
with five repeats.

The top two plots of Figure 6 show how partial attacks damage a DD network com-
pared to complete knockout attacks. As illustrated in the top left plot of Figure 6, while
increasing the number of nodes being attacked weakly eventually enhances the damage
efficiency for a large number of attacks, complete knockout attacks serve as a robust method
to destroy the network.

Figure 6. Network efficiency after up to 25 weak attacks on simulations from the duplication–
divergence model starting with a triangle with a divergence rate p = 0.4. Top left: knockout attacks.
Blue line: complete knockout; red line: partial knockout with half of the edges connected to one node
being removed at each attack; green line: partial knockout with half of the edges connected to two
nodes being removed at each attack; orange line: partial knockout with half of the edges connected
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to five nodes being removed at each attack. Top right: attenuation attacks. Blue line: complete
knockout; red line: partial attenuation with all the edges connected to one node being halved at each
attack; green line: partial attenuation with all the edges connected to two nodes being halved at each
attack; orange line: partial attenuation with all the edges connected to five nodes being halved at each
attack. Bottom left: distributed attacks, with edges drawn from a random distribution; the horizontal
line represents equivalent damage to the network achieved by one complete knockout. Bottom
right: distributed attenuation attacks, with the weight of edges drawn from a random distribution
to be halved; the horizontal line represents equivalent damage to the network achieved by one
complete knockout.

The bottom two plots of Figure 6 show how distributed attacks damage a DD network
compared to complete knockout attacks. The horizontal line representing the damage
caused by one complete knockout suggests that the effect of 6 distributed knockout or
13 distributed attenuation attacks is equivalent to the effect of one complete knockout. This
indicates that distributed attacks are less effective than both complete knockout attacks and
partial attacks.

5.4. Simulation of Weak Attacks in the New Node Loss Model

Now, we present the simulation results of applying weak attacks onto the new node
loss model introduced in Section 4. Again, the model is undirected with all edges assigned
unit weight. The simulations are run with 10 repeats and the average network efficiency
values are reported to account for randomness. We note here that we did not carry out a
grid search for the optimal parameter choices for the DD models without and with gene
loss for the different organisms, as the focus of this paper is the qualitative behaviour of the
new DD model with gene loss, and not detailed modelling of observed PPI networks.

Figure 7 shows the results for p = 0.4 and q = 0.2 under different weak attacks. We
observe that in 25 attacks, a complete knockout attack is more effective than a partial
attenuation when half of the edges connected to one node are eliminated, but less effective
than a partial attenuation when halving two nodes or five nodes. Our results indicate
that as the number of halved nodes increases, the weak attacks damage networks more
efficiently. Furthermore, distributed attacks are less effective than complete knockout and
partial attacks, mirroring the qualitative impact observed in real PPI networks.

We observe that the pattern of Figure 7 for the new node loss model is more similar to
the pattern of Figure 5 for the real datasets than the pattern of Figure 6 for a standard DD
model. This suggests that the new node loss model can mimic the effect of weak attacks on
protein–protein interaction networks more realistically than the standard DD(t0, p) model.

Regarding the effect of the probability of node loss on weak attacks in the new node
loss model, we notice that the number of distributed attacks required to achieve the
equivalent effect as one complete knockout attack increases as q increases. This raises a
natural question regarding how the value of q affects the efficiency of weak attacks in the
new node loss model. In our simulations, shown in Figure 8, the resilience of the new node
loss model to weak attacks results in a slower rate of network degradation. This can be
attributed to the fact that higher q values correspond to an increased likelihood of losing
isolated nodes, which in turn leads to a more connected graph structure.
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Figure 7. Network efficiency after up to 25 weak attacks on simulations from the new node loss model
starting with a triangle; a node can be lost with probability q = 0.2, using a divergence rate p = 0.4.
The graph is undirected and has unit edge weight. Top left: knockout attacks. Blue line: complete
knockout; red line: partial knockout with half of the edges connected to one node being removed
at each attack; green line: partial knockout with half of the edges connected to two nodes being
removed at each attack; orange line: partial knockout with half of the edges connected to five nodes
being removed at each attack. Top right: attenuation attacks. Blue line: complete knockout; red line:
partial attenuation with all the edges connected to one node being halved at each attack; green line:
partial attenuation with all the edges connected to two nodes being halved at each attack; orange line:
partial attenuation with all the edges connected to five nodes being halved at each attack. Bottom
left: distributed attacks, with edges drawn from a random distribution; the horizontal line represents
equivalent damage to the network achieved by one complete knockout. Bottom right: distributed
attenuation attacks, with the weight of edges drawn from a random distribution to be halved; the
horizontal line represents equivalent damage to the network achieved by one complete knockout.
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Figure 8. Effect of q on the efficiency of weak attacks on simulated networks from the node loss
model starting from a triangle with p = 0.4, and q ranges from 0.2, 0.4, 0.6, to 0.8.

6. Discussion

In this paper, we have assessed standard models for PPI networks and we have
introduced a new node loss model which is motivated by observed gene loss in organisms.
We show that our new node loss model captures the effect of weak attacks in a protein–
protein interaction network more realistically than a standard DD model (i.e., q = 0).

To further enhance the robustness of our results, as future work we aim to derive
analytical results for the average number of edges in a 1-step ego network and for the
network efficiency before and after attacks in the new node loss model.

It is perhaps not surprising that the new node loss model performs better due to its
incorporation of a natural and common biological adaptation, namely, gene loss, occurring
throughout evolution. As a next step, variants of the new node loss model could be
examined; for example, one could include the case where the probability of a parent–child
node edge is not zero. In order to understand how node loss affects duplication–divergence
behaviour, we also aim to investigate other parameters that can affect a node loss in a
network; for example, a pair of nodes may be more likely to be lost if they are connected by
an isolated edge.



Entropy 2024, 26, 813 13 of 28

Regarding the network representation of PPIs, we chose the PPI networks from the
STRING database, which represents each protein-coding gene locus by only a single,
representative protein. The datasets contain non-binary data which could be incorporated
in the analysis. Moreover, future work will assess the effect of restricting the protein
interactions from the STRING database to physical interactions, by repeating the analysis for
the full STRING PPI networks. Hypergraph representations as in [17] may also be fruitful.
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Appendix A. Poisson Approximation for the Number of Isolated Nodes in a G(n, M)
Graph Before and After Attacks

Appendix A.1. Poisson Approximation for the Number of Isolated Nodes in a G(n, M) Graph

For a G(n, M) graph G, n ≥ 2, we define the edge indicators Eij so that Eij = 1 if there
is an edge between i and j belonging to the edge set E(G) of G, and 0 otherwise. These
edge indicators are not independent, as can be seen by the requirement that ∑i<j Eij = M.
Since M edges are chosen uniformly at random from N = (n

2) possible edges, we have

P(Eij = 1) =
M
N

:= p

so that Eij ∼ Be(p). We let
Ii : Ii(n) = ∏

j ̸=i
(1 − Eij)

be the indicator of the event that node i is isolated in G(n, M). Then, for M ≤ N − (n − 1),

P(Ii = 1) =
(N−(n−1)

M )

(N
M)

:= π (A1)

is the same for each i, and for M > N − (n− 1) it is 0. Our quantity of interest is W = ∑n
i=1 Ii,

the number of isolated nodes in G(n, M). From Equation (A1), λ = E(W) = nπ. We point
out that Ii’s are not independent, but when π is small the dependence is weak.

While Equation (A1) can be difficult to evaluate numerically for large N and M, we
note that

π =
(N−(n−1)

M )

(N
M)

=

(
1 − M

N

)(
1 − M

N − 1

)
· · ·

(
1 − M

N − n + 2

)
.

Thus, setting p = M
N , we can bound n(1 − M

N−n )
n−1 ≤ λ ≤ n(1 − M

N )n−1 = n(1 − p)n−1. To
understand the distribution of W, Theorem 1 in the main text gives a Poisson approximation
for which we provide a proof here. For convenience, we re-state the result.

https://github.com/rh-zhang/Entropy_CNC2023
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Theorem A1. If W := ∑n
i=1 Ii, we have for a G(n, M) graph,

dTV(L(W); Po(λ)) ≤ min(1, λ−1)e−np(1+ n−2
N+2−n )+p(1+ n−2

N+2−n )+
2−3n+n2
N+2−n(

1 + np
(

1 +
n + Np − 2

N − Np − n + 2

))
.

Before we prove this result, we note that the bound, which we could call ∆ as in
Section 5.2, on the total variation distance is explicit; no limiting behaviour is assumed.

However, it can be seen that ∆ tends to 0 as p =
M
N

→ 1.

Proof. When assessing the goodness of fit of Poisson approximations, Stein’s method has
become a strong tool under various dependence structures [18]. In our case, notice that
given any realisation of G(n, M), an associated realisation of G(n, M) conditional on Ii = 1
is obtained simply by setting all the edge indicators (Eij, Eji, i ≤ j ≤ n, j ̸= i) equal to zero.
This may create additional isolated nodes, but cannot destroy any. To exploit this fact, we
use so-called size bias coupling, constructing a random variable W∗

i in the same probability
space as W, which has the conditional distribution L(W − Ii | Ii = 1). Theorem 2.A in [19]
gives that

dTV(L(W), Po(λ)) ≤ J1

n

∑
i=1

piE|W − W∗
i | (A2)

with J1 ≤ min
{

1, λ−1}.
To construct such size bias coupling, as in [20], we introduce Zj = ∏l ̸=i,j(1 − Ejl), so

that Zj = 1 if j is not connected to any nodes excluding i and itself, and Zj = 0 otherwise.
Then, for each i we can take as a size-biased variable

W∗
i = ∑

j:j ̸=i
Zj

= ∑
j:j ̸=i

(1 − Eij + Eij) ∏
l ̸=i,j

(1 − Ejl)

= ∑
j:j ̸=i

∏
l ̸=j

(1 − Ejl) + ∑
j:j ̸=i

Uj

= W − Ii + ∑
j:j ̸=i

Uj,

where
Uj = ∏

l ̸=i,j
(1 − Ejl)− ∏

l ̸=i,j
(1 − Ejl)(1 − Eji) = Eij ∏

l ̸=i,j
(1 − Ejl).

For a G(n, M) graph, we have

E
[

n

∑
j=1,j ̸=i

Eij ∏
l ̸=i,j

(1 − Ejl)

]
=

(n−1
1 )(N−(n−1)

M−1 )

(N
M)

since to make sure node j is only connected to node i, we need an edge between i and
j chosen from n − 1 nodes, and all the other M − 1 edges are chosen from the edge set
excluding j. Hence,

E|W∗
i − W| ≤

(n − 1)(N−(n−1)
M−1 )

(N
M)

+
(N−(n−1)

M )

(N
M)

. (A3)
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Therefore, with p = M
N and N = (n

2), by Equation (A2) we have

dTV(L(W); Po(λ)) = min(1, λ−1)λ

{
(n − 1)

(N−(n−1)
M−1 )

(N
M)

+
(N−(n−1)

M )

(N
M)

}
≤ min(1, λ−1)e−np(1+ n−2

N+2−n )+p(1+ n−2
N+2−n )+

2−3n+n2
N+2−n(

1 + np
(

1 +
n + Np − 2

N − Np − n + 2

))
,

where the last step follows from standard inequalities.

This bound tends to 0 as p =
M
N

→ 1 as long as M ≤ N − n + 1.

Appendix A.2. Poisson Approximation for the Number of Isolated Nodes in a G(n, M) Graph after
One Complete Knockout Attack

A complete knockout attack removes all the edges of a randomly picked node U.
Assume that U = i. Let N′ = (n−1

2 ), set Ij = 1(j is isolated in the graph before the
attack), and

I′j = 1(j is isolated in the graph after the attack).

Before the attack, denoting by deg(i) the degree of i we have

PG(n,M)(deg(i) = k) =
(n−1

k )(N−(n−1)
M−k )

(N
M)

:= pdegk ,n, (A4)

for k ≤ min(n − 1, M) and 0 otherwise. Suppose that node i is attacked. Then, for j ̸= i
and k ≤ min(n − 1, M), as the edges in G(n, M) are distributed uniformly, if the attacked
node has degree k then the graph after the attack is a G(n − 1, M − k) graph. Hence, for
k ≤ min(n − 1, M),

P(I′j = 1|deg(i) = k) =
(N′−(n−2)

M−k )

( N′
M−k)

=: πk(n − 1),

which is the same for each j ̸= i in the graph after the attack. Now, let W ′ be the number of
isolated nodes after one attack. We have

E(W ′) =
1
n

n

∑
v=1

E(W ′|v is the vertex for duplication)

=
1
n

n

∑
v=1

min(n−1,M)

∑
k=0

P(deg(v) = k)E(W ′|v is the vertex for duplication, deg(v) = k)

=
min(n−1,M)

∑
k=0

λk pdegk ,n

where
λk := E(W ′|v is the vertex for duplication, deg(v) = k).

Let Λ be a random variable taking values in λk, k = 1, . . . , min(n − 1, M), with

P(Λ = λk) = pdegk ,n, (A5)
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using the notation (A4). Then , EΛ = ∑
min(n−1,M)
k=0 pdegk

(v)λk = E(W ′). We now approxi-
mate the distribution of W ′ by a mixed Poisson distribution. Let Z ∼ Po(Λ). Then, for any
function h,

Eh(W ′)−Eh(Z) = ∑
k
{E(h(w)|deg(U) = k)−Eh(Zk)}pdegk ,n, (A6)

where Zk ∼ Po(λk). For each choice of k, bounding |E(h(w)|deg(U) = k)− Eh(Zk)| can
then be carried out in a similar vein as for Theorem 1, as follows.

Theorem A2. For a G(n, M) graph after one complete knockout attack, we have

dTV(L(W ′); Po(Λ)) ≤
min(n−1,M)

∑
k=0

(n−2
k )(N′−(n−2)

N′pk−k )

( N′
N′pk

)
min(1, λ−1

k )

e−npk(1+
n−3

N′+3−n
)+pk(2+

n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n(

1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))
.

where W ′ := ∑n−1
j=1 I′j(n − 1), pk =

M−k
N′ , and Λ given in (A5).

Proof. After one attack on node i of degree k the graph is a realisation of the G(n− 1, M− k)
model, together with an isolated node i. Again, we use size bias coupling. Given any
realisation of G(n − 1, M − k), an associated realisation of G(n − 1, M − k) conditional on
Ij = 1 is obtained simply by setting all the edge indicators (El j, Ejl , l ≤ j ≤ n − 1, j ̸= l)
equal to zero. This may create additional isolated nodes, but cannot destroy any. By (A3),
we have for k ≤ min(n − 1, M)

E
[
|W∗

j − W ′|
∣∣∣deg(i) = k

]
≤

(n − 2)(N′−(n−2)
M−k−1 )

( N′
M−k)

+
(N′−(n−2)

M−k )

( N′
M−k)

. (A7)

Setting pk =
M−k

N′ , using (A6) we have

dTV(L(W ′); Po(Λ))

≤
min(n−1,M)

∑
k=0

pdegk ,n−1 min(1, λ−1
k )

{
(n − 2)

(N′−(n−2)
M−1−k )

( N′
M−k)

+
(N′−(n−2)

M−k )

( N′
M−k)

}

≤
min(n−1,M)

∑
k=0

(n−2
k )(N′−(n−2)

N′pk−k )

( N′
N′pk

)
min(1, λ−1

k )e−npk(1+
n−3

N′+3−n
)+pk(2+

n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n

(
1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))
.

To further bound this bound, we could bound pdegk ,n−1 by max
k

p,n−1. More crudely,

we can bound

dTV(L(W ′); Po(Λ)) ≤
min(n−1,M)

∑
k=0

e−npk(1+
n−3

N′+3−n
)+pk(2+

n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n(

1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))
.
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Appendix A.3. Poisson Approximation for the Number of Isolated Nodes in a G(n, M) Graph after
One Partial Knockout Attack

A partial knockout attack on node i randomly removes half of its edges with other
nodes. Here, we round down the number of edges removed, which means node i would
never be isolated after one attack if its degree is 0 or 1 in the original graph G(n, M). So, if
the node i has degree k before the attack, then ⌊k/2⌋ edges are removed. Again, we let

I′j = 1(j is isolated in the graph after the attack).

Theorem A3. For a G(n, M) graph after one partial knockout attack, we have

dTV(L(W ′); Po(Λ))

≤
n−2

∑
k=0

(n−2
k )(N′−(n−2)

N′pk−k )

( N′
N′pk

)
min(1, λ−1

k )

(
1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))

e−npk(1+
n−3

N′+3−n
)+pk(2+

n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n ,

where W ′ := ∑n−1
j=1 I′j(n − 1), pk =

M−⌊ k
2 ⌋

N′ , and Λ is given in (A5).

Proof. Firstly, letting deg(i) denote the degree of node i in G(n, m),

P
(

I′i = 1
∣∣∣deg(i) = k

)
= P

(
I′i = 1

∣∣∣deg(i) > 0
)
P
(

deg(i) > 0
)
+

P
(

I′i = 1
∣∣∣deg(i) = 0

)
P
(

deg(i) = 0
)

= 0 + π = π

and

P(I′j = 1) = ∑n−1
k=1 pdegk ,nP

(
I′j = 1

∣∣∣deg(i) = k
)

for j ̸= i.

In particular, we have

P
(

I′j = 1
∣∣∣deg(i) = k

)
= P

(
Ij = 1

∣∣∣deg(i) = k
)

+ P
(

i ∼ j, deg(j) = 1
∣∣∣deg(i) = k

)
P
(

i ∼ j is deleted
∣∣∣i ∼ j, deg(j) = 1, deg(i) = k

)
. (A8)

For k ≤ min(n − 1, M),

P
(

Ij = 1
∣∣∣deg(i) = k

)
=

(N−k−(n−1)
M−k )

(N
M)

;

P
(

i ∼ j, deg(j) = 1
∣∣∣deg(i) = k

)
=

(n−2
k−1)(

N−(2(n−2)+1)
M−k )

pdegk ,n(
N
M)

.

Also,

P
(

i ∼ j is deleted
∣∣∣i ∼ j, deg(j) = 1, deg(i) = k

)
=

{
1
2 if k is even
k−1
2k if k is odd.
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Therefore,

P
(

I′j = 1
∣∣∣deg(i) = k

)
=


(N−k−(n−1)

M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

1
2 if k is even

(N−k−(n−1)
M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

k−1
2k if k is odd

where for each case the first term represents the probability before attack and the second
term represents the probability after attack.

Then, λk := E[W ′|v is the vertex picked for duplication, deg(v) = k] is

λk =


π + (n − 1)

(
(N−k−(n−1)

M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

1
2

)
if k is even

π + (n − 1)
(

(N−k−(n−1)
M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

k−1
2k

)
if k is odd.

After one partial knockout attack, the graph is a realisation of the G(n − 1, M − ⌊ k
2⌋) model,

combined with node i and its remaining edges if i does not become isolated, or the graph
is a realisation of the G(n − 1, M − ⌊ k

2⌋) model combined with an isolated i if i becomes
isolated. Conditioning on the different cases,

Eh(W ′)−Eh(Z)

=
n−1

∑
k=0

{
E[h(W ′)|deg(i) = k, i becomes isolated)P(i becomes isolated)

+E[h(W ′)|deg(i) = k, i does not become isolated)P(i does not become isolated)

−Eh(Zk)
}

pdegk ,n−1

where

Zk =

{
Ziso

k ∼ Po(λk) + 1 if v becomes isolated
Znon−iso

k ∼ Po(λk) if v does not become isolated.

Hence,

Eh(W ′)−Eh(Z) =
n−1

∑
k=0

pdegk ,n

{(
E[h(W ′)|deg(i) = k, i becomes isolated]−Eh

(
Ziso

k

))
P(i becomes isolated)

+
(
E[h(W ′)|deg(i) = k, i does not become isolated]−Eh

(
Znon−iso

k

))
P(i does not become isolated)

}
=

n−2

∑
k=0

pdegk ,n−1

{(
E[g(W ′)|deg(i) = k, i becomes isolated]−Eg

(
Ziso

k

))
P(i becomes isolated)

+
(
E[g(W ′)|deg(i) = k, i does not become isolated]−Eg

(
Znon−iso

k

))
P(i does not become isolated)

}
where g(x) = h(x + 1). Now, for each of the two cases we apply size bias coupling as in

Theorem A2. We approximate E[g(W ′)|deg(i) = k, i becomes isolated] by E[g(Ziso
k )] and

we approximate E[g(W ′)|deg(i) = k, i does not become isolated] by E[g(Znon−iso
k )].

Combining the bounds (A7) for the two cases,
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E[|W ′ − W|deg(i) = k] (A9)

≤ 1
n

n

∑
i=1

n−2

∑
k=0

pdegk ,n−1

{ (n − 2)( N′−(n−2)
M−⌊k/2⌋−1)

( N′
M−⌊k/2⌋)

+
(N′−(n−2)

M−⌊k/2⌋ )

( N′
M−⌊k/2⌋)


P(i becomes isolated)

+

 (n − 2)( N′−(n−2)
M−⌊k/2⌋−1)

( N′
M−⌊k/2⌋)

+
(N′−(n−2)

M−⌊k/2⌋ )

( N′
M−⌊k/2⌋)

P(i does not become isolated)

≤
n−2

∑
k=0

pdegk ,n−1

 (n − 2)( N′−(n−2)
M−⌊k/2⌋−1)

( N′
M−⌊k/2⌋)

+
(N′−(n−2)

M−⌊k/2⌋ )

( N′
M−⌊k/2⌋)

 (A10)

Letting pk =
M−⌊ k

2 ⌋
N′ , we have

dTV(L(W ′); Po(Λ)) (A11)

≤
n−2

∑
k=0

pdegk ,n−1 min(1, λ−1
k )

{
(n − 2)

(
N′−(n−2)
M−⌊ k

2 ⌋−1
)

( N′

M−⌊ k
2 ⌋
)

+
(

N′−(n−2)
M−⌊ k

2 ⌋
)

( N′

M−⌊ k
2 ⌋
)

}

=
n−2

∑
k=0

(n−2
k )(N′−(n−2)

N′pk−k )

( N′
N′pk

)
min(1, λ−1

k )

{
e−npk(1+

n−3
N′+3−n

)+pk(2+
n−3

N′+3−n
)+ 6−5n+2n2

N′+3−n

(
1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))}
.

Again, we can use the crude upper bound

dTV(L(W ′); Po(Λ)) ≤
n−1

∑
k=0

e−npk(1+
n−3

N′+3−n
)+pk(2+

n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n(

1 + npk

(
1 +

n + N′pk − 3
N′ − n − N′pk + 3

))
, (A12)

which tends to 0 as p =
M
N

→ 1.

Appendix A.4. Poisson Approximation for the Number of Isolated Nodes in a G(n, M) Graph after
One Distributed Knockout Attack

A distributed knockout attack on node i of degree k randomly removes its edges with
other nodes according to a random distribution.

Theorem A4. In a G(n, M) graph, we have for W ′ the number of isolated nodes after one dis-
tributed knockout attack,

dTV(L(W ′); Po(Λ)) ≤
n−2

∑
k=0

k

∑
x=0

(n−2
k )(N′−(n−2)

N′px−k )

( N′
N′px

)

(
k
x

)
qx(1 − q)k−x min(1, λ−1

k )

e−npx

(
1+ n−3

N′+3−n

)
epx

(
2+ n−3

N′+3−n
+ 6−5n+2n2

N′+3−n

)
(

1 + npx

(
1 +

n + N′px − 3
N′ − n − N′px + 3

))
.
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where W ′ := ∑n−1
j=1 I′j(n− 1), λk = qk + (n− 1)

(
(N−k−(n−1)

M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

q
)

, px = M−x
N′ ,

and Λ is given in (A5).

Proof. Let Xk ∼ Bin(k, q) denote the number of removed edges if the attacked node i has
degree k. Let I′j denote the indicator that node j is isolated after the attack. Then, after one

attack, P(I′i = 1|deg(i) = k) = qk, and for j ̸= i,

P(I′j = 1) =
n−1

∑
k=1

pdegk ,n−1P
(

I′j = 1
∣∣∣deg(i) = k

)
In particular,

P
(

Ij = 1
∣∣∣deg(i) = k

)
=

(N−k−(n−1)
M−k )

(N
M)

,

and P
(

i ∼ j, deg(j) = 1
∣∣∣deg(i) = k

)
=

(n−2
k−1)(

N−(2(n−2)+1)
M−k )

pdegk ,n(
N
M)

.

Also, we notice

P
(

i ∼ j is deleted
∣∣∣i ∼ j, deg(j) = 1, deg(i) = k

)
=

k

∑
x=0

P(Xk = x)P
(

i ∼ j is deleted
∣∣∣Xk = x

)
=

k

∑
x=0

(
k
x

)
qk(1 − q)k−x x

k
= q.

Therefore, substituting into Equation (A8), we obtain for k ≤ min(n − 1, M)

P
(

I′j = 1
∣∣∣deg(i) = k

)
=

(N−k−(n−1)
M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

q.

Hence,

λk := E[W ′|i is the vertex picked for duplication, deg(i) = k]

= qk + (n − 1)

 (N−k−(n−1)
M−k )

(N
M)

+
(n−2

k−1)(
N−(2(n−2)+1)

M−k )

pdegk ,n(
N
M)

q


After one distributed knockout attack on node i, let Xk = xk. The graph is a realisation of
the G(n − 1, M − k) model if node i becomes isolated, and it is a realisation of the model
G(n − 1, M − xk) combined with node i and its remaining edges if node i does not become
isolated. Any additional isolated nodes can only appear in the G(n − 1, M − k) or G(n −
1, M − xk) part of the model. With px = M−x

N′ , a similar argument as for Equation (A10)
gives as the upper bound for the total variation distance in a distributed knockout attack

dTV(L(W ′); Po(Λ))

≤
n−2

∑
k=0

k

∑
x=0

pdegk ,n−1P(Xk = x)min(1, λ−1
k )e−npx(1+ n−3

N′+3−n )

epx

(
2+ n−3

N′+3−n +
6−5n+2n2
N′+3−n

)(
1 + npx

(
1 +

n + N′px − 3
N′ − n − N′px + 3

))
(A13)

=
n−2

∑
k=0

k

∑
x=0

(n−2
k )(N′−(n−2)

N′px−k )

( N′

N′px
)

(
k
x

)
qx(1 − q)k−x min(1, λ−1

k )e−npx(1+ n−3
N′+3−n )

epx

(
2+ n−3

N′+3−n +
6−5n+2n2
N′+3−n

)(
1 + npx

(
1 +

n + N′px − 3
N′ − n − N′px + 3

))
.
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Again, this bound can be bounded as

dTV(L(W ′); Po(Λ)) ≤
n−1

∑
x=0

e−npx(1+ n−3
N′+3−n

)+px(2+ n−3
N′+3−n

)+ 6−5n+2n2
N′+3−n(

1 + npx

(
1 +

n + N′px − 3
N′ − n − N′px + 3

))
,

which tends to 0 as p =
M
N

→ 1.

Appendix B. Additional Figures

Below, we present additional figures for this paper.

Appendix B.1. Additional Results for Simulated Networks Starting with a Triangle

Figure A1 shows the effect of p on duplication–divergence models starting with a
triangle against different attacks. As p increases, the network efficiency decreases faster;
however, the relative behaviour between strong and weak attacks remains unchanged. We
show in Figure A2 that for a new node loss model starting with a triangle, the network
efficiency also follows the same trend.

Figure A1. Effect of p when applying complete or weak knockout attacks on simulated networks
from duplication–divergence models (i.e., q = 0) starting with a triangle.
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Figure A2. Effect of p when applying complete or weak knockout attacks on simulated networks
from the new node loss model starting with a triangle, with q = 0.4.

Figure 7 in the main text shows the effect of different attacks on simulated networks
from the new node loss model starting with a triangle, with q = 0.2, p = 0.4. In Figure A3,
we present simulation results on the new node models with other sets of parameters;
we find that these display qualitatively similar behaviour against attacks. Compared to
the simulations of new node loss model that begin with a single edge, starting with a
triangle provides a more realistic representation. This is not only because the triangle-based
simulations have a non-zero local and global clustering coefficient unlike the edge-based
simulations, but we also notice that, when p = 0.4, the network efficiency in the triangle-
based simulations does not decline as rapidly as in Figure A7, more closely mirroring the
behaviour of real PPI networks.



Entropy 2024, 26, 813 23 of 28

Figure A3. Network efficiency after up to 25 weak attacks on simulated networks from the new node
loss model starting with a triangle with a divergence rate p = 0.4, where a node can be lost with
probability q = 0.4, 0.6, and 0.8. Left plots: knockout attacks. Blue line: complete knockout; red
line: partial knockout with all the edges connected to one node being halved at each attack; green
line: partial knockout with all the edges connected to two nodes being halved at each attack; orange
line: partial knockout with all the edges connected to five nodes being halved at each attack. Right
plots: attenuation attacks. Blue line: complete knockout; red line: partial attenuation with all the
edges connected to one node being halved at each attack; green line: partial attenuation with all the
edges connected to two nodes being halved at each attack; orange line: partial attenuation with all
the edges connected to five nodes being halved at each attack.
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Appendix B.2. Simulated Networks Starting with a Single Edge

In the main text, we present simulations of DD models and new node loss models
initialised with a triangle. The figures below demonstrate that starting these models with
an edge shows similar behaviour regarding the effect of attacks. However, when beginning
with a single edge, no triangles are formed during the graph generation process, making
the resulting networks less realistic for modelling PPI networks.

Figures A4 and A5 show the effect of p in simulations from the DD model without
and with node loss, respectively, starting with a single edge, for different attacks. We notice
that for both models, the relative behaviour between strong and weak attacks remains
unchanged for different values of p and the starting configuration of the simulations.

Figure A4. Effect of p when applying complete or weak knockout attacks on simulated networks
from the duplication–divergence model starting with an edge.

Figure 7 in the main text gives the results for simulations from the new node loss model
starting with a triangle, with q = 0.2 and p = 0.4. Figure A6 shows similar behaviour when
the model starts with a single edge and weakly attacks a greater number of nodes, namely
that partial attacks can generate greater damage to networks than complete knockout
attacks as the number of targeted nodes increases, while distributed attacks are less efficient
than complete and partial attacks. Moreover, weak attacks show the same qualitative
behaviour as for the real PPI networks, see Figure 5.

A similar conclusion on the effect of weak attacks in the new node loss model starting
with an edge is obtained when q, the probability of node loss, equals 0.4, 0.6, and 0.8, as
shown in Figure A7. Figure A8 also shows that the qualitative behaviour is similar when
p = 0.2.
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Figure A5. Effect of p when applying complete or weak knockout attacks on simulated networks
from the node loss model starting with an edge, with q = 0.4.

Figure A6. Weak attacks on simulated networks from the new node loss model starting with an edge
where a node can be lost with probability q = 0.2, using a divergence rate p = 0.4. The graph is undirected
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and has unit edge weight. Edges selected for distributed attacks are drawn from a random distribution.
Top left: knockout attacks. Blue line: complete knockout; red line: partial knockout with all the
edges connected to two nodes being halved at each attack; green line: partial knockout with all the
edges connected to five nodes being halved at each attack; orange line: partial knockout with all
the edges connected to ten nodes being halved at each attack. Top right: attenuation attacks. Blue
line: complete knockout; red line: partial attenuation with all the edges connected to two nodes
being halved at each attack; green line: partial attenuation with all the edges connected to five
nodes being halved at each attack; orange line: partial attenuation with all the edges connected to
ten nodes being halved at each attack. Bottom left: distributed attacks, with edges drawn from a
random distribution; the horizontal line represents equivalent damage to the network achieved by
one complete knockout. Bottom right: distributed attenuation attacks, with the weight of edges
drawn from a random distribution to be halved; the horizontal line represents equivalent damage to
the network achieved by one complete knockout.

Figure A7. Weak attacks on simulated networks from the new node loss model starting with an edge;
p = 0.4, q = 0.6, or q = 0.8, respectively. All the graphs are undirected with unit edge weight. Edges
selected for distributed attacks are drawn from a random distribution.
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Figure A8. Weak attacks on simulated networks from the new node loss model starting with an
edge; p = 0.2 and q = 0.4. All the graphs are undirected with unit edge weight. Edges selected for
distributed attacks are drawn from a random distribution.

Appendix B.3. More Results for PPI Networks

Figure A9 shows that when the thresholds of STRING scores which are used to filter
E. coli and S. cerevisiae PPI networks are changed from 0.400 to 0.200 or 0.600, the qualitative
impact of complete and weak attacks on the datasets are the same.

Figure A9. Effect of thresholds of STRING scores when applying complete or weak knockout attacks
on real PPI networks, using the thresholds 0.200, 0.400, and 0.600.
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