
Citation: Tang, H.; Liu, H.; Jin, S.; Liu,

W.; Sun, Q. On Matrix Representation

of Extension Field GF(pL) and Its

Application in Vector Linear Network

Coding. Entropy 2024, 26, 822.

https://doi.org/10.3390/e26100822

Academic Editors: Boris Ryabko and

Jun Chen

Received: 30 July 2024

Revised: 8 September 2024

Accepted: 24 September 2024

Published: 26 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On Matrix Representation of Extension Field GF(pL) and Its
Application in Vector Linear Network Coding
Hanqi Tang , Heping Liu, Sheng Jin, Wenli Liu and Qifu Sun *

School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China; tanghanqi1009@ustb.edu.cn (H.T.); 13121778655@163.com (H.L.);
13735677295@163.com (S.J.); lilyaccount00@163.com (W.L.)
* Correspondence: qfsun@ustb.edu.cn

Abstract: For a finite field GF(pL) with prime p and L > 1, one of the standard representations is L× L
matrices over GF(p) so that the arithmetic of GF(pL) can be realized by the arithmetic among these
matrices over GF(p). Based on the matrix representation of GF(pL), a conventional linear network
coding scheme over GF(pL) can be transformed to an L-dimensional vector LNC scheme over GF(p).
Recently, a few real implementations of coding schemes over GF(2L), such as the Reed–Solomon (RS)
codes in the ISA-L library and the Cauchy-RS codes in the Longhair library, are built upon the classical
result to achieve matrix representation, which focuses more on the structure of every individual
matrix but does not shed light on the inherent correlation among matrices which corresponds to
different elements. In this paper, we first generalize this classical result from over GF(2L) to over
GF(pL) and paraphrase it from the perspective of matrices with different powers to make the inherent
correlation among these matrices more transparent. Moreover, motivated by this correlation, we can
devise a lookup table to pre-store the matrix representation with a smaller size than the one utilized
in current implementations. In addition, this correlation also implies useful theoretical results which
can be adopted to further demonstrate the advantages of binary matrix representation in vector
LNC. In the following part of this paper, we focus on the study of vector LNC and investigate the
applications of matrix representation related to the aspects of random and deterministic vector LNC.

Keywords: vector linear network coding; matrix representation; finite field

1. Introduction

The finite fields GF(pL) with a prime of p and an integer of L ≥ 1 have been widely
used in modern information coding, information processing, cryptography, and so on.
Specifically, in the study of linear network coding (LNC), conventional LNC [1] transmits
data symbols along the edges over GF(pL), and every outgoing edge of a node v transmits
a data symbol that is a GF(pL)-linear combination of the incoming data symbols to v. A
general LNC framework called vector LNC [2] models the data unit transmitted along every
edge as an L-dimensional vector of data symbols over GF(p). Correspondingly, the coding
operations at v involve GF(p)-linear combinations of all data symbols in incoming data
unit vectors and are naturally represented by L× L matrices over GF(p).

Recently, many works [3–7] have shown that vector LNC has the potential to reduce
extra coding overheads in networks relative to conventional LNC. In order to achieve
vector LNC, a matrix representation of GF(pL) [8] is L× L matrices over GF(p) so that the
arithmetic of GF(pL) can be realized by the arithmetic among these matrices over GF(p).
Based on the matrix representation of GF(pL), a conventional LNC scheme over GF(pL)
can be transformed to an L-dimensional vector LNC scheme over GF(p). In addition to
the theory of LNC, many existing implementations of linear codes, such as the Cauchy-RS
codes in the Longhair library [9] and the RS codes in the Jerasure library [10,11] and the
latest release of the ISA-L library [12], also practically achieve arithmetic over GF(2L) using
matrix representation.

Entropy 2024, 26, 822. https://doi.org/10.3390/e26100822 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26100822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7248-5500
https://orcid.org/0000-0003-3213-1569
https://doi.org/10.3390/e26100822
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26100822?type=check_update&version=1


Entropy 2024, 26, 822 2 of 12

In order to achieve the matrix representation of GF(pL), a classical result obtained
in [13] relies on polynomial multiplications to describe the corresponding matrix of an
element over GF(2L). A number of current implementations and studies (see, e.g., [9–15])
utilize such a characterization to achieve the matrix representation of GF(2L). However,
the characterization in the present form focuses more on the structure of every individual
matrix and does not shed light on the inherent correlation between matrices that corre-
sponds to different elements. As a result, in the aforementioned existing implementations,
the corresponding binary matrix is either independently computed on demand or fully
stored in a lookup table as an L× L matrix over GF(2) in advance.

In the first part of this paper, we shall generalize the characterization of matrix rep-
resentation from over GF(2L) to over GF(pL) and paraphrase it from the perspective of
matrices with different powers so that the inherent correlation among these matrices will be-
come more transparent. More importantly, this correlation motivates us to devise a lookup
table to pre-store the matrix representation with a smaller size. Specifically, compared to
the one adopted in the latest release of the ISA-L library [12], the table size is reduced by a
factor of 1/L. Additionally, this correlation also implies useful theoretical results that can
be adopted to further demonstrate the advantages of binary matrix representation in vector
LNC. In the second part, we focus on the study of vector LNC and show the applications of
matrix representation related to the aspects of random and deterministic coding. In random
coding, we theoretically analyze the coding complexity of conventional and vector LNC
via matrix representation under the same alphabet size 2L. The comparison results show
that vector LNC via matrix representation can reduce at least half of the coding complexity
to achieve multiplications. Then, in deterministic LNC, we focus on the special choice of
coding operations that can be efficiently implemented. In particular, we illustrate that the
choice of primitive polynomial can influence the distributions of matrices with different
numbers of non-zero entries and propose an algorithm to obtain a set of sparse matrices
that can be good candidates for the coefficients of a practical LNC scheme.

This paper is structured as follows. Section 2 reviews the mathematical fundamentals
of representations to an extension field GF(pL). Section 3 paraphrases the matrix represen-
tation from the perspective of matrices in different powers and then devises a lookup table
to pre-store the matrix representation with a smaller size. Section 4 focuses on the study of
vector LNC and shows the applications of matrix representation related to the aspects of
random and deterministic coding. Section 5 summarizes this paper.

Notation. In this paper, every bold symbol represents a vector or a matrix. In particular,
IL refers to the identity matrix of size L, and 0, 1, respectively, represent an all-zero or
all-one matrix, whose size, if not explicitly explained, can be inferred in the context.

2. Preliminaries

In this section, we review three different approaches to express an extension field
GF(pL) with pL elements, where p is a prime. The first approach is the standard polynomial
representation. Let p(x) denote an irreducible polynomial of degree L over GF(p) and α be a
root of p(x). Every element of GF(pL) can be uniquely expressed as a polynomial in α over
GF(p) with a degree less than L, and {1, α, α2, . . . , αL−1} forms a basis GF(pL) over GF(p).
In particular, every β ∈ GF(pL) can be uniquely represented in the form of ∑L−1

l=0 vlα
l with

vl ∈ GF(p). In the polynomial representation, the element β = ∑L−1
l=0 vlα

l is expressed as
the L-dimensional representative vector vβ = [v0 v1 . . . vL−1]β over GF(p). In order to further

simplify this expression, vβ can be written as the integer 0 ≤ dpoly
β ≤ pL − 1 such that

dpoly
β =

L−1

∑
l=0

pl v̂l , (1)

where 0 ≤ v̂l < p is the integer representation of vl , that is, ∑v̂l
i=1 1 = vl where 1 is to be the

multiplicative unit of GF(p).



Entropy 2024, 26, 822 3 of 12

The second approach is called the generator representation, which further requires
p(x) to be a primitive polynomial such that α is a primitive element, and all pL − 1 non-
zero elements in GF(pL) can be generated as α0, α1, α2, . . . , αpL−2. Thus, every non-zero
β ∈ GF(pL)\0 is uniquely expressed as the integer 0 ≤ dgen

β ≤ pL − 2 subject to

β = α
dgen

β . (2)

The polynomial representation clearly specifies the additive structure of GF(pL) as a vector
space or a quotient ring of polynomials over GF(p) while leaving the multiplicative structure
hard to determine. Meanwhile, the generator representation explicitly illustrates the cyclic
multiplicative group structure of GF(pL)\{0} without clearly demonstrating the additive
structure. It turns out that the addition operation and its inverse in GF(pL) are easy to
implement based on the polynomial representation, while the multiplicative operations and
its inverse in GF(pL) are easy to be implement based on the generator representation. In
particular, for β1, β2 ∈ GF(pL),

dpoly
β1+β2

= dpoly
β1
⊕ dpoly

β2
or equivalently vβ1+β2 = vβ1 + vβ2 (3)

dgen
β1β2

= (dgen
β1

+ dgen
β2

) mod pL − 1, (4)

where the operation ⊕ between two integers dpoly
β1

and dpoly
β2

means the component-wise
p-ary addition v1 + v2 between the p-ary expression v1, v2 of them. This is the key reason
that in practice both representations are always adopted interchangeably when conducting
operations in GF(pL).

Unfortunately, except for some special β ∈ GF(pL), such as αl , 0 ≤ l < L, there is not a
straightforward way to establish the mapping between dpoly

β and dgen
β without computation,

and a built-in lookup table is always adopted in practice to establish the mapping between
two types of representations. For instance, Table 1 lists the mapping between dpoly

β and dgen
β

for non-zero elements β in GF(23) with p(x) = x4 + x + 1.

Table 1. The mapping between dpoly
β and dgen

β for non-zero β in GF(24) with p(x) = x4 + x + 1.

dgen
β

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dpoly
β

1 2 4 8 3 6 12 11 5 10 7 14 15 13 9

By convention, elements β in GF(pL) are represented as dpoly
β . It takes L p-ary additions

to compute dβ1+β2 = dpoly
β1
⊕ dpoly

β1
. Based on the lookup table, it takes 3 lookups (which,

respectively, map dpoly
β1

, dpoly
β2

to dgen
β1

, dgen
β2

and dgen
β1β2

to dpoly
β1β2

), 1 integer addition, and at most

1 modulo pL − 1 operation to compute dpoly
β1β2

= dpoly
β1

dpoly
β2

. Meanwhile, it is worthwhile to

note that the calculation of dpoly
β1β2

= dpoly
β1

dpoly
β2

without the table follows the multiplication of
polynomials f1(x) and f2(x) with coefficient vectors vβ1 and vβ2 , respectively, and finally
falls into

f1(x) f2(x) modulo p(x), (5)

where the computational complexity compared with the following matrix representation
will be fully discussed in Section 4.

The third approach, which is the focus of this paper, is given by means of matrices
called the matrix representation [8]. Let C be the L× L companion matrix of an irreducible
polynomial p(x) of degree L over GF(p). In particular, if p(x) = a0 + a1x + a2x2 + . . . +
aL−1xL−1 + xL with a0, a1, . . . , aL−1 ∈ GF(p),



Entropy 2024, 26, 822 4 of 12

C =


0 −a0

IL−1

−a1
. . .
−aL−1


L×L

. (6)

It can be easily verified that p(x) is the characteristic polynomial of C, and according
to the Cayley–Hamilton theorem, p(C) = 0. As a result, {IL, C, C2, · · · , CL−1} forms
a basis of GF(pL) over GF(p), and for every β ∈ GF(pL) with the representative vector
vβ = [v0 v1 . . . vL−1]

T based on the polynomial representation, the matrix representation
M(β) of β is defined as

M(β) = ∑L−1
i=0 viCi. (7)

If the considered p(x) further qualifies as a primitive polynomial, then similar to the role of
the primitive element α defined above, C is also a multiplicative generator of all non-zero
elements in GF(pL), that is, M(αi) = Ci for all 0 ≤ i ≤ pL − 2. One advantage for the
matrix representation is that all operations in GF(pL) can be realized by matrix operations
over GF(p) among the matrices in C such that there is no need to interchange between the
polynomial and the generator representations in performing field operations. For more
detailed discussions of representation of an extension field, please refer to [16].

Based on the polynomial representation and generator representation, even though
the arithmetic over GF(pL) can be efficiently realized by (3), (4) and a lookup table, it
requires two different types of calculation systems, i.e., one over GF(p) and the other
over integers. This hinders the deployment practicality in applications with resource-
constrained edge devices, such as in ad hoc networks or Internet of Things applications. In
comparison, the matrix representation of GF(pL) interprets the arithmetic of GF(pL) solely
over the arithmetic over GF(p), so it is also a good candidate for realization of the efficient
implementation of linear codes over GF(pL) such as in [9–13].

3. Useful Characterization of the Matrix Representation

Let p(x) be a defined irreducible polynomial over GF(p) of degree L and let α ∈ GF(pL)
be a root of p(x). When p = 2, a useful characterization of the matrix representation M(β)
of β ∈ GF(pL) (with respect to p(x)) can be deduced based on the following classical result
obtained in Construction 4.1 and Lemma 4.2 of [13]: For 1 ≤ j ≤ L, the jth column in
M(β) is equal to the binary expression of αj−1β based on the polynomial representation.
A number of implementations and studies (see, e.g., [9–15]) of linear codes utilize such
characterization to achieve the matrix representation of GF(2L). However, the characteri-
zation in the present form relies on polynomial multiplications and focuses more on the
structure of every individual M(β). It does not explicitly shed light on the inherent correla-
tion among M(β) of different β ∈ GF(2L). It turns out that in existing implementations,
such as the Cauchy-RS codes in the Longhair library [9] and the RS codes in the Jerasure
library [10,11], and the latest release of ISA-L library [12], M(β) is either independently
computed on demand or fully stored in a lookup table as an L × L matrix over GF(2)
in advance.

In this section, we shall generalize the characterization of matrix representation from
over GF(2L) to over GF(pL) and paraphrase it based on the interplay with the generator
representation instead of the conventional polynomial representation so that the correlation
among M(β) of different β ∈ GF(pL) will become more transparent. From now on, we
assume that p(x) is further qualified to be a primitive polynomial such that α is a prim-
itive element in GF(pL). For simplicity, let vi, 0 ≤ i ≤ pL − 2, denote the representative
(column) vector of αi based on the polynomial representation. Then, the following theorem
asserts that the matrix representation M(αi) = Ci consists of L representative vectors with
consecutive subscripts.



Entropy 2024, 26, 822 5 of 12

Theorem 1. For 0 ≤ i ≤ pL − 2, the matrix representation M(αi) = Ci can be written as follows:

Ci =
[
vi vi+1 · · · vi+L−1

]
. (8)

As CpL−1 = IL, we omit the modulo-(pL − 1) expressions on the exponent of C and subscript of v
throughout this paper for brevity.

Proof. First, the matrix Ci can be characterized by multiplication iterations based on (6) as
follows. When 2 ≤ i ≤ L,

Ci =


U

−a0 p(1)0 p(2)0 · · · p(i−1)
0

−a1 p(1)1 p(2)1 · · · p(i−1)
1

...
...

...
. . .

...
−aL−2 p(1)L−2 p(2)L−2 · · · p(i−1)

L−2

−aL−1 p(1)L−1 p(2)L−1 · · · p(i−1)
L−1


, (9)

where L× (L− i) matrix U =

[
0

IL−i

]
. Further, when L + 1 ≤ i ≤ pL − 2,

Ci =



p(i−L)
0 p(i−L+1)

0 · · · p(i−1)
0

p(i−L)
1 p(i−L+1)

1 · · · p(i−1)
1

...
...

. . .
...

p(i−L)
L−2 p(i−L+1)

L−2 · · · p(i−1)
L−2

p(i−L)
L−1 p(i−L+1)

L−1 · · · p(i−1)
L−1


. (10)

The entries in (9) and (10) iteratively qualify

p(1)0 = −a0aL−1, p(1)j = aj−1 − ajaL−1, 1 ≤ j ≤ L− 1 (11)

and

p(k)0 = −a0 p(k−1)
L−1 ,

p(k)j = p(k−1)
j−1 − aj p

(k−1)
L−1 , 1 ≤ j ≤ L− 1, 2 ≤ k ≤ i− 1.

(12)

When i = 0, it can be easily checked that each vector in {v0, v1, v2, . . . , vL−1} is a
unit vector such that the only non-zero entry 1 of vi locates at (i + 1)th row. Therefore,
C0 = IL = [v0, v1, v2, . . . , vL−1], and (8) holds. When i = 1, consider vL with p(C) = 0, i.e.,

a0IL + a1C + a2C2 + . . . + aL−1CL−1 + CL = 0. (13)

Obviously, vL =
[
−a0 −a1 . . . −aL−1

]T and (8) holds.
Assume when i = m, (8) holds, i.e., Cm =

[
vm vm+1 · · · vm+L−1

]
. The Lth

column vector
[

p(m−1)
0 p(m−1)

1 . . . p(m−1)
L−1

]T
of Cm based on (9) corresponds to the

representative vector of Cm+L−1, that is, the matrix Cm+L−1 is equal to

p(m−1)
0 IL + p(m−1)

1 C + . . . + p(m−1)
L−2 CL−2 + p(m−1)

L−1 CL−1 (14)

It remains to prove, by induction, that Cm+1 =
[
vm+1 vm+2 · · · vm+L

]
. As the column

vectors indexed from 1th to (L− 1)th of matrix Cm+1 are exactly same as the ones indexed



Entropy 2024, 26, 822 6 of 12

from 2th to Lth of Cm, it suffices to show that the Lth column vector of Cm+1 corresponds
to vm+L. The following is based on (13) and (14):

Cm+L = p(m−1)
0 C + p(m−1)

1 C2 + . . . + p(m−1)
L−2 CL−1 + p(m−1)

L−1 CL

= p(m−1)
0 C + p(m−1)

1 C2 + . . . + p(m−1)
L−2 CL−1 − p(m−1)

L−1 (a0IL + . . . + aL−1CL−1)

= −a0 p(m−1)
L−1 IL + (p(m−1)

0 − a1 p(m−1)
L−1 )C + . . . + (p(m−1)

L−2 − aL−1 p(m−1)
L−1 )CL−1.

It can be easily checked that p(m)
0 and p(m)

j with 1 ≤ j ≤ L− 1 in Cm+1 calculated by (12)

exactly consist of the representative vector of Cm+L, i.e., vm+L. This completes the proof.

The above theorem draws an interesting conclusion that every non-zero matrix in C
is composed of L representative vectors. Specifically, the first column vector of the matrix
representation Ci is the representative vector of αi, and its jth column vector, 1 ≤ j ≤ L,
corresponds to the representative vector of αi+j−1. For the case p = 2, even though the
above theorem is essentially same as Construction 4.1 and Lemma 4.2 in [13], its expression
with the interplay of generator representation allows us to further devise a lookup table to
pre-store the matrix representation with a smaller size.

In this table, we store pL representative vectors with table size L× pL and arrange them
based on the power order of α with 0 ≤ i ≤ pL − 2. Note that the first column of matrix Ci

can be indexed by vector vi or (i + 1)th column in this table, and the remaining columns of
Ci can be obtained via subsequent L− 1 column vectors based on Theorem 1. As a result,
although this table only stores pL vectors, it contains the whole matrix representations of
GF(pL) due to the inherent correlation among Ci. The following Example 1 shows the
explicit lookup table of GF(24) as an example.

Example 1. Consider the field GF(24) and primitive polynomial p(x) = 1 + x + x4 over GF(2).
The companion matrix C is written as follows:

C =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

.

Then, the lookup table to store matrix representation Ci with 0 ≤ i ≤ 14 is shown in Figure 1. In
this figure, the solid “window” that currently represents the matrix C can be slid to the right or left
to generate Ci with different i; meanwhile, the dashed box shows the cyclic property based on cyclic
group {I4 = C15, C, C2, · · · , C14}.

Figure 1. The lookup table to store the matrix representation Ci with 0 ≤ i ≤ 14 for the field GF(24)
and primitive polynomial p(x) = 1 + x + x4.



Entropy 2024, 26, 822 7 of 12

Recall that in the lookup table of the matrix representation adopted in the latest release
of the ISA-L library [12], the matrix representation of every element in GF(pL) needs to
be stored, so a total of L2 pL p-ary elements need to be pre-stored. Compared with that,
only an L× pL p-ary matrix needs to be stored in the new lookup table, so the table size is
reduced by a factor of 1/L. Moreover, Theorem 1 implies the following useful corollaries of
the matrix representation C = {0, C0, C1, · · · , CpL−2} of GF(pL).

Corollary 1. Every vector in the vector space GF(p)L exactly occurs L times as a column vector in
matrices of C.

Proof. As {IL, C, C2, · · · , CL−1} forms a polynomial basis of GF(pL) over GF(p), the repre-
sentative vectors of matrices in C are distinct. Consider a function f : {Ci} → {vi}. It can
be easily checked that f is bijective, and vi exactly corresponds to the jth column vector
of Ci−j+1 with 1 ≤ j ≤ L. The zero vector of length L simply occurs L times in L × L
matrix 0.

Corollary 2. For every GF(pL), regardless of the choice of the primitive polynomial p(x), the total
number of zero entries in C remains unchanged as L2 pL−1.

The above two corollaries will be adopted to further demonstrate the advantages of
binary matrix representation in vector LNC with C.

4. Applications of Matrix Representation in Vector LNC

In this section, we focus on the study of vector LNC with binary matrices C and show
the applications of matrix representation related to the aspects of random and determinis-
tic coding.

4.1. Computational Complexity Comparison in Random LNC

Herein, the coding coefficients of random LNC are randomly selected from GF(2L),
which can provide a distributed and asymptotically optimal approach for information
transmission, especially in unreliable or topologically unknown networks, such as wireless
broadcast networks [17] or ad hoc network [18]. Recall that in polynomial and generator
representations, the multiplication over GF(2L) based on a lookup table requires two differ-
ent types of calculation systems, so this table may not be utilized in resource-constrained
edge devices. Therefore, under the same alphabet size 2L, we first theoretically compare the
random coding complexity between conventional LNC over {β = ∑L−1

l=0 vlα
l} and vector

LNC over C without lookup table, from the perspective of required binary operations.
To keep the same benchmark for complexity comparison, we adopt the following as-

sumptions.

• We assume that an all-1 binary vector m as information will multiply 2L − 1 non-zero
coding coefficients selected from {β = ∑L−1

l=0 vlα
l} and C, which can be simulated as

encoding process. The complexity is the total number of binary operations that 2L − 1
multiplications take.

• We shall ignore the complexity of a shifting or permutation operation on the binary
vector m, which can be efficiently implemented.

• We only consider the standard implementation of multiplication in GF(2L) by poly-
nomial multiplication modulo and primitive polynomial p(x) = a0 + a1x + · · · +
aL−1xL−1 + xL with η non-zero ai, 0 ≤ i ≤ L − 1, instead of considering other ad-
vanced techniques such as the FFT algorithm [19].



Entropy 2024, 26, 822 8 of 12

We first consider the encoding scheme with coefficients selected from {β = ∑L−1
l=0 vlα

l}.
Assume that α is a root of p(x) and every element β in GF(2L) can be expressed as g(α),
where g(x) represents a polynomial over GF(2) with a degree less than L. An all-1 binary
information vector m can be expressed as αL−1 + αL−2 + · · ·+ α2 + α+ 1. We can divide the
whole encoding process into two parts: multiplication and addition. In the multiplication
part, the complexity of shifting operations is ignored, and one polynomial mαi in mg(α) will
modulo p(x) i times and take iη binary operations. Because every αi, 1 ≤ i ≤ L− 1 occurs
2L−1 times among all g(α) in GF(2L), it will take ∑1≤i≤L−1 iη × 2L−1 binary operations
to compute mαi. In the addition part, it takes (j− 1)L binary operations to compute the
additions between j binary vectors mαi with distinct i. Note that the number of distinct
g(α) with j non-zero terms is (L

j ) in GF(2L). Therefore, the traverse of g(α) will take an

extra ∑1≤j≤L (
L
j )× (j− 1)L binary additions to compute mg(α). In total, the complexity of

this scheme is shown as follows:

∑
1≤i≤L−1

i(η × 2L−1 + L×
(

L
i + 1

)
). (15)

Next, we consider the encoding scheme with coefficients selected from C, whose
complexity of encoding process depends on the total number of 1 in Ci with 0 ≤ i ≤ 2L − 2.
In this framework, it is worthwhile to note that every Ci in C is full-rank and can extract a
permutation matrix. Since the complexity of permutational operations is ignored, based on
Proposition 2, the complexity of encoding process over C is shown as follows:

L2 × 2L−1 − L× (2L − 1) = 2L−1(L2 − 2L) + L. (16)

For any primitive polynomial p(x), η ≥ 2. With 3 ≤ L ≤ 12, Table 2 lists the average
number of binary operations per symbol in two schemes. Specifically, every value calculated
by Equation (15) and (16) has divided the alphabet size 2L, and we can find that in random
coding, the vector LNC via matrix representation can theoretically reduce at least half of
the coding complexity to achieve multiplications under the same alphabet size 2L.

Table 2. Average number of binary operations per symbol with parameter η = 2.

L 3 4 5 6 7 8 9 10 11 12

C 1.88 4.25 7.66 12.09 17.55 24.03 31.52 40.01 49.51 60.01

∑L−1
l=0 vlα

l 4.88 10.25 17.66 27.09 38.55 52.03 67.52 85.01 104.51 126.01

rate 38.5% 41.5% 43.3% 44.6% 45.5% 46.2% 46.7% 47.1% 47.3% 47.6%

4.2. The Special Choices of Binary p(x) and Sparse Ci

In addition to the random coding, a deterministic LNC where we pay a broader
concern to reduce the computational complexity can also carefully design some special
coding operations which can be efficiently implemented, such as circular shift [5,6] or
permutation [7]. In this subsection, different from random choice of coefficients, we will
carefully design the choices of binary primitive polynomial p(x) and sparse matrices Ci

in C based on the unveiled properties in Sec. III. We illustrate that the choice of p(x) can
influence the distributions of matrices Ci with different numbers of non-zero entries. Then,
based on a proper p(x), an algorithm is proposed to obtain a subset of C, which contains a
series of relatively sparse matrices in C.

When p = 2, the entries in representative vectors based on Equation (11) and (12) will,
respectively, degenerate as follows:



Entropy 2024, 26, 822 9 of 12

p(1)0 = aL−1,

p(1)j = aj−1 + ajaL−1 = aj−1 + aj p
(1)
0 , 1 ≤ j ≤ L− 1.

(17)

and

p(k)0 = p(k−1)
L−1 ,

p(k)j = p(k−1)
j−1 + aj p

(k−1)
L−1 = p(k−1)

j−1 + aj p
(k)
0 , 1 ≤ j ≤ L− 1, 2 ≤ k ≤ i− 1.

(18)

with a0 must be 1 in p(x). Based on the above two equations, consider two adjacent repre-
sentative vectors vk−1 and vk. When the last entry p(k−1)

L−1 in vk−1 is equal to 0, the entries in
vk follow

p(k)0 = 0, p(k)j = p(k−1)
j−1 , 1 ≤ j ≤ L− 1,

which means that vk can be generated by downward circular shift to vk−1. When the last
entry p(k−1)

L−1 equals 1, the entries in vk follow

p(k)0 = 1, p(k)j = p(k−1)
j−1 + aj, 1 ≤ j ≤ L− 1.

Therefore, the difference between vk−1 and vk in Hamming weight is no more than η − 1,
where η represents the number of non-zero ai, 0 ≤ i ≤ L− 1 in primitive polynomial p(x).

Note that for the matrix representation of every GF(2L), the total number of 1 in C
is always L2 × 2L−1 regardless of the choice of binary p(x). However, the value of η will
influence the distributions of sparse matrices in C. Based on (17) and (18), we can intuitively
deduce that with smaller η, the sparse matrices in C will be more concentrated distribution.
Since the identity matrix IL with L non-zero entries is the sparsest full-rank matrix, we
utilize Algorithm 1 to choose 2L−s matrices in C, which can be good candidates as coding
coefficients of a practical coding scheme over GF(2L).

Algorithm 1 The choice of sparse matrices over GF(2L)

Initialize S as an empty set of L× L binary matrix
S← 0
S← IL
generate matrix C based on p(x)
generate matrix C−1 based on Equation (18)
define matrix Ĉ = C
define matrix Ĉ−1 = C−1

define integer s < L: the required size of Cs
for i = 1 : 2L−s−1 − 1

S← Ĉ
S← Ĉ−1

Ĉ = Ĉ× C
Ĉ−1 = Ĉ−1 × C−1

i = i + 1
end
return S

In Algorithm 1, the multiplications using C or C−1 can be easily achieved by sliding
the “window” right or left, respectively, as shown in Figure 1. Let Cs denote this subset
of C and the 2L−s matrices in Cs can be written as {0, IL, Ci, C−i} with 1 ≤ i ≤ 2L−s−1 − 1.
Then, Table 3 lists the ratio of the total number of 1 between Cs and C with s = 1, 2. We can
find that the 2L−s matrices, which are special choices using Algorithm 1, indeed contain
less 1 than the other matrices in C.



Entropy 2024, 26, 822 10 of 12

Table 3. Ratio of total numbers of 1 between Cs and C.

L p(x) η s = 1 s = 2

3 X3 + X + 1 2 0.3056 0.0833

4 X4 + X + 1 2 0.3438 0.1094

5 X5 + X2 + 1 2 0.3800 0.1200

6 X6 + X + 1 2 0.4410 0.1372

7 X7 + X + 1 2 0.4585 0.1987

8 X8 + X4 + X3 + X2 + 1 4 0.4635 0.2235

9 X9 + X4 + 1 2 0.4777 0.2148

10 X10 + X3 + 1 2 0.4950 0.2382

11 X11 + X2 + 1 2 0.4898 0.2325

12 X12 + X6 + X4 + X + 1 4 0.4977 0.2421

13 X13 + X4 + X3 + X + 1 4 0.4906 0.2469

14 X14 + X5 + X3 + X + 1 4 0.4975 0.2500

15 X15 + X + 1 2 0.4979 0.2462

16 X16 + X5 + X3 + X2 + 1 4 0.4978 0.2490

Moreover, in Figure 2, we numerically analyze the relationship between the number of
1 in each matrix and the corresponding number of matrices under the alphabet size 212. For
all candidates of binary primitive polynomials, we choose four representative p(x) with
different η = 4, 6, 8, 10 and the specific polynomials are shown as follows:

p1(x) = x12 + x6 + x4 + x1 + 1

p2(x) = x12 + x7 + x6 + x5 + x3 + x1 + 1

p3(x) = x12 + x8 + x7 + x6 + x4 + x3 + x2 + x1 + 1

p4(x) = x12 + x10 + x9 + x8 + x7 + x5 + x4 + x3 + x2 + x1 + 1

As all the matrices in C are full-rank, the value range of the x-axis should be [12, 132],
and we restrict it to [40, 100] to highlight the distributions. These four curves illustrate that
with η increasing, the distribution variance of the number of 1 in a matrix will decrease,
that is, the number of matrices with an average number of 1, i.e., 70–80, will increase and
the number of relatively sparse or dense matrices will decrease. As a result, a smaller η
of p(x) not only infers a more concentrated distribution but also more amounts for sparse
matrices in C; then, we can select parameter s according to practical requirements and
obtain Cs using Algorithm 1.

40 50 60 70 80 90 100

number of 1 in a matrix

0

50

100

150

200

250

n
u

m
b

e
r 

o
f 

m
a

tr
ix

 = 4

 = 6

 = 8

 = 10

Figure 2. The distribution of sparse matrices in C with different η = 4, 6, 8, 10.



Entropy 2024, 26, 822 11 of 12

5. Conclusions

Compared with the classical result, the paraphrase of matrix representation in this
paper focuses more on inherent correlation among matrices and a lookup table to pre-
store the matrix representation with a smaller size is devised. This work also identifies
that the total number of non-zero entries in C is a constant number, which motivates
us to demonstrate the advantages of binary matrix representation in vector LNC. In the
applications of matrix representation, we first theoretically demonstrate the vector LNC
via matrix representation can reduce at least half of the coding complexity compared with
conventional one over GF(2L). Then, we illustrate the influence of η, i.e., the number of
non-zero item in p(x), on the amounts and distributions of sparse matrices in C and propose
an algorithm to obtain sparse matrices which can be good candidates as coding coefficients
of a practical vector LNC scheme.

Author Contributions: Methodology, H.T.; Software, S.J.; Writing—original draft, H.T.; Writing—
review & editing, H.L.; Visualization, W.L.; Supervision, Q.S.; Funding acquisition, Q.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
under Grants U22A2005, 62101028 and 62271044, and by the Fundamental Research Funds for the
Central Universities under Grant FRF-TP-22-041A1.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, S.-Y.R.; Yeung, R.W.; Cai, N. Linear network coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [CrossRef]
2. Ebrahimi, J.B.; Fragouli, C. Algebraic algorithm for vecor network coding. IEEE Trans. Inf. Theory 2011, 57, 996–1007. [CrossRef]
3. Sun, Q.T.; Yang, X.; Long, K.; Yin, X.; Li, Z. On vector linear solvability of multicast networks. IEEE Trans. Commun. 2016, 64,

5096–5107. [CrossRef]
4. Etzion, T.; Wachter-Zeh, A. Vector network coding based on subspace codes outperforms scalar linear network coding. IEEE

Trans. Inf. Theory 2018, 64, 2460–2473. [CrossRef]
5. Tang, H.; Sun, Q.T.; Li, Z.; Yang, X.; Long, K. Circular-shift linear network coding. IEEE Trans. Inf. Theory 2019, 65, 65–80.

[CrossRef]
6. Sun, Q.T.; Tang, H.; Li, Z.; Yang, X.; Long, K. Circular-shift linear network codes with arbitrary odd block lengths. IEEE Trans.

Commun. 2019, 67, 2660–2672. [CrossRef]
7. Tang, H.; Zhai, Z.; Sun, Q.T.; Yang, X. The multicast solvability of permutation linear network coding. IEEE Commun. Lett. 2023,

27, 105–109. [CrossRef]
8. Wardlaw, W.P. Matrix representation of finite field. Math. Mag. 1994, 67, 289–293. [CrossRef]
9. Longhair: O(N2) Cauchy Reed-Solomon Block Erasure Code for Small Data. 2021. Available online: https://github.com/catid/

longhair (accessed on 1 July 2024).
10. Plank, J.S.; Simmerman, S.; Schuman, C.D. Jerasure: A Library in c/c++ Facilitating Erasure Coding for Storage Applications,

Version 1.2; Technical Report CS-08-627; University of Tennessee: Knoxville, TN, USA, 2008.
11. Luo, J.; Shrestha, M.; Xu, L.; Plank, J.S. Efficient encoding schedules for XOR-based erasure codes. IEEE Trans. Comput. 2014, 63,

2259–2272. [CrossRef]
12. Intel® Intelligent Storage Acceleration Library. 2024. Available online: https://github.com/intel/isa-l/tree/master/erasurecode

(accessed on 1 June 2024 ).
13. Blomer, J.; Kalfane, M.; Karp, R.; Karpinski, M.; Luby, M.; Zuckerman, D. An XOR-Based Erasure-Resilient Coding Scheme; Technical

Report TR-95-048; University of California at Berkeley: Berkeley, CA, USA, 1995.
14. Plank, J.S.; Xu, L. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications. In Proceedings of

the Fifth IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 24–26 July 2006;
pp. 173–180.

15. Zhou, T.; Tian, C. Fast erasure coding for data storage: A comprehensive study of the acceleration techniques. ACM Trans. Storage
(TOS) 2020, 16, 1–24. [CrossRef]

16. Lidl, R.; Niederreiter, H. Finite Fields, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997.

http://doi.org/10.1109/TIT.2002.807285
http://dx.doi.org/10.1109/TIT.2010.2094930
http://dx.doi.org/10.1109/TCOMM.2016.2613085
http://dx.doi.org/10.1109/TIT.2018.2797183
http://dx.doi.org/10.1109/TIT.2018.2832624
http://dx.doi.org/10.1109/TCOMM.2018.2890260
http://dx.doi.org/10.1109/LCOMM.2022.3210653
http://dx.doi.org/10.1080/0025570X.1994.11996233
https://github.com/catid/longhair
https://github.com/catid/longhair
http://dx.doi.org/10.1109/TC.2013.23
https://github.com/intel/isa-l/tree/master/erasure code
http://dx.doi.org/10.1145/3375554


Entropy 2024, 26, 822 12 of 12

17. Su, R.; Sun, Q.T.; Zhang, Z. Delay-complexity trade-off of random linear network coding in wireless broadcast. IEEE Trans.
Commun. 2020, 68, 5606–5618. [CrossRef]

18. Asterjadhi, A.; Fasolo, E.; Rossi, M.; Widmer, J.; Zorzi, M. Toward network coding-based protocols for data broadcasting in
wireless ad hoc networks. IEEE Trans. Wirel. Commun. 2010, 9, 662–673. [CrossRef]

19. Gao, S.; Mateer, T. Additive fast Fourier transforms over finite fields. IEEE Trans. Inf. Theory 2010, 56, 6265–6272. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCOMM.2020.3001133
http://dx.doi.org/10.1109/TWC.2010.02.081057
http://dx.doi.org/10.1109/TIT.2010.2079016

	Introduction
	Preliminaries
	Useful Characterization of the Matrix Representation
	Applications of Matrix Representation in Vector LNC
	Computational Complexity Comparison in Random LNC
	The Special Choices of Binary p(x) and Sparse Ci

	Conclusions
	References 

