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Abstract: This paper proposes an improved progressive edge-growth (PEG) construction of analog
fountain codes (AFCs). During edge selection, it simultaneously allocates weight coefficients in
descending order. Analysis shows that our proposed construction reduces the probability of large
weight coefficients involved in harmful short cycles. Simulation results indicate that it has good block
error rate (BLER) in short block length regime.
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1. Introduction

With the emergence of applications such as intelligent transportation, tele-surgery,
and industrial automation, three main service categories are defined in the fifth generation
(5G) mobile network. Among these, ultra-reliable low latency communication (URLLC)
poses the most significant challenges due to its physical layer design [1]. URLLC requires a
short end-to-end latency, along with high reliability evaluated by block error rate (BLER).
These strict constraints impose stringent requirements for the design of channel coding in
short block length regime.

Recently, analog fountain codes (AFCs) [2–4], a type of rateless codes, have shown their
great potential to improve the latency and reliability while keeping bit-level granularity.
Several impressive studies [5–12] have explored the coding schemes and constructions of
AFCs to make them promising for URLLC. In [5], optimal AFC parameters were analyzed
and designed to minimize the bit error rate. In [7], a low-complexity weight-adaptive
AFC transmission scheme was proposed based on extrinsic information transfer (EXIT)
analysis. In [9], Bose–Chaudhuri–Hocquenghem (BCH) precoders were designed for AFCs
to improve performance for short packet communication. In [11], joint design of AFCs and
quasi-gray constellation mapping modulation was proposed, approaching the benchmark.
In [12], a short partitioned transmission strategy based on AFCs was proposed to further
enhance the error rate and latency performance.

AFC generator matrices construction involves two steps: edge selection and weight
coefficient allocation. In [2], the edges were selected to maximize the minimum variable
node (VN) degree of AFCs. Weight coefficients were allocated randomly. In [6], short
AFCs (S-AFCs) reduced error floors by processing these two steps according to a reliability
measure. In [8], Online AFC selected edges and allocated weight coefficients according
to feedback information, thereby enhancing reliability. Since short cycles deteriorate the
performance of the BP decoding, the PEG algorithm [13] was proposed to reduce short
cycles of low-density parity-check (LDPC) codes. In [10], an efficient coefficient progressive
edge-growth (WC-PEG) algorithm avoided short cycles to obtain good performance. It
selected weight coefficients in the same number of times in each column of generator matrix
to avoid reducing the rank of generator matrix.

In this paper, we show that large weight coefficients have high mutual information;
thus, they contribute most during the BP decoding. Therefore, it is important to avoid them
in short cycles, which may severely deteriorate the decoding performance. Note that PEG
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maximizes the cycle length, and the earlier selected edges are less likely to be involved in
short cycles. We propose to add edges and allocate their weight coefficients in descending
order simultaneously. To be specific, we select edges with the smallest reliability measure,
and allocate larger weight coefficients to earlier selected edges. Our analysis shows that the
proposed construction effectively decreases the probability that larger weight coefficients
are involved in short cycles. The simulation results show that it has higher reliability over
the existing constructions in short block length regime.

This paper is organized as follows. Section 2 presents the necessary background.
Section 3 discusses our proposed construction as well as the simulation results. Section 4
concludes the paper.

2. Analog Fountain Codes and the PEG Algorithm

In this section, encoding and decoding processes of AFCs are briefly introduced. Then,
PEG applied to AFC construction is reviewed.

2.1. Preliminaries of AFC

Consider an information sequence b′ comprising k information bits b′ i ∈ {0, 1},
where i = 0, 1, . . . , k− 1. b′ is binary phase shift keying (BPSK) modulated, resulting in
b = (b0, b1, . . . , bk−1), where bi ∈ {−1, 1}. Each AFC codeword c = {c0, c1, . . . , cn−1} is
then generated as

c = GbT. (1)

Here, G is the generator matrix:

G =


g0,0 g0,1 · · · g0,k−1
g1,0 g1,1 · · · g1,k−1

...
...

. . .
...

gn−1,0 gn−1,1 · · · gn−1,k−1

 (2)

and bT is the transpose of b. The corresponding Tanner graph is shown in Figure 1.
The degree d of AFC is defined as the number of nonzero elements in each row of

G. The d nonzero elements correspond to a predefined weight set W = {w0, w1, . . . , wd−1},
where w ∈W is called the weight coefficient. Without loss of generality, we set w0 > w1 >
· · · > wd−1 > 0.

After being transmitted through an additive white Gaussian noise (AWGN) channel,
r = c + n is received, where n is the noise vector with zero mean and variance σ2.

,,, , , , ,

Figure 1. The Tanner graph of an AFC.

At the receiver side, a simplified compressive sensing belief propagation (CS-BP)
decoder [14] is employed. The CS-BP decoder is a variant of the BP decoding which can be
used in compressive sensing and AFC. The decoding process is briefly reviewed as follows.
Let µv→c(bi) and µc→v(bi) denote the message transmitted from the VNs bi to check nodes
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(CNs) cj and vice versa, respectively. After a fixed number of iterations of µv→c(bi)
and

µc→v(bi), the marginal distribution f (bi) is obtained by

f (bi) = ∏
j∈Ji

µu→v(bi), (3)

where Ji denotes the set of CNs connected to bi. Then, the decoder outputs the hard
decision based on f (bi). More details of the CS-BP decoder can be reached in [14].

2.2. The PEG Algorithm

Short cycles on Tanner graphs may deteriorate the decoding performance of the
BP. Thus, the PEG [13] maximizes the cycle length in the Tanner graph by progressively
establishing edges between VNs and CNs in an edge-by-edge manner. VN degree is defined
as the number of nonzero elements in each column of G.

Suppose PEG is used to construct an n× k matrix G for AFC. For a given cj, where
0 ≤ j < n, we define its neighbor VNs within a depth l as Nl

cj
, and the remaining VNs are

denoted by Nl
cj

. If the subgraph from cj is fully expanded in depth l, two cases may happen.

The cardinality of Nl
cj

may stop increasing but
∣∣∣Nl

cj

∣∣∣ < k, or Nl
cj
̸= ∅ but Nl+1

cj = ∅. Let
(cj, bi) denote the edge connecting cj and bi. At last, the newly established edge is (cj, bi),

where bi is picked from the set Nl
cj

with the lowest VN degree. Note that length-r cycle

arises if Nl+1
cj = ∅, where r = 2(l + 1).

When PEG is used to construct generator matrices for AFC, both edge selection and
weight coefficients allocation should be considered. In [10], if the edge (cj, bi) is selected
according to PEG, the weight coefficients are suggested to be allocated according to their
appearance in the i-th column of G. Specifically, we calculate the times that each weight
coefficient appears among the nonzero elements in the i-th column. The one with the lowest
number of times should be allocated in order to balance the weight of columns in G.

3. Improved PEG-Based Construction

In this section, EXIT charts of different weight coefficients at CNs are shown. To avoid
large weight coefficients involved in short cycles, we propose to add edges and allocate their
weight coefficients simultaneously during edge selection. Analysis shows that the proposed
construction efficiently reduces the probability of larger weight coefficients involved in the
edges of short cycles.

3.1. EXIT Charts of Different Weight Coefficients

Different weight coefficients contribute differently in the decoding process at CNs. To
illustrate that, EXIT charts for various weight coefficients are presented below.

Let b = b0 ∪b1 ∪ · · · ∪bd−1 denote the information bits. Without loss of generality, for
each CN cj connected to d VNs bi0 , bi1 , · · · , bid−1

, let gis ,j = ws, where s ∈ {0, 1, · · · , d− 1}.
Then bis ∈ bs. In this way, information bits are divided into d parts, where bits in bs are
connected to CN through an edge allocated with ws.

Let IA,C and IEs,C denote the input mutual information and extrinsic mutual informa-
tion of the s-th weight coefficient for CN, respectively. For each bs, the mutual information
between bs and its corresponding log-likelihood ratio (LLR) value Ls computed at the CNs
is represented as

IEs,C = ∑
bs∈{−1,1}

∫ +∞

−∞
pE(Ls|bs)log2

pE(Ls|bs)

pE(bs)
dLs. (4)

Here, pE represents the conditional probability distribution function of Ls. As can be seen
in Equation (4), each calculation of IEs,C is based on bits bs and LLR Ls. It means that after
one decoding process at the CNs, CNs output extrinsic mutual information IEs,C to VNs
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which are connected through weight coefficients ws. It is difficult to compute pE directly
because of the convolution operation. Thus, the Monte Carlo methods are used to estimate
pE for AFC [7]. Note that L ∼ N (0, σL), where σL can be generated from IA,C as

σL = J−1(IA,C). (5)

The detailed definition of J-function can be reached in [15].
Figure 2 shows the mutual information for four different weight coefficients of AFC,

respectively. It can be seen that with the same IA,C, the mutual information is larger when
weight coefficient is larger. These results indicate that larger weight coefficients contribute
higher in the BP decoding.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
A,C

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I E
,C

w = 1/2

w = 1/3

w = 1/5

w = 1/7

Figure 2. EXIT charts of different weight coefficients, where d = 4, Ws = {1/2, 1/3, 1/5, 1/7}, and
signal–noise ratio (SNR) = 18 dB.

3.2. Improved PEG-Based Construction Method

It is well known that short cycles may deteriorate the performance of the BP decoding.
Large weight coefficients should not be involved in harmful short cycles due to their high
contribution in the BP decoding. AFC construction involves two steps: edge selection and
weight coefficient allocation. From these two aspects, we propose to construct generator
matrix as follows.

During edge selection, we balance the weight of columns in G with a reliability
measure denoted by ∑i−1

p=0 g2
p,q. The reliability measure represents the sum of squares

of weight coefficients for the q-th column of G before the edges for ci are established.
Apparently, if a column has a relatively low reliability measure, a corresponding edge
should be selected to enlarge its reliability measure. Thus, each time the PEG establishes a
candidate set of VN for edge selection, the set is further downsized based on the smallest
reliability measure set Q = {q| arg minq ∑i−1

p=0 g2
p,q} .

With regard to weight coefficient allocation, recall that the PEG maximizes the cycle
length, which means that the edges selected earlier are more likely to be in large cycle. In
other words, the edges selected later are more likely to be in the short cycle. Thus, they
should not be allocated with larger weight coefficients. It forms the weight coefficient
allocation strategy that allocating larger weight coefficients to earlier selected edges.

The proposed construction is presented as follows and the details are summarized
in Algorithm 1. Given the parameters k, n, d, and W, an edge-selection procedure is ini-
tiated. Let Ej

ci denote the j-th edge selected for ci, where 0 ≤ j < d. The placement of a
new edge E0

ci
on the graph considers the reliability measure of each column. Specifically,
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E0
ci
← edge(ci, bq), where q is randomly selected from Q = {q| arg minq ∑i−1

p=0 g2
p,q}. Subse-

quently, the largest weight coefficient w0 is allocated to E0
ci

as gi,q = w0.
After that, the subgraph from ci is expanded using the strategy of PEG [13], ending

up with the set Nl
ci

. When the expanded stage is finished, Ej
ci ← edge(ci, bq), where q is

randomly selected from a refreshed Q = {q| arg minq ∑i−1
p=0 g2

p,q, bq ∈ Nl
ci
} . Then, the next

weight coefficient wj is allocated to Ej
ci as gi,q = wj. This step is repeated until d edges are

selected, and then the process moves to the next CN.

Algorithm 1 Improved PEG-based construction algorithm.

Input: k, n, d, W
Output: AFC generator matrix G

1: G = zeros(n, k)
2: for i = 0 to n− 1 do
3: for j = 0 to d− 1 do
4: if j = 0 then
5: Q = {q| arg minq ∑i−1

p=0 g2
p,q}

6: E0
ci
← edge(ci, bq), where q is randomly selected from Q.

7: Update the gi,q = w0.
8: else
9: expand a subgraph from ci up to depth l under the current graph setting such

that the cardinality Nl
cj

stops increasing but
∣∣∣Nl

ci

∣∣∣ < k, or Nl
ci
̸= ∅ but Nl+1

ci = ∅.

10: Q = {q| arg minq ∑i−1
p=0 g2

p,q, bq ∈ Nl
ci
}

11: Ej
ci ← edge(ci, bq), where q is randomly selected from Q.

12: Update the gi,q = wj.
13: end if
14: end for
15: end for
16: Return G.

3.3. Analysis of Improved PEG-Based Construction

Suppose that after applying Algorithm 1, a new initialized CN cn introduces length-r
cycles following the selection of Ed−e

cn , where e denotes the minimum number of length-r
cycles introduced by cn. During the selection of Ea

cn , where d − e ≤ a < d, a selected
edges E0

cn , E1
cn , · · · , Ea−1

cn during the selection of cn, and nd edges established before the
initialization of cn are candidates that can be randomly connected to form a length-r cycle.

Denote the r − 2 edges of the length-r cycle established before the initialization of
cn as

(
cj0 , bi0

)
,
(
cj1 , bi1

)
, · · · ,

(
cjr−3 , bir−3

)
, where 0 ≤ j < n and 0 ≤ i < k. Without loss of

generality, denote Ea
cn ←

(
cn, bi0

)
as the edge closes the cycle, and denote Ea′

cn ←
(
cn, bi1

)
as

the edge forming the cycle due to the presence of
(
cn, bi0

)
, where 0 ≤ a′ < a.

Moreover, divide W into two subsets according to Ed−e
cn as W = Wlarge ∪Wsmall, where

Wlarge = {w0, w1, · · · , wd−e−1} and Wsmall = {wd−e, wd−e+2, · · · , wd−1} represent the sets
consisting of relatively large and small weight coefficients, respectively. Based on the
aforementioned discussion, the probabilities that a weight coefficient involved in the above
edges are analyzed case by case.

Case 1:
P(gj,i = w) = 1/d, w ∈W, (6)

where
(
cj, bi

)
is one of the r− 2 edges. The weight coefficient in

(
cj, bi

)
is allocated before

the PEG selects edges for cn. Thus, it is considered as randomly selected from W.
Case 2:

P(gn,i0 = w) = 0, w ∈Wlarge. (7)
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Considering that length-r cycles arise after selecting Ed−e
cn , and the weight coefficients are

allocated in descending order, the last selected e edges for cn are allocated with w ∈Wsmall.
On the contrary, any w ∈Wlarge cannot be allocated to gn,i0 .

Case 3:
P(gn,i1 = w) =

1
a
≤ 1

d− e
, w ∈Wlarge. (8)

The corresponding
(
cn, bi1

)
is randomly connected from the a selected edges. Thus, w can

be considered as randomly selected from {w0, w1, · · · , wa−1}.
Based on the above analysis, r− 2 edges

(
cj, bi

)
, 1 edge

(
cn, bi0

)
, and 1 edge

(
cn, bi1

)
have the probabilities in cases 1, 2, and 3, respectively. The probability that w is involved in
an edge of the new introduced length-r cycles when w ∈Wlarge is

P(gj,i = w) ≤ (
1

d− e
+

r− 2
d

)/r, w ∈Wlarge, (9)

where 0 ≤ j ≤ n.

Example 1. Let us consider a 256× 64 matrix G with degree d = 4, which is generated using
Algorithm 1. According to the parameter settings and the bound analysis in [10], a few length-4
cycles arise. Thus, we consider r = 4 and e = 1. W is divided into Wlarge = {w0, w1, w2}
and Wsmall = {w3}. Substitute d, e, and r into (9), P(gj,i = w) ≤ 0.208, when w ∈ Wlarge.
Through statistical analysis of a generated G, there are 25 length-4 cycles. The probabilities of weight
coefficients involved in the length-4 cycles are shown in Table 1. These results verify our analysis for
length-4 cycles.

Table 1. Probabilities of weight coefficients involved in the length-4 cycles.

Weight Coefficient Probability

w0 20%
w1 23%
w2 18%
w3 39%

Example 2. Let us consider a 150× 128 matrix G with d = 4, which is generated using Al-
gorithm 1. Similarly, we consider e = 1 and r = 6 for G. W is divided in the same way as in
Example 1. Substitute d, e, and r into (9), P(gj,i = w) ≤ 0.22, when w ∈ Wlarge. Through
statistical analysis of a generated G, there are 28 length-6 cycles. The probabilities of weight coef-
ficients involved in the length-6 cycles are shown in Table 2. These results verify our analysis for
length-6 cycles.

Table 2. Probabilities of weight coefficients involved in the length-6 cycles.

Weight Coefficient Probability

w0 19%
w1 21.4%
w2 21.4%
w3 38.2%

3.4. Complexity Analysis

The complexity of WC-PEG is O(nk) [13] in the worst case, mainly from expanding
the Tanner graph. In addition to expanding the Tanner graph, our proposed algorithm
involves calculating the reliability measure. It calculates d weight coefficients introduced
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by the last CN with complexity O(nd). Then, it sorts the d changed reliability measure with
the remainder by binary insertion with complexity O(nd log k). Thus, its overall complexity
is O(n(k + d log k)) in the worst case. All of these algorithms take moderate complexity for
constructing generator matrices, which are designed offline.

3.5. Simulation and Discussion

In this subsection, we present the numerical results of the proposed construction
and the constructions in the references. Here, we select d = 8 and W = {1/2, 1/3, 1/5,
1/7, 1/11, 1/13, 1/17, 1/19} for AFC constructions, which are designed in [2]. In addition,
d = 4 and W = {1/2, 1/3, 1/5, 1/7} are also considered. Various construction methods
such as random AFC, S-AFC, and WC-PEG are included as comparison. The proposed
construction is labeled as IM-PEG. These settings are in line with the previous references.
The CS-BP decoder with a maximum iteration number of 15 is applied in the receiver side.

First, we simulate the BLER of different AFC constructions including random AFC,
S-AFC, WC-PEG, and the proposed construction. Let R = k/n denote the code rate.
Simulations are conducted with fixed rate R = 2 and k = 128. Various degrees d = 4 and
d = 8 are considered, respectively. The AWGN channel with zero mean and variance δ2 is
employed for the transmission of AFC codewords. Signal–noise ratios (SNRs) range from
16 dB to 24 dB. All of the parameters are set according to [2,6]. Please note that R can be
larger than 1, since one AFC symbol involves d bits. It can be seen in Figure 3 that the
improved PEG construction has good BLER performance. For example, when d = 4, the
proposed construction offers about 1 dB gain when BLER is lower than 10−4 over WC-PEG
and S-AFC.

16 18 20 22 24

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
L
E

R

random AFC, d=8

S-AFC, d=8

WC-PEG, d=8

IM-PEG, d=8

random AFC, d=4

S-AFC, d=4

WC-PEG, d=4

IM-PEG, d=4

Figure 3. BLER of different AFC constructions with d = 4 and d = 8.

Then, the achievable rates of different AFC constructions with k = 128 are simulated.
Similarly, various degrees d = 4 and d = 8 are considered, respectively. Figure 4 shows
that the rates of the proposed construction are higher than others in a large range of SNRs,
in both d = 4 and d = 8.

Moreover, BLER performance with various weight sets is presented in Figure 5.
k = 128, d = 4, and R = 1 are set for the simulation. W ′ = {0.8670, 0.432, 0.2155, 0.1073} [6]
is selected for comparison. It can be seen from Figure 5 that the proposed construction
provides good error performance with W ′ as well.
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Figure 4. Achievable rates of different AFC constructions with d = 4 and d = 8.
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Figure 5. BLER of different weight sets with d = 4 and R = 1.

4. Conclusions

In this paper, an improved PEG-based construction of AFC is proposed to enhance de-
coding performance. Specifically, we propose to allocate weight coefficients in descending
order simultaneously when PEG selects edges for AFC, avoiding large weight coefficients
involved in the short cycles. The analysis demonstrates that the proposed construction
efficiently reduces the probability that larger weight coefficients are involved in short cycles.
The simulation results show that it has good BLER performance and achievable rates.
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