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Abstract: The domination problem and three of its variants (total domination, 2-domination, and
secure domination) are considered. These problems have various real-world applications, including
error correction codes, ad hoc routing for wireless networks, and social network analysis, among
others. However, each of them is NP-hard to solve to provable optimality, making fast heuristics
for these problems desirable. There are a wealth of highly developed heuristics and approximation
algorithms for the domination problem; however, such heuristics are much less common for variants
of the domination problem. We redress this gap in the literature by proposing a novel implemen-
tation of the cross-entropy method that can be applied to any sensible variant of domination. We
present results from experiments that demonstrate that this approach can produce good results in an
efficient manner even for larger graphs and that it works roughly as well for any of the domination
variants considered.

Keywords: domination; total domination; 2-domination; secure domination; cross-entropy; variants;
graphs

1. Introduction

The graph domination problem has been studied for the best part of a century but
gained additional interest in the 1970s when the closely related dominating set problem
(for some given constant K, determining whether a dominating set with fewer than K
vertices exists) was shown to be NP-complete [1]. Hence, the domination problem is
NP-hard, and there is no known efficient algorithm which is guaranteed to be able to
solve it. Despite this, applications in information networks and social networks and
various graph-based operation research scenarios have necessitated the development of a
number of algorithms for the domination problem [2–4]. The best exact algorithms have an
exponential solving time, such as the O(1.4969n) algorithm by van Rooij et al. [5], which
determines not only the domination number but also the number of minimum dominating
sets. The domination problem can also be formulated quite easily as a binary integer
programming problem, which software such as CPLEX running on modern desktops is
capable of solving, even for instances with hundreds of vertices. Beyond exact algorithms,
there are several approximation algorithms [6,7] and fast heuristics [8–10]. A large portion
of the experimental literature has focused on benchmarking algorithms that leverage the
specific properties of domination.

In this paper, we add to this literature by adapting the cross-entropy (CE) method to
the domination problem. CE was first proposed in 1997 by Rubinstein as a means of solving
rare event probability estimation based on the method from [11]. It was subsequently
expanded to solve combinatorial optimisation problems [12] and has been successfully
applied to various NP-hard graph problems in particular, such as the traveling salesman
problem [13] and the Hamiltonian cycle problem [14]. However, to the best of the authors’
knowledge, it has not previously been applied to the domination problem.
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In addition to the domination problem, we will also show that the general approach
we describe in this paper can be adapted to variants of the domination problem. There are
many such variants of the domination problem, which typically arise because there is a
real-world application for which the (standard) domination problem is not quite suitable.
Unlike the domination problem, very few heuristics have been developed and investigated
for these variants, and new variants (or combinations of existing variants) are regularly
introduced in the literature. As such, it is desirable to have an approach which is adaptable
to different variants without it needing to be redesigned or fine-tuned. To demonstrate the
adaptability of our approach, we will apply it to three prominent variants of domination
in particular.

The remainder of this paper is laid out as follows. In Section 2, we give some prelimi-
nary definitions and describe the variants of the domination problem that we will consider.
In Section 3, we describe our implementation of the CE method. In Section 4, we provide
experimental results showing the performance of our implementation. Finally, we make
some concluding remarks in Section 5.

2. Preliminaries

We consider simple graphs G which contain a vertex set V and an edge set E, where
n = |V| and m = |E|. If an edge uv ∈ E, we say that u and v are adjacent.

Definition 1 (Open neighbourhood and closed neighbourhood). Consider a graph G contain-
ing vertex set V and edge set E and a vertex v ∈ V. Then, N(v) := {w | vw ∈ E} is called the
open neighbourhood of v, and N[v] := N(v) ∪ {v} is called the closed neighbourhood of v.

Informally, we say that the open neighbourhood of v is the set of vertices which are
adjacent to v. We will be primarily concerned with solving the domination problem, as
defined in the following statements.

Definition 2 (Dominating set). A subset of the vertices S ⊆ V is a dominating set for G if
every vertex in V \ S is adjacent to one or more vertices in S. That is, for every v ∈ V, we find
N[v] ∩ S ̸= ∅.

Definition 3 (Domination problem and domination number). The domination problem for
a graph G is determining the minimum cardinality among all dominating sets in G. The latter is
denoted as γ(G) and is known as the domination number of G.

Variations of the Domination Method

We will now describe the three variants of dominating sets that will be considered in
this paper.

Consider a graph G containing vertex set V and edge set E and a subset of the vertices
S ⊆ V.

Definition 4 (Total dominating set). S is a total dominating set for G if every vertex in V is
adjacent to one or more vertices in S.

Definition 5 (2-dominating set). S is a 2-dominating set for G if every vertex in V \ S is adjacent
to two or more vertices in S.

Definition 6 (Secure dominating set). S is a secure dominating set for G if S is a dominating set,
and for every vertex v ∈ V \ S, a vertex w ∈ S exists such that vw ∈ E, and (S \ {w}) ∪ {v} is a
dominating set.

Definition 7 (Total (2-, secure) domination problem). The total (2-, secure) domination problem
for a graph G is determining the minimum cardinality among all total (2-, secure) dominating sets
in G. The latter is denoted as γt (γ2, γs) and is known as the total (2-, secure) domination number.
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As with the domination problem, some different algorithms have been developed
for each of these variants, although the majority of these have been focused on solving
particular kinds of graphs. For general graphs, there are few results. Burger et al. [15]
showed that several variants of the domination problem (including total and secure domi-
nation) can be formulated as binary programming problems, which can then be solved to
optimality using a solver such as CPLEX. It is easy to adapt such formulations to produce
a similar binary programming formulation for 2-domination. Foerster [16] proposed an
approximation algorithm for k-domination, while Chlebík and Chlebíková [17] showed
that an approximation algorithm for minimum set cover can be adapted to provide an
approximation algorithm for total domination. Unfortunately, the literature on variants
of the domination problem is sprawling and often esoteric, typically combining several
variants at once to produce results applicable to only very specific situations. This makes
it challenging to identify existing algorithms for a desired specific variant. This, in large
part, is the motivation for the present work; we seek to propose a framework that can
be applied to essentially any variant of domination without requiring that variant to be
analysed individually.

For more information on the three variants of domination considered in this paper,
we refer interested readers to Henning and Yeo’s excellent book on total domination from
2013 [18], the 2012 survey on k-domination (and k-independence) by Chellali et al. [19],
and the chapter detailing the state of the literature on secure domination (and eternal
domination) by Klostermeyer and Mynhardt [20].

3. The Cross-Entropy Method

Cross-entropy is a function which compares the similarity of two probability distri-
butions and, because of its comparative uses, has found diverse applications in statistics
and machine learning. In information theory, cross-entropy serves as a measure for the
cost (or efficiency) of using an incorrect model to make predictions compared to using the
true model. Although cross-entropy has value in many applications, for our purposes, we
are primarily interested in the so-called cross-entropy method, which is a Monte Carlo
method that can be used to solve optimisation problems. It does this by repeating two
phases; first, sample solutions are drawn from a given probability distribution, and the
best solution found so far is recorded. Second, the probability distribution is updated by
minimising the cross-entropy between the current probability distribution and some ideal
target distribution. This process is continued until certain convergence parameters are met,
at which time the best solution found is returned.

Although the cross-entropy method was first developed for rare event simulation,
it can be applied to discrete optimisation naturally. We begin by setting constant values
for some parameters N, M, ρ, α, and r, the meanings of which will become clear in the
following explanation. Then, at iteration t ≥ 0, a fast heuristic is used to generate N
valid solutions according to a probability vector Pt, where we define P0 to be a uniform
probability vector. The solutions are then ranked by some appropriate scoring function, and
we discard all but the best M solutions, which we call the elite set. A new probability vector
P∗ corresponding to the elite set is computed; there are various ways to compute it, which
we will discuss shortly, and the parameter ρ is used in this calculation to avoid numerical
errors. Finally, we compute Pt+1 = αP∗ + (1− α)Pt and proceed to the next iteration.
Throughout this process, we keep track of the best solution found so far, and the algorithm
terminates once r consecutive iterations have completed without any improvement in the
best solution, returning this best solution as the final output. This approach is summarised
in Algorithm 1.

There are various ways of using the elite set to compute P∗, and we will briefly
summarise the simplest of these now. Suppose that we are using the cross-entropy method
for a discrete optimisation problem that involves selecting a subset from some universe
set satisfying the conditions of the underlying problem. For example, in the context of the
domination problem, we need to select a subset of the vertices from the full vertex set so
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that the selected subset is dominating. Then, each entry in P∗ corresponds to an element
from the universe set, and the purpose of P∗ is to give a higher probability to entry i if this
entry appeared more often in the elite set. Hence, the simplest way of computing P∗ is
to define P∗i as equal to the proportion of solutions from the elite set that contain entry i.
Afterwards, we normalise P∗ to turn it into a probability vector.

Algorithm 1 Cross-entropy method

Input: Initial parameters N, M, ρ, α, and r
Output: Minimum cardinality among the solutions found (best)

Set initial uniform probability vector P0

best← ∞
t← 0
while best = ∞, or best was updated within the past r iterations, do

Generate N solutions using Pt

Calculate the vector L of the scores for each solution
Sort the solutions and select the best M solutions as the elite set
if min(L) < best, then

best← min(L)
end if
Calculate P∗ using the elite set and ρ
Pt+1 ← αP∗ + (1− α)Pt

t← t + 1
end while

return best

Of course, there are more sophisticated ways to compute P∗. For instance, rather
than simply considering the proportion of solutions from the elite set containing an entry
i, we can take into account the scores of those solutions, affording a stronger probability
to the entries that appear in the higher-quality solutions. It is common to use inverse
exponentials for this purpose, and this can sometimes result in some numerical issues on
machines if high-precision numbers are not used. The parameter ρ is hence employed in
the calculations to avoid the worst of these numerical issues. This is the approach that we
will use, as will be explained in the following subsection.

3.1. Adapting the Cross-Entropy Method to the Domination Problem

For the domination problem, the universe set in question is the set of vertices in the
graph. We can trivially assign a score to any dominating set by setting it as equal to the
size of the set, with smaller scores being preferable. We will use the notation L(S) = |S| to
denote the score of a dominating set S.

Recall that at each iteration, we will have generated an elite set of the M best solutions
found, that is, the M (out of N) dominating sets of the lowest cardinality found. We denote
this set by E . Furthermore, we will use the notation E i to refer to the subset of E that
contains only those dominating sets that include the vertex i. Then, we will calculate P∗

using the following formula for each entry P∗i , where δ := min
S∈E

L(S)
log(ρ) .

P∗i =

∑
S∈E i

e
−L(S)

δ

∑
S∈E

e
−L(S)

δ

Then, all that remains is to address how the dominating sets can be generated from
a probability vector Pt. The process we advocate is as follows. We begin with a set S,
which is initially empty, and make a copy of Pt, which we denote by P†. Then, we select a
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vertex by making an observation of a discrete random variable with the probability mass
function given by P† and add the selected vertex, say v, to S. Then, we check whether
S is dominating. If not, we set P†

v = 0, normalise P† again, and repeat the process. It is
clear that this process will eventually terminate; in the worst case, every single vertex will
eventually be added to S, which will certainly be a dominating set.

Note that in the above paragraph, we described a process for generating a dominating
set, but it is clear that an analogous process could be used for any desired variant of
domination by simply checking the relevant domination criteria of that variant after each
vertex is added. However, it is worth noting that for some variants of domination, the
underlying graph may not contain any such sets. For instance, a graph with isolated
vertices does not have any total dominating sets (in such a case, it is said that the total
domination number is ∞). For the variants that we consider in this paper, it is clear that
every graph contains a dominating set, a 2-dominating set, and a secure dominating set.
Hence, it is only when considering total dominating sets that we need to first consider the
underlying graph.

Although the above approach will always generate a valid dominating set, there is
nothing to ensure that the set generated this way is minimal. Since it is always beneficial to
have minimal sets if possible, we augment the above approach with a second phase that
iteratively considers each vertex v in S to see whether S \ {v} also satisfies the relevant
domination criteria. If so, that vertex is removed from S, and the process continues until
all vertices of S have been considered. It is clear that this process results in a minimal
dominating set. The only question is in which order we should consider the vertices for
removal; note that seeking to do so optimally is an NP-hard problem (to see this, note that
S could contain every vertex at the conclusion of Phase 1, in which case solving the second
phase optimally is equivalent to solving the domination problem). Instead, we propose the
following fast heuristic. We again make a copy of Pt and denote it as P†. Then, we define P
as the vector containing the following entries:

Pi :=
{

1− P†
i , if i ∈ S,

0 otherwise.

After normalising P, we then use it in the same manner as we previously used P† to
randomly generate a sequence of the vertices in S, and this is the order used to consider the
vertices for removal. We summarise both phases in Algorithm 2, where the rand function
corresponds to an observation of a discrete random variable with the probability mass
function given by the associated probability vector.

3.2. Checking the Relevant Domination Criteria

Note that for the cross-entropy implementation described in the previous subsections,
we need to check the relevant domination criteria O(n) times for each of the N dominating
sets generated per iteration. The standard method to check whether a set is dominating
takes O(m) time, and so using this approach would require us to spend O(nmN) time
each iteration to generate the dominating sets. This is the most computationally expensive
component of the algorithm, and so we take steps to perform these checks more efficiently.
Specifically, we utilise efficient updating procedures whenever we add or remove a ver-
tex from S that allow us to track how close we are to meeting (or failing) the relevant
domination criteria.

For (standard) domination, this is uncomplicated. For each vertex, we can keep track
of how many vertices from its closed neighbourhood are in S. Whenever a vertex v is added
to S (or removed from S), we need to update only those vertices adjacent to v. If we denote
the degree of v as d(v), this updating procedure will occur in O(d(v)) time. Meanwhile, we
can maintain a count of undominated vertices that is decreased whenever a vertex becomes
dominated (or vice versa). Checking whether S is a dominating set is then as simple as
checking whether this count is equal to zero. This approach requires us to spend O(mN)
time per iteration, which represents an improvement by a considerable order of magnitude
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in the computation time. For 2-domination and total domination, checks analogous to the
above are straightforward and provide similar improvements in the computation time.

Algorithm 2 Algorithm for generating a minimal dominating set given Pt

Input: Graph G, probability vector Pt

Output: A minimal dominating set (S)

Phase 1:
S← ∅
P† ← Pt

while S does not satisfy the relevant domination criteria for graph G, do
Normalise P†.
v← rand(P†)
S← S ∪ {v}
P†

v ← 0
end while

Phase 2:
P← (1− Pt)
for all vertices v ̸∈ S, do

Pv ← 0
end for
while P is not a zero vector, do

Normalise P
v← rand(P)
if S \ {v} satisfies the relevant domination criteria for graph G, then

S← S \ {v}
end if
Pv ← 0

end while

return S

Of the variants of domination considered in this paper, it is only secure domination
that requires more thought. The naive method of checking whether S is secure dominating
involves looking at each vertex v not in S, considering each of its neighbours w that are in
S, and checking whether (S ∪ {u}) \ {w} is dominating, which requires O(m2) time. There
are more sophisticated methods for checking secure domination. Burger et al. [21] give one
such method; however, they do not indicate its computational complexity, other than to
state that it is more complex than checking standard domination. Regardless, we again
seek to improve on this by proposing an updating procedure. As before, for each vertex,
we keep track of how many vertices in its closed neighbourhood are in S; for vertex v, we
call this number domcount(v). Then, whenever a vertex v is added to or removed from S,
we only need to update the vertices adjacent to v. Furthermore, we say that w is capable
of defending v if w ∈ S ∩ N(v) and every neighbour of w is dominated in (S ∪ {v}) \ {w},
and note that this criteria can be efficiently checked as follows. If there is any neighbour
u of w such that domcount(u) = 1 and u ̸∈ N[v], then w is not capable of defending v;
otherwise, it is capable of defending v. Then, for each vertex, we keep track of how many
vertices in its open neighbourhood are capable of defending it. Whenever a vertex v is
added to S (or removed from S), we need to update only those vertices within a distance
of 3 of v. Note that we can compute which vertices are within a distance of 3 of each
vertex in advance (i.e., before the first iteration of cross-entropy begins), so this need not
contribute to the runtime of the updating procedure. Finally, we can maintain a count of
the vertices that are not in S and that have no vertices capable of defending them, and
then S is a secure dominating set if and only if this count is equal to zero. For graph
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families where the diameter grows with n, this approach represents an improvement by
some order of magnitude in the computation time over the course of generating the secure
dominating set.

4. Experimental Results
4.1. Comparison Heuristics

Before beginning to describe the experimental setup and displaying the results of the
cross-entropy approach, we will briefly pause to discuss how we will evaluate its performance.

The primary feature of the approach described in this manuscript is that it is very
adaptable and can be applied to any variant of domination without requiring any significant
redesign. Indeed, to adapt it to handle a new variant of domination, the only part of the
algorithm that needs to be altered is the two lines in Algorithm 2 that check the relevant
domination criteria. The latter can be modified entirely separately from the rest of the
algorithm; indeed, one could imagine an implementation of this approach in which the
core algorithm is fixed, and it is the user who provides their own function for checking the
domination criteria relevant to them. This then allows any user who has interest in some
new (or niche) variant of domination to access an effective heuristic for that variant without
needing to invest time into designing one. If time is an obstacle (such as if the instances
being considered are large or if it is inefficient to check the domination criteria), then the
user can set the parameters accordingly to reduce the overall runtime and still be certain
that they will be able to obtain a valid solution.

As such, although we are focusing on a few specific variants of domination in this
manuscript, we do not find it meaningful to compare our results to the best-developed
heuristics in the literature for these variants; naturally, one would expect that heuristics
designed specifically for those variants to outperform a more general approach. However,
since it is important to provide some point of comparison, we will compare the results to
a greedy heuristic that is similarly flexible. Specifically, the greedy heuristic constructs a
dominating set S of the desired variant by iteratively adding one vertex at a time, corre-
sponding to the vertex whose closed neighbourhood contains the most vertices not yet in S.
In the event that there are multiple candidates for v, we choose between them uniformly
at random. In order to facilitate a fair comparison, we also equip this heuristic with an
analogous version of Algorithm 2’s Phase 2, which ensures the provided dominating set is
minimal. This greedy heuristic is summarised in Algorithm 3.

Algorithm 3 Greedy heuristic for finding a minimal dominating set

Input: Graph G
Output: A minimal dominating set (S)

Phase 1:
S← ∅
while S does not satisfy the relevant domination criteria for graph G, do

v← the vertex such that |N[v] \ S| is largest (breaking ties uniformly at random)
S← S ∪ {v}

end while

Phase 2:
for each vertex v ∈ S (considered in a random order), do

if S \ {v} satisfies the relevant domination criteria for graph G, then
S← S \ {v}

end if
end for

return S
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4.2. Experimental Setup

The implementation of the cross-entropy method for domination described in Section 3
requires the user to input many parameters, and the overall performance (both in terms of
solution quality and computation time) is impacted by these. In order to determine which
combinations of parameters to use for the main experiments, initial experiments were
conducted to identify good default values. The results of these experiments indicated that
the following values provide a good balance between the solution quality and computation
time for our implementation: N = 100, M = 10, α = 0.2, ρ = 0.01, and r = 20. In particular,
we found that increasing the amount of computation performed (i.e., by increasing the
number of dominating sets generated per iteration or by increasing the number of iterations
made without an improvement before stopping) from these default settings offered, at best,
only marginal improvements in solution quality.

Using the above parameter settings, we now present the experimental results for our
implementation of the cross-entropy method on several kinds of graphs. In particular,
we consider grid graphs, flower snarks, unit disk graphs, Erdős–Rényi random graphs,
and various graphs from the literature. The former two graph families have been chosen
since the domination numbers (and some variants thereof) are known, while the remaining
graphs have been chosen as they have previously been used to evaluate graph algorithms.
Where possible, we obtain results for all four types of domination considered in this paper
(domination, 2-domination, total domination, and secure domination). The only exception
is for instances with isolated vertices, in which case we do not obtain results for total
domination. We will now briefly discuss each type of graph we will consider.

Square grid graphs G(n, n) are the Cartesian products of two paths with the length n.
They have been considered extensively in the context of domination, with the domination
numbers now known for all cases [22]. Fascinatingly, the formula for the domination
number in rectangular grid graphs G(m, n) contains 23 special cases before settling into a
standard formula for m, n ≥ 16. The values for the other variants of domination are also
known in some cases [23–25].

Flower snarks J(k) are 3-regular graphs containing 4k vertices introduced by Isaacs [26].
In a recent paper [27], the domination, 2-domination, total domination, and secure domina-
tion numbers (among others) were determined.

Unit disk graphs [28] are generated in the following way. Given parameters c, r, m,
and n, a set of c points are generated uniformly at random within an m × n rectangle.
Then, a graph is produced where the vertices correspond to the points, and an edge exists
between two vertices if the distance between their corresponding points is no more than 2r.
Equivalently, one can draw circles of a radius r around each point, and then an edge exists
between two vertices if their corresponding circles overlap. Of course, it is not guaranteed
that such graphs will be connected; in Table 1, we label the graphs as “UDG_c-r-m-n_s”,
where s corresponds to a random seed, and we only include graphs in our experiments
that are connected.

Table 1. Experimental results of the cross-entropy method for unit disk graphs for each domination
variant. The GH column shows the size of the best solutions returned by the greedy heuristic. The CE
column shows the size of the best solutions returned by the cross-entropy method. The Sol column
shows the cardinality of an optimal set for the given instance or an upper bound if the value is
overlined. The Gap column shows the difference between the CE and Sol values.

Instance
Domination Total Domination 2-Domination Secure Domination

GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap

UDG_100-0.7-10-10_17 21 19 19 0 25 24 24 0 36 35 34 1 28 27 26 1
UDG_100-0.7-10-10_32 19 18 18 0 26 25 25 0 37 35 34 1 28 27 27 0
UDG_100-0.7-10-10_43 21 20 20 0 31 28 27 1 40 38 36 2 27 28 27 1
UDG_100-0.7-10-10_55 21 20 20 0 26 24 24 0 39 36 36 0 27 27 27 0
UDG_100-0.7-10-10_73 22 20 20 0 30 27 26 1 39 38 36 2 29 28 27 1
UDG_500-0.4-10-10_0 69 65 55 10 86 85 71 14 129 125 106 19 97 94 81 13
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Table 1. Cont.

Instance
Domination Total Domination 2-Domination Secure Domination

GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap

UDG_500-0.4-10-10_1 68 66 55 11 86 85 72 13 127 124 104 20 97 96 82 14
UDG_500-0.5-10-10_0 47 44 37 7 60 58 46 12 88 85 71 14 68 67 58 9
UDG_500-0.5-10-10_1 44 46 37 9 61 60 47 13 88 87 73 14 68 68 58 10
UDG_800-0.3-10-10_0 119 118 99 19 159 154 124 30 222 217 183 34 165 166 141 25
UDG_800-0.3-10-10_1 119 118 99 19 154 150 122 28 226 217 184 33 170 169 144 25
UDG_800-0.5-10-10_0 51 48 39 9 62 63 47 16 97 94 74 20 75 74 69 5
UDG_800-0.5-10-10_1 51 49 39 10 66 63 48 15 97 95 76 19 76 75 69 6
UDG_1000-0.3-10-10_0 125 124 99 25 166 159 123 36 227 227 191 36 177 176 149 27
UDG_1000-0.3-10-10_1 126 121 99 22 165 155 121 34 234 229 200 29 180 177 152 25
UDG_1000-0.5-10-10_0 54 50 39 11 65 64 51 13 99 97 77 20 77 76 75 1
UDG_1000-0.5-10-10_1 54 52 39 13 69 64 50 14 96 98 76 22 81 77 71 6

Erdős–Rényi random graphs are generated in the following way. Given the parameters
N and p, a graph with N vertices is generated in which each edge exists with probability p.
In the interest of studying relatively sparse graphs, we have experimentally chosen values
of p to ensure a low average degree for a given N and then generated many graphs with
these parameter settings until a graph with an average degree very close to the desired
value is obtained. As such, in Table 2, we label these graphs as “randomN_d” where d is
the desired degree. Note that since these graphs have a low average degree, as N increases,
it is almost certain that there will be some isolated vertices. As such, we do not consider
total domination for these graphs.

Both unit disk graphs and Erdős–Rényi random graphs have been considered in
many graph contexts, including as experimental instances for domination algorithms.
For example, see [3,9], in which domination algorithms are presented. These papers
also consider a number of other graphs from the literature, and so we have included
many of them in our experiments as well, omitting only those which are too large to be
computationally feasible. We have provided individual citations for the chosen instances
in Table 3.

For each instance considered, we run the cross-entropy method ten times (with ten
different random seeds) and then return the best solution produced. We compare this to
the results obtained by the greedy heuristic given in Algorithm 3, which we also run ten
times (with ten different random seeds) and return the best solution produced. Where
possible, we will also compare the best solution produced by the cross-entropy method to
the optimal solutions for those instances. For instances where the optimal solutions are not
known from the literature, we use CPLEX to solve binary programming formulations of
the relevant domination variant. In particular, we use the formulations for domination and
total domination from [15] and the formulation for secure domination from [23]. We also
use a formulation for 2-domination analogous to the formulation for domination in [15].
We set a time limit of 10,000 s for CPLEX to terminate, and if CPLEX is unable to produce
an optimal solution by this time, we take the best solution (upper bound) produced up to
this stage. The experiments were conducted on an Intel(R) Core(TM) i5-12500 CPU with a
6 core, a 3.00 GHz processor, and 16 GB of RAM, running Windows 10 Enterprise version
22H2 and using a C++ implementation of the cross-entropy algorithm. The solutions and
upper bounds for the formulations were obtained on the same PC using CPLEX v22.1.0.

For square grid graphs and flower snarks, we present the results as plots since these
graphs are not randomised and follow a set structure. In Figures 2 and 4, the dotted lines
represent the best values obtained from the cross-entropy method, the dashdotted lines
represent the best values obtained from the greedy heuristic, and the solid lines represent
the known optimal values. If the optimal values are not known, a dashed line is used to
indicate the upper bound obtained by CPLEX after 10,000 s.

For the remaining graphs, the results are displayed in Tables 1–3. The “GH” column
lists the best values obtained from the greedy heuristic, and the “CE” column lists the best
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values obtained from the cross-entropy method, while the “Sol” column lists either the
optimal value (if it is known) or else the upper bound obtained by CPLEX after 10,000 s. In
the latter case, the number is presented with an overline. Finally, the “Gap” column gives
the difference between the values in the “CE” and “Sol” columns. If CPLEX was not even
able to produce an upper bound within 10,000 s, we indicate this with a dash (-).

4.3. Results

We will first consider how the cross-entropy method compared to the greedy heuristic.
In the vast majority of cases, the cross-entropy method produced better-quality solutions
across all four variants, demonstrating its potency. However, for a small number of the
largest graphs considered, the greedy heuristic did produce some superior solutions. This
is most likely because the parameter settings we chose for the cross-entropy approach were
fixed, regardless of the size of the instances.

Comparing the solutions found by the cross-entropy approach to the optimal solutions,
it appears that this approach produces solutions of a roughly similar quality across all
experiments; that is, for all kinds of graphs and variants of domination considered, it was
generally able to find solutions within 10 to 25 percent of the known optimal solution or
upper bound. However, certain variants of domination did occasionally perform slightly
better for different graphs. For instance, secure domination performed relatively well
for unit disk graphs, 2-domination performed relatively well for Erdős–Rényi random
graphs, and total domination performed relatively well for the selected instances from
the literature.
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Figure 1. Cont.
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Figure 2. Results for square grid graphs G(n, n). The size of the best solutions returned by the
cross-entropy method is displayed using a dotted line, while the size of the best solutions returned by
the greedy heuristic is displayed using a dashdotted line. The known optimal values are displayed
using a solid line. In the case of secure domination, a dashed line is used for the upper bounds
obtained by CPLEX after 10,000 s.
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Figure 4. Results for flower snarks J(k). The size of the best solutions returned by the cross-entropy
method is displayed using a dotted line, while the size of the best solutions returned by the greedy
heuristic is displayed using a dashdotted line. The known optimal values are displayed using a
solid line.

Table 2. Experimental results of the cross-entropy method for Erdős–Rényi random graphs for each
domination variant except for total domination (since these graphs usually contain isolated vertices).
The GH column shows the size of the best solutions returned by the greedy heuristic. The CE column
shows the size of the best solutions returned by the cross-entropy method. The Sol column shows the
cardinality of an optimal set for the given instance or the upper bound if the value is overlined. The
Gap column shows the difference between the CE and Sol values. A dash is used when CPLEX was
unable to even obtain an upper bound within 10,000 s.

Instance
Domination 2-Domination Secure Domination

GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap

random100_3 40 35 35 0 60 58 58 0 51 48 47 1
random100_4 32 29 28 1 51 48 48 0 42 41 39 2
random100_5 27 24 23 1 44 41 40 1 36 36 33 3
random100_6 23 21 19 2 39 35 33 2 32 31 28 3
random250_3 91 87 81 6 140 138 131 7 119 115 105 10
random250_4 79 73 65 8 123 117 108 9 106 102 90 12
random250_5 67 62 53 9 110 103 92 11 96 91 - -
random250_6 61 56 46 10 97 92 81 11 82 82 71 11
random500_3 177 168 148 20 283 274 255 19 236 234 209 25
random500_4 149 141 117 24 241 228 203 25 209 202 170 32
random500_5 122 121 98 23 211 200 171 29 180 179 147 32
random500_6 111 108 84 24 190 180 151 29 168 162 134 28
random800_3 295 280 250 30 465 450 419 31 398 387 344 43
random800_4 250 234 195 39 395 383 339 44 345 336 282 54
random800_5 214 207 163 44 355 339 290 49 309 299 249 50
random800_6 190 184 141 43 314 301 250 51 266 272 222 50
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Table 2. Cont.

Instance
Domination 2-Domination Secure Domination

GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap

random1000_3 390 374 329 45 595 578 536 42 512 504 449 55
random1000_4 320 310 256 54 511 495 438 57 437 434 367 67
random1000_5 370 269 212 57 448 430 366 64 391 382 321 61
random1000_6 242 242 183 59 403 391 323 68 344 351 285 66

Table 3. Experimental results of the cross-entropy method for the selected literature instances for
each domination variant. The GH column shows the size of the best solutions returned by the greedy
heuristic. The CE column shows the size of the best solutions returned by the cross-entropy method.
The Sol column shows the cardinality of an optimal set for the given instance or the upper bound if
the value is overlined. The Gap column shows the difference between the CE and Sol values. A dash
is used when CPLEX was unable to even obtain an upper bound within 10,000 s. An ∞ symbol is
used whenever the graph contains no total dominating set.

Instance
Domination Total Domination 2-Domination Secure Domination

GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap GH CE Sol Gap

adjnoun [29] 18 18 18 0 20 19 19 0 42 39 38 1 35 32 31 1
anna [30] 12 12 12 0 12 12 12 0 50 47 47 0 47 42 42 0
david [30] 2 2 2 0 2 2 2 0 27 26 26 0 24 24 24 0
dolphins [31] 14 14 14 0 17 17 17 0 29 27 27 0 22 22 22 0
football [32] 15 13 12 1 18 15 13 2 26 24 21 3 19 18 17 1
gplus_2000 [3] 174 236 170 66 191 188 181 7 1062 1036 965 71 955 949 - -
gplus_500 [3] 42 42 42 0 48 45 45 0 315 303 297 6 284 274 267 7
homer [30] 97 97 96 1 ∞ ∞ ∞ 329 323 317 6 303 294 282 12
huck [30] 9 9 9 0 11 11 11 0 21 21 21 0 15 15 15 0
lesmis [33] 10 10 10 0 10 10 10 0 33 33 33 0 31 28 28 0
netscience [29] 535 509 477 32 ∞ ∞ ∞ 954 933 915 18 657 643 623 20
pokec_2000 [3] 75 78 75 3 76 75 75 0 921 879 816 63 871 853 - -
pokec_500 [3] 16 16 16 0 16 16 16 0 280 266 264 2 270 257 251 6
polbooks [3] 15 14 13 1 16 15 15 0 27 24 22 2 21 21 19 2
power [34] 1584 1747 1481 266 1947 1932 1801 131 3047 3002 2795 207 2593 2575 - -
zachary [35] 4 4 4 0 4 4 4 0 12 12 12 0 9 9 9 0

We highlight a few instances in particular. From Table 3, the gplus_2000 instance
provided fascinating results. For (standard) domination, the best solution found for the
cross-entropy approach had a gap of 66 from the optimal solution, and yet for total domi-
nation, the gap was only 7. Even for 2-domination, the gap is 71, but the size of the optimal
2-dominating set is more than five times as large as that of the optimal dominating set.
Similarly, for pokec_2000, for (standard) domination, the best solution found had a gap
of 3, but for total domination, an optimal solution was found which itself was also an
optimal dominating set. It seems that in these more difficult instances, having a variant of
domination can actually be beneficial; one possible explanation is that the more restrictive
constraints of these variants force the cross-entropy algorithm to consider only certain
types of dominating sets that are perhaps closer to the optimal solution on average. Indeed,
comparing these results to the greedy heuristic, we see that the greedy heuristic was much
more successful for (standard) domination than the cross-entropy method but was less
successful for each of the variants.

In both the gplus_2000 and pokec_2000 instances, CPLEX was unable to produce even
an upper bound for secure domination within 10,000 s. This highlights the value of having
a heuristic at hand that can be implemented easily for any sensible variant of domination
and can generate solutions of reasonable quality quickly. Across our experiments, we
found that the order of the graph was the main factor affecting how long the cross-entropy
algorithm took to run, with the edge structure of the graph being relatively unimportant.
As such, in Figure 5, we provide the average runtimes just for the square grid graphs, with
a very similar performance being exhibited for all other graphs.
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Figure 5. Average runtime in seconds for a single run of the cross-entropy algorithm on square grid
graphs G(n, n) for the different variants of domination. The solid line corresponds to the domination
problem; the dashed line to total domination; the dotted line to 2-domination; and the dashdotted
line to secure domination.

As can be seen, the time taken for the cross-entropy algorithm to run is fairly consistent
between domination, 2-domination, and total domination, while it is roughly an order
of magnitude slower for secure domination. This demonstrates that the main factor in
the overall computation time for our implementation is just the time taken to actually
generate the sample solutions each iteration, with the remainder of the algorithm adding
very little overhead per iteration. As such, it is imperative that the generation algorithms
are optimised to ensure the overall algorithm can be run efficiently. We note here that even
for graphs with 400 vertices, the cross-entropy algorithm was able to produce dominating
sets, 2-dominating sets, and total dominating sets of reasonable quality in less than a
second and secure dominating sets in less than ten seconds, demonstrating the efficiency
of this algorithm. Indeed, by looking at Figure 2, we see that CPLEX was unable to find
an optimal secure dominating set for the square grid graph G(13, 13), and after 10,000 s of
computation, it was only able to find an upper bound marginally better than that produced
by the cross-entropy implementation in less than 2 s.

5. Conclusions and Future Work

Although there are a wealth of fast heuristics for the (standard) domination problem,
its variants often have very few such heuristics available, and developing such heuristics
typically requires one to first analyse the specific variant being considered. In contrast, the
implementation of the cross-entropy method described in this paper can be applied easily
to most variants of domination without requiring any modification, and the experiments in
Section 4 indicate that the solution quality remains consistent for different variants, with it
typically outperforming the greedy heuristic. In particular, our method is suitable for any
variant of domination in which simply adding vertices randomly is guaranteed to result
in a set meeting the criteria of the variant; or, if there are no such sets in a given graph,
we should be able efficiently identify this in advance. Then, all that is required to use our
method is to provide a checking algorithm that determines whether any given set meets
the criteria of the desired variant.
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The implementation itself is very lightweight outside of the checking algorithms,
making it particularly suitable for large instances. Although it does not typically return an
optimal solution for large instances, it is able to find good solutions very efficiently without
the associated memory and performance issues that come with formulating the problem as
a mixed-integer linear program or requiring any other analysis of the underlying problem.
The checking algorithm itself may be sped up in a number of ways; for example, the
domination criteria do not need to be checked after each vertex is added and can instead
be checked at regular intervals, particularly given that Phase 2 of Algorithm 2 will trim
unnecessary vertices out of the set. The checking algorithm may also be sped up using
specialised hardware such as a GPU to distribute the workload in parallel. Since the
checking algorithm is, by far, the slowest component of the algorithm, any improvements
to it will correspond to a direct improvement in the overall computation time.

We can finish by noting that there are some variants of domination for which it is
not the case that adding vertices randomly is guaranteed to result in a valid solution. For
example, an independent dominating set is a dominating set that is also an independent
set in the underlying graph, and adding vertices randomly could potentially violate the
latter criterion. However, even in such cases, it may be possible to modify the cross-entropy
implementation accordingly. For example, in the case of independent domination, upon
adding a vertex to S, in addition to setting the probability of that vertex to 0, one can also set
the probability of its neighbours to 0, and this will ensure that an independent dominating
set is generated.
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