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Abstract: Granger causality can uncover the cause-and-effect relationships in financial networks. However,
such networks can be convoluted and difficult to interpret, but the Helmholtz–Hodge–Kodaira decom-
position can split them into rotational and gradient components which reveal the hierarchy of the
Granger causality flow. Using Kenneth French’s business sector return time series, it is revealed
that during the COVID crisis, precious metals and pharmaceutical products were causal drivers of
the financial network. Moreover, the estimated Granger causality network shows a high connec-
tivity during the crisis, which means that the research presented here can be especially useful for
understanding crises in the market better by revealing the dominant drivers of crisis dynamics.

Keywords: financial networks; Granger causality; Helmholtz–Hodge; econophysics; causal inference

1. Introduction

One of the most important messages in many introductory lectures to statistics is that
correlation does not imply causation [1]. However, this begs the following question: What,
then, is causality? And how can it be quantified? One of the first and most widespread
attempts to formalize causality was proposed by Granger [2]. Granger causality takes the
time ordering into account, as the cause needs to happen before the effect. The field of causal
inference has developed several tools to probe time series data for causal interactions [3],
and it has been used to analyze dynamical systems [4,5]. Especially for high-dimensional
multivariate time series, it is difficult to infer the network of causality because one has to
carefully distinguish between the different possible causal drivers [6–9].

While such networks can be convoluted and difficult to interpret, especially if they
contain cyclic substructures [10], the Helmholtz–Hodge–Kodaira decomposition (HHKD)
can disentangle them. As a reformulation of Helmholtz–Hodge field theory for discrete
graphs, the HHKD can split a directed network into a cyclic graph and a gradient-based
graph [11,12]. The latter will then provide a ranking of all nodes according to whether they
are upstream or downstream. Cyclic substructures can pose a problem in the frameworks of
causal inference [3], and the HHKD’s ability to split them apart from the main network can
help to interpret the causal flux between the nodes. The remaining gradient-based flux will
then provide a hierarchical ranking of the causal drivers. The application of methods and
tools from physics to economic and financial systems is known as econophysics [13], and
the HHKD has been used in this field to understand the dynamics of cryptocurrencies [14],
as well as the networks of shared ownership of companies [15]. Capturing economic and
financial interactions in a network has long been a standard approach within econophysics
and complexity science [16–18], and causal inference has been applied to such networks of
companies or countries [19–21].

Entropy 2024, 26, 858. https://doi.org/10.3390/e26100858 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26100858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9391-1601
https://orcid.org/0000-0003-0986-0878
https://doi.org/10.3390/e26100858
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26100858?type=check_update&version=1


Entropy 2024, 26, 858 2 of 15

This article analyzes time series data on business sectors from [22] to investigate
the Granger causality between different sectors of the economy. Using the HHKD on
this Granger network then reveals whether a sector is driven by other sectors or rather
whether it is a causal driver of the whole system. First, this article will present the database,
the algorithm from [8] for estimating Granger causality networks, and the HHKD for the
graphs in Section 2. The results of the HHKD will then be presented for different time
periods in Section 3 before they are interpreted and further extensions to this research are
discussed in Section 4.

2. Materials and Methods
2.1. Data

To analyze the interactions between different sectors of the economy, we use the
database of Ken French, which contains return time series of representative portfolios
for 49 different business sectors [22]. These portfolios are constructed as value-weighted
averages of all the stocks in a business sector listed on NYSE, AMEX, and NASDAQ,
and the data consist of the daily returns R(i)

t =
(

P(i)
t − P(i)

t−1

)
/P(i)

t−1 of these portfolios’
prices. The calculation of returns normalizes the time series and removes trends in the
data. Moreover, augmented Dickey–Fuller tests [23] performed via the Python package
statsmodels [24] indicate that the given time series are stationary for each window period of
interest in Section 3, with the exception of one sector each in 2006 and 2008 (though that
does not impact our results). This database is updated continuously with further details
on the data curation given in [25]. Although the assignment of companies into sectors
was conducted manually, a comparative study with modern statistical tools shows high
agreement between French’s classification and data-driven methods [26]. While the data
were originally used for capital asset pricing modeling in [27], they have found numerous
applications in various fields of economic and financial research as a data resource (see [26]
for an overview).

2.2. Granger Causality

The intuition behind Granger causality is that the cause X should happen before the effect
Y and that knowing the cause should improve the future prediction of the effect. The latter
can be measured by fitting autoregressive linear models with and without X and comparing
their accuracy. By including possible alternative causes Z for Y, this concept is extended to
the conditional Granger causality, CGC. First, a full model is estimated that measures how
well the past of X, Y, and the background variables Z predict the future of Yt+1 via

Yt+1 =
τmax

∑
τ=0

(ατYt−τ + βτXt−τ + γτZt−τ) + ϵ (1)

with i.i.d. Gaussian errors ϵ ∼ N (0, σ2
F) and a maximum time lag τmax to limit how much

of the past should be considered in predicting Yt+1. Note that Z might contain more than
one background variable Z =

(
Z(1), . . . , Z(s)

)
with γτ ∈ Rs. Then, a reduced model is

trained without the proposed cause X as

Yt+1 =
τmax

∑
τ=0

(
α′τYt−τ + γ′

τZt−τ

)
+ ϵ (2)

with ϵ ∼ N (0, σ2
R). The conditional Granger causality of X on Y is then given by how much

the reduced model’s variance increases compared to the full model and is defined as

CGCX→Y = log
σ2

R
σ2

F
(3)

to measure how much X causes Y.
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For multivariate data with many time series, the estimation of the full model in (1) can
easily fall into the regime of overfitting [28]. Hence, it is of paramount importance to con-
struct the full model carefully. A comparative study of multivariate Granger networks [9]
indicates that the restricted conditional Granger causality index (RCGCI) from [8] is the
most suitable Granger causality estimation scheme for the financial data analyzed in this
article. At the heart of the RCGCI lies the construction of a full model by starting with an
empty regression model and sequentially adding variables X(i)

t−kτ with a lag of k time units
to it if they reduce the BIC of the regression [29]. Hence, the resulting full model may not
contain lagged representations of all possible explanatory variables but only some selected
ones

(
X(i1), . . . , X(iI)

)
, and this therefore guarantees sparsity to prevent overfitting in the

estimation process. For these variables, CGC can be computed by removing them from
the full model and fitting the reduced model, whereas the remaining selected variables
are conditioned on as the background information Z. For the other Xj values which have
not been included in the full model, the CGC is set to zero, as no causal relationship had
been estimated.

Details on the Estimation

Because the financial returns analyzed in this article are known to have an almost
nonexistent autocorrelation [13] and to avoid overfitting, we restrict our models to maxi-
mum lags of one time step. As this represents a full day of trading activity, data with a lag
of two time units (i.e., two days), in the fast-paced and constantly adapting environment of
financial markets, yield little additional contribution to the full Granger model, as shown
by an exploratory analysis. Previous studies have shown that principal component analysis
(PCA) can be used to distinguish between noise and collective effects in financial time
series [30,31]. Hence, we perform PCA on the raw data, only keep the principal components
with the largest eigenvalues so that their sum describes 90% of the total variation in the data,
and discard the remaining principal components as noise before performing the inverse
transformation back into the original feature space. Note that the sparsity of the RCGCI
algorithm also limits the influence of noise on the results. Averaging over all sectors and all
time periods under consideration, the typical ratio between the variance explained by the
full regression model and the variance in the data is σ2

F/σ2
Data ≈ 96%, indicating the good

fit of the full regression model and a high signal-to-noise ratio.

2.3. Helmholtz–Hodge–Kodaira Decomposition

The reconstructed network of the causality flux between multivariate time series might
not be easy to interpret ad hoc. Circular causalities (A causes B, B causes C, and C causes
A) may be present, and inspecting the network with the naked eye may not be sufficient
to understand its structure. The Helmholtz–Hodge–Kodaira decomposition (HHKD) is
a tool for analyzing the flux in networks and disentangling the flow into upstream and
downstream directions [11,12].

2.3.1. Mathematical Formulation of the Unidirectional HHKD

The Helmholtz decomposition theorem states that any well-behaved vector field
F(r) ∈ Rn can be decomposed into two components F(r) = G(r) + R(r), a gradient field
G(r) and a divergence-free field R(r). The rotation-free field G(r) can be expressed as the
gradient of a potential G(r) = −∇rΦ(r) such that the potential determines the direction
of a flux in the space of r. For the divergence-free or solenoidal field R(r), no point r is a
source or sink of the observed flux, as ∀r : ∇r · R(r) = 0. Note that a third component may
exist and represent a background flux into and out of the system, but it is usually ignored,
as one assumes that the system of interest is sufficiently closed.

The same reasoning can be applied to a flow network on a discrete graph [11,12]. Let
Jij be the observed flow from node i to j with the antisymmetric property Jij = −Jji. It can

be shown that a unique decomposition Jij = J(g)
ij + J(c)ij exists such that J(g)

ij is the gradient
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and J(c)ij is the circular flow from i to j. In this decomposition, the gradient flux fulfills

J(g)
ij = Gij

(
Φi − Φj

)
for some background potential Φ assigned to each node and with the

standard choice for the weights between two nodes being Gij = 1. The circular flow fulfills

∀i : ∑j J(c)ij
!
= 0, i.e., for each node, the total influx is equal to its total outflow. For a simple

network with three nodes, this decomposition is illustrated in Figure 1. The potential and
its associated gradient flow can be obtained from the least square estimation

min
J(g)

(I) with I =
1
2 ∑

i<j

1
Gij

(
Jij − J(g)

ij

)2
=

1
2 ∑

i<j

1
Gij

(
Jij − Gij

(
Φi − Φj

))2 (4)

and the circular flow is then simply the difference J(c)ij = Jij − J(g)
ij . For the standard choice

Gij = 1, this formulation also has the useful property that the net gradient flux is the same
along all paths between any two nodes. Because the gradient flow only depends on the
potential difference Φi − Φj, the same gradient flow can also be obtained if the potentials
have a constant offset Φi → Φi + ΦO . Hence, the minimization of Equation (4) needs
an additional constraint to produce unique results for Φ, such as Φn = 0 or ∑i Φi = 0.
We note that the mathematical formulation of the HHKD tends to minimize large errors
comparatively more than small ones and treat large flows between two nodes as more
informative than small ones. This means that any necessary errors during the minimization
procedure are distributed across many edges. Because of the sparse RCGCI algorithm,
the weakest causal links are discarded before the application of the HHKD, and hence,
the errors will be relatively weak compared to the strength of the estimated network links.
This shortcoming should be kept in mind. We additionally note that, as proven for a trait
performance model in [32], the uncertainty in the estimation of CGCX→Y introduces bias
towards more cyclical structures.

Figure 1. Example of the Helmholtz–Hodge–Kodaira decomposition for a single graph into a gradient-
based graph (g) and a circular graph (c). Note that direction of the flux between A and C is different

in (g) and (c), which is the same as changing the sign J(g)
AC = −J(g)

CA, and hence, their sum is given by

J(g)
CA + J(c)CA = −0.6 + 0.7 = 0.1, and the original flux JCA is reconstructed. Also, note that the total flux

between two nodes is path-independent for (g) as J(g)
AC = J(g)

AB + J(g)
BC .

2.3.2. Bidirectional Flows

Whether through noise or feedback loops, in general, it is possible for the RCGCI
algorithm to estimate that CGCX→Y > 0 and CGCY→X > 0, i.e., that two time series are
estimated to Granger-cause each other and that the flux cannot be defined as antisymmetric
J(b)ij ̸= −J(b)ji where the superscript b denotes the bidirectionality and J(b)ij ≥ 0. Naively,
computing the net flow CGCX→Y − CGCY→X seems like a reasonable choice, but this
discards the information about the relative strength of the net flux. Consider a system in
which CGCA→B = 0.6, CGCB→A = 0.1, CGCC→D = 5.5, and CGCD→C = 5. The net flux
A → B, and C → D is 0.5, but scaling this with the total flux between the node pairs shows
that this difference is much less significant for the flux C → D.

A bidirectional version of the HHKD that reflects these considerations is presented
in [15]. The authors argue for interpreting Gij as an analogy for the conductance in elec-
trical circuits, where a high flux between both nodes corresponds to high conductance,
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whereas a low total flux indicates high resistance. Hence, they propose splitting the original
bidirectional network into two graphs, which are then used to perform the HHKD: the
difference in the flux in both directions between two nodes in the bidirectional network
J(b) is defined as the net flux Jij := J(b)ij − J(b)ji and forms a unidirectional network with
the antisymmetry Jij = −Jji to which the HHKD can be applied. The sum of the absolute

values of the flux in both directions is used as the conductivity Gij := J(b)ij + J(b)ji , which is
the same in both directions Gij = Gji. The minimization in Equation (4) can then be applied
to the two networks (J, G) to receive the HHKD ranking of the nodes.

This generalization also gives rise to a helpful interpretation of the potential differences
in the nodes: consider only the flux between two nodes i and j isolated from the rest of
the graph. Let Jij be the net flow from i to j and Gij the total flow. The contribution of this
minimized connection to the functional I is then given by

Iij =
1
2

1
Gij

(
Jij − J(g)

ij

)2
=

1
2

1
Gij

(
Jij − Gij

(
Φi − Φj

))2
=

1
2

1
Gij

(
Jij − Gij∆ij

)2
(5)

where ∆ij expresses the potential difference between the two nodes. Minimization of Iij
with respect to ∆ij leads to

∂Iij

∂∆ij
= −Jij + Gij∆ij

!
= 0 ⇔ ∆ij =

Jij

Gij
≡ Net Flow

Total Flow
. (6)

Hence, this rule-of-thumb approximation, which disregards all other edges, shows that the
potential difference can be interpreted as the ratio between the net and total flow between
the two nodes. In particular, if the flux in one direction is much larger than in the other
direction J(b)ij ≫ J(b)ji , then the net and total flow are almost identical Jij ≈ Gij, so that
∆ij ≈ 1. Therefore, as described in [15], one unit of potential difference can be interpreted
as a separation of approximately one layer between the nodes i and j.

2.3.3. Circularity and Hierarchy

Once the flow network is decomposed into gradient-based and circular flux, one can
compare their respective contributions to the net flux [15,33,34]. It is possible to quantify
the contribution of the gradient-based flux via the L2 norm as

Γ =
1
2 ∑

i
Γi =

1
2 ∑

i
∑

j
Gij

(
J(g)
ij

)2
(7)

and that of the circular flux as

Λ =
1
2 ∑

i
Λi =

1
2 ∑

i
∑

j
Gij

(
J(c)ij

)2
(8)

where Γi and Λi denote the contribution of the respective ith node. Normalizing them with
the total flux

N =
1
2 ∑

i
∑

j
Gij

(
Jij
)2 (9)

leads to the definition of
γ =

Γ
N

and λ =
Λ
N

(10)

which fulfill γ + λ = 1. In a completely hierarchical network, γ = 1, while in a completely
circular network, λ = 1. A high γ ≫ λ indicates that the underlying potential and its
corresponding hierarchy have been cleansed of noise and insignificant loops and now
accurately reflect the true structure of the underlying dynamics.



Entropy 2024, 26, 858 6 of 15

2.4. Test on Synthetic Data

To test the pipeline of the RCGCI and HHKD, we simulated 50 realizations of a
network of 49 time series with the network structure given in Figure 2. Because the
RCGCI-HHKD pipeline is supposed to uncover the hierarchy of time series, the synthetic
network in Figure 2 was chosen to represent a hierarchical structure, and we evaluated
how accurately the algorithm identified the nodes at the top of the hierarchy: one node X0
is an independent stochastic process and is at the top of the hierarchy. It drives the nodes
in the next layer X1,...,8 as their causal parent pa, and each of them drives five nodes from
X9,...,48 in the final layer at the bottom of the hierarchy. Each node X(i) in the network was
simulated for 250 time steps in vector autoregression according to

X(i)
t+1 = −0.5X(i)

t − 0.5Xpa(i)
t + ϵ (11)

where pa(i) denotes the parent node of i (if it exists) and ϵ
iid∼ N (0, σ) with σ = 1. The goal

of the RCGCI-HHKD pipeline is to accurately identify the nodes with index I = (0, . . . , 8)
at the top of the causal hierarchy. Note that 49 time series for 250 time steps correspond to
one year of trading day data in the database described in Section 2.1 and that the standard
deviation σ = 1 is roughly equal to the standard deviation of the data. Hence, these
synthetic time series provide a realistic artificial version of the observed data. The HHKD
is used on the Granger causality network estimated by the RCGCI, and we evaluate how
many of the top nine nodes in the estimated hierarchy actually belong to the set I . For the
50 realizations of the network, the average of the ensemble of detection rates is 94%, and the
median is 100%. Though this is not shown here, for synthetic cyclic networks, the RCGCI
also successfully estimates the loop topology. Hence, the combination of the RCGCI and
HHKD accurately estimates the network structure. Even after adding observation noise
N (0, σobs) to the simulated data via

X(i)
t → X̃(i)

t = X(i)
t + ζ with ζ ∼ N (0, σobs), (12)

the top nodes in the network hierarchy are still estimated with a high accuracy beyond
random expectations for noise up to σobs ≈ 1.

Additionally, we also create ensembles of uncoupled time series by taking a random
subset of trading days ti1 , . . . , ti250 without any chronological ordering. This represents
the null hypothesis that no causal coupling is present in the data. We then check whether
the RCGCI erroneously reconstructs a network even though none is present. We define
the network connectivity as the percentage of nodes that are estimated to have a causal
coupling to another node. These 50 percentage values give us a confidence interval (CI) of
the network connectivity under the null hypothesis that no causal coupling is present in
the data. If the network connectivity of a system exceeds the CI, we can therefore conclude
that we have identified a system with meaningful causal connections.

Figure 2. The network structure used for the vector autoregression which generates synthetic time series.
One node is at the top of the hierarchy without any causal parent, whereas eight nodes are in the second
layer and forty are in the final layer. Each node in the second layer is the parent node of 5 nodes in the
final layer and has the node in the first layer as their parent node. Sketched via the software [35].
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3. Results
3.1. Year by Year

To gain the most insight from the HHKD, it is necessary to have a connected network
in which all sectors are included. By defining the network connectivity as the percentage of
nodes which are coupled to the network, the RCGCI-HHKD analysis is performed on the
annual data for the last 20 years from 2004 to 2023 to identify periods with a connectivity
of 100%.

The results in Figure 3 show that the market mostly remains within the range expected
of random time series, but some periods exhibit a spike to a significantly high level of
network connectivity. It only reaches a connectivity of 100% (i.e., with all sectors coupled
to the network) during the year 2020 and reaches a connectivity of almost 100% (with only
one sector decoupled) in 2007. Hence, the 2020 period will be the focus of the latter half of
this section.

2004 2008 2012 2016 2020 2024
Time

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k 

Co
nn

ec
tiv

ity Interval Range
Midpoint
Random Data

Figure 3. Results of the RCGCI-HHKD analysis for annual data from [22]. The gray shaded area
is the CI for the network connectivity of random data without any causal coupling. Note that the
lines that connect the dots are only a visual aid, and no linear interpolation between the periods
is assumed.

To gain more insights into the general structures of the RCGCI networks across the
years, the sum of the Granger causality influx and outflux is recorded for each of the
49 sectors, as well as for how many years they are connected to the network by influx
or outflux links. After rescaling all of these quantities to the same scale, kernel density
estimation (KDE; [36]) in Figure 4 shows that for the inward and outward directions,
the total flux and the linkage rate are distributed similarly. The influx distribution is a
Gaussian bell curve (a two-sided χ2 test has a p value of 0.21 and cannot reject the null
hypothesis of Gaussianity), whereas the outflux has a higher variance and, notably, a fat
tail at high values. Hence, while most sectors have a similar influx of Granger causality,
some sectors drive the other sectors with a much stronger outward Granger causality than
most of the others. It is therefore more interesting to focus on sectors with a particularly
high or low outflux of Granger causality. The sectors Rubbr (rubber and plastic products),
BldMt ( construction materials), Mach (machinery), Trans (transportation), and, perhaps
surprisingly, Banks show no outflux of Granger causality during any of the periods. Gold
(precious metals) and, in the second position, Cnstr (construction) have a much higher
sum of Granger causality outflux and a much higher rate of outward linkage than all the
other sectors.
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0.00 0.05 0.10 0.15 0.20
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Figure 4. For the analysis of annual data from 2004 to 2023, KDE of the sum of all influx and outflux
of Granger causality and the total number of years with at least one inward or outward link in the
RCGCI network. Values on the x-axis have been normalized to the same scale.

3.2. Complete Graphs during the 2020 COVID Pandemic

To investigate the connected network for the year 2020 further, the RCGCI-HHKD
pipeline is used to analyze time windows of 12 months which are shifted by 1 month
and scan over the year 2020. This process starts with the time interval of January 2019
to January 2020 and ends with the period from December 2020 to December 2021. Note
that the figures displaying these results use the midpoint of each time period on the x-axis,
e.g., July 2019 for the period from January 2019 to January 2020. For each period with a
connected network, the parameter γ is calculated according to Equation (10) to quantify the
contribution of the gradient flow to the observed flux. Because λ = 1 − γ, the calculation
of λ is omitted.

Figure 5 shows the results for the connectivity and the gradient contribution γ.
Whether the network is complete or not depends on whether March 2020 is included
in the data, as including March 2020 seems to guarantee that the connectivity reaches 100%.
During this period, the gradient contribution is typically around γ ≈ 0.8 and therefore
stronger than the rotational flow λ. However, due to the quadratic L2 norm used to calcu-
late (10), a rotational component λ ≈ 0.2 is nevertheless a non-negligible contribution to
the total flow.

2019-07
2019-10

2020-01
2020-04

2020-07
2020-10

2021-01
2021-04

2021-07

Midpoint of Time Interval

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k 

M
ea

su
re

s

Network Connectivity
Random Connectivity
Gradient Contribution 

Figure 5. For time periods of 12 months, two network measures are depicted here: the network
connectivity and the gradient contribution γ. The network connectivity is the percentage of sectors
connected to the network and is displayed here against the random connectivity expected for
independent time series. If the network is complete and has a connectivity of 1, the gradient
contribution γ is also calculated according to Equation (10). Note that the time on the x-axis is the
midpoint of the 12-month intervals of data.
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Looking at the ensemble of Granger causality flux matrices for the 12 time windows
with a connectivity of 1 reveals that every single sector always has some causality influx
(i.e., it is estimated to be Granger-caused by another sector) for all 12 time windows, with
the exception of the sector Gold, which only has an influx of Granger causality for 3 of
the 12 periods. The sectors PerSv (personal services), Other, Aero (aircraft), and Trans
(transportation) have no outflux of Granger causality during any of the 12 time windows,
and for the latter two sectors, this might reflect the travel restrictions imposed during this
period. In contrast to the sum of the Granger causality outflux for the disjoint long-term
analysis in the previous section, Gold is no longer the sector with the highest total outflux
(≈5.00) but is far overtaken by Drugs (pharmaceutical products; ≈35.8), Hshld (consumer
goods; ≈28.4), and Cnstr (≈10.6), with some other sectors at a slightly higher level than
Gold, too.

For the periods with complete graphs, the potential Φi can be calculated for every
single node. A high Φi indicates a high position in the hierarchy of Granger causality and
that the sector is a cause rather than an effect. Because of the large contribution γ of the
gradient flux shown in Figure 5, this hierarchy is not obstructed by strong circular fluxes in
the system and indeed reflects the underlying dynamics. Figure 6 shows the potentials for
all 12 time windows with a complete graph. These potentials can be compared to each other
because they have been normalized to fulfill ∑i Φi = 0 for each time period. The range
between the minimum and maximum potential values has a mean of 2.0 with a standard
deviation of ±0.2 across these periods and therefore reflects a network of approximately
three different levels with a fairly stable potential range. Additionally, for the period from
October 2019 to September 2020, the full network is depicted in Figure 7, where the nodes’
vertical positions reflect their potential values. Some selected sectors have been highlighted
in these plots: the sectors Gold and, with the exception of the first interval, Drugs are
consistently at the top of the hierarchy, and their potentials have a low variance. Similarly,
the potentials of the sectors Aero, Meals (Restaurants, Hotels, and Motels), and RlEst (Real
Estate) have certain mean values and variances. Therefore, these sectors are consistently
found at the bottom of the potential hierarchy.

2019-11
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Figure 6. For the same time intervals as in Figure 5, the potentials Φi of each sector are shown as
dots. Note that for each time interval, the potentials have been centered via ∑i Φi = 0. Some selected
sectors are shown in color, and the gray area shows the spread between the 25% and 75% quantiles
for each time period.

Some other sectors have a high variance and change their position in the hierarchy
rather drastically: the potential of Cnstr has the highest variance, and this sector moves
upwards in the hierarchy during the latter third of the periods. This might reflect the
increase in construction material prices and their effect on construction businesses and, as a
cascading effect, on other business sectors during the beginning of 2021 [37]. The second
highest variance is observed for the potential of MedEq (medical equipment). This sector
rises in the hierarchy during the peak of COVID, which probably reflects the increasing
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demand for products such as face masks and testing equipment. The sudden decline
of MedEq in the hierarchy starts in the time windows that include the first weeks of
widespread vaccinations in Western countries, which were interpreted as a sign of the end
of the pandemic and hence of the lower importance of such equipment.
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Figure 7. The estimated Granger causality influence network ordered by the HHKD potentials for
the periods from January 2007 to December 2007 (the sector FabPr is not shown because it has no link
to any other sector) and from October 2019 to September 2020. The width of the arrows reflects the
strength of the Granger causality, and selected sectors are highlighted with the same color coding as
in Figure 6 whereas all other sectors are shown in blue.

Because of the small but notable contribution of the rotational flux to the system during
the COVID crisis, we also investigate which nodes have a strong rotational component Λi,
as in Equation (8). For each time period with a connected network graph, the values Γi
and Λi are calculated according to Equations (7) and (8), and the rotational component is
normalized in two ways: Λ(N)

i = Λi/N denotes how much the rotational flux of node i
contributes to the total flux N from Equation (9). λi =

Λi
Λi+Γi

denotes whether the flux of
node i is dominated by rotational flows or rather by the gradient flow. For each sector i,
the mean values of Λ(N)

i and λi are calculated over the time periods of consideration. While
the sectors Drugs, Hshld, and Cnstr have the highest, second highest, and fourth highest
mean values of Λ(N)

i and contribute greatly to the rotational flow, their own flows do not

show a particularly high contribution λi of the rotational component. Rather, their Λ(N)
i
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is high because they have strong causality links to other sectors in general. The third and
fifth highest values of Λ(N)

i are found for the sectors Toys (recreation) and Softw (computer
software), and they also have the second and third highest values of λi, at λi ≈ 0.47 for both
sectors. These sectors not only provide a strong rotational contribution to the total observed
causality flow (Λ(N)

i ) but also experience an almost equally strong effect of the gradient
and rotational flows (λi) on their own dynamics. This makes them interesting candidates
for future research to understand the circular dependencies in the financial network better.

3.3. The 2007 Financial Crisis

Because the Granger network for 2007 does not have a connectivity of 100%, it will
not be analyzed as deeply as the 2020 network in this manuscript. But since only a single
sector (FabPr, fabricated products) is disconnected from the rest, it might be justified to
briefly focus on the reduced network of the 48 connected sectors, not least because this
period also coincides with the onset of the financial crisis in the late 2000s [38] and serves
as an interesting comparison to the COVID crisis. This reduced network is depicted in
Figure 7, and visual inspection shows a much more streamlined flow than for the network
during 2020 and hence a more hierarchically organized potential: while the 2020 network
is much more entangled, the 2007 network mostly consists of links from the sector Gold
to other sectors, with much fewer links between the other sectors, resulting in a shape
reminiscent of the depictions of Aton in ancient Egyptian artworks. This is confirmed by
the estimation of the gradient flow contribution for the reduced network, which yields
γ(2007) = 0.98 and shows an even higher gradient contribution than that in any of the 2020
networks. Although the crisis starting in 2007 is generally known as the global financial
crisis, the financial sectors do not have a particularly important position in the hierarchy of
Granger causality during this period and perhaps act as mediators of causality rather than
as causal drivers. This surprising result might indicate that the causality analysis for this
period does not fully represent the processes in the real economy but uncovers more subtle
relationships between the time series.

4. Discussion

Analysis of the disjoint annual periods in Figure 3 indicates that a highly connected
Granger causality network coincides with market crises. The highest connectivity values,
close to 100%, were observed during the 2020 COVID crisis and the beginning of the
financial crisis in 2007. Other spikes occurred during the years 2023, possibly reflecting the
collapse of several mid-size banks and the threat of contagion in the US banking crisis [39],
and 2016, following the market turmoil after the unexpected election of Donald Trump [40].
These results align with the causality estimation in [20], as well as with research on financial
correlation matrices, which also shows an increase in coupling between financial time series
during times of crises [41–43]. The lower coupling during periods of a healthy market
reflects that the time series are more independent and diversified, which reduces the overall
risk in the market.

The precious metal sector is usually found upstream at the top of the Granger causality
hierarchy but because of its own lack of causal drivers rather than because of the influence
it exerts on other sectors necessarily. This is, to some extent, in line with the clustering
analysis in [44], which identified precious metal mining companies as having different
dynamics compared to other assets. Deeper insights into the estimated CGCX→Y values
between the sectors show that the precious metal sector is, however, not typically the
strongest driver of market dynamics. Its position at the top of the hierarchy instead reflects
that this sector is rarely driven by other sectors. Hence, this result should be interpreted
with caution. This might be a specific feature of the precious metal sector because the
pharmaceutical sector is also frequently found at the top of the hierarchy but has a strong
outflux of Granger causality and therefore acts as a driving force of the system’s dynamics.
Note that the returns of this sector are calculated based on companies which trade precious
metals and do not directly contain the prices of gold and other metals. Adding this
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consideration might be an interesting endeavor for future work. During the COVID crisis,
the high position of Drugs in the causality hierarchy and the rise of MedEq during the
pandemic’s peak reflect our intuition about the economy during the year 2020. Perhaps
surprisingly, financial sectors do not have a high position in the hierarchy of Granger
causality, and especially, the banking sector is found rather far downstream. This might be
interpreted as financial companies only being mediators of causal influence and providing
the infrastructure for the flow of causality in financial markets but not actually driving this
flow themselves. Our results therefore differ from the study in [45], where an analysis of
the input–output network of business sectors showed that the energy and finance sectors
have a high upstream position in the hierarchy. This is an important indicator that the
financial market network analyzed in our study does not simply resemble the real economy
but has its own dynamical behaviour. The high signal-to-noise ratio of the full regression
models in the RCGCI algorithm and the strong contribution γ ≫ λ of the gradient flow
indicate that the hierarchy estimated by the HHKD is reflective of the true underlying
structure of the market dynamics. Interestingly, γ was notably higher for the 2007 financial
crisis than for the COVID crisis, possibly because the former was an endogenous crisis
and the latter an external shock. Even though the inherent uncertainty of the estimated
CGCX→Y values should bias the HHKD towards a more cyclical result [32], this bias seems
to have been compensated for by the sparsity of the RCGCI algorithm. We hence conclude
that the resulting cyclical component estimated by the RCGCI-HHKD pipeline is indeed a
structural component and not merely noise.

Numerous extensions can be made in future work to this project. Adding return time
series of precious metal prices has already been suggested, but beyond this, macroeconomic
variables like the inflation rate could be used as background variables Z in Equation (1).
Without attempting to create regression models to predict Z, these variables can still be used to
calculate the Granger causality conditional based on the macroeconomic information provided
by them. This might be interpreted as the third translational component that is usually omitted
in Helmholtz–Hodge considerations but represents an influx into or outflux out of the whole
system of interest, as discussed in [12]. Moreover, the linear regression could be extended
with interaction terms between two variables X(i)

t−τ · X(j)
t−τ or nonlinear functions [46] to

alleviate the shortcomings of Granger causality methods [47,48], but this might require larger
amounts of data for reliable estimation and thus higher-frequency data than those available
in [22]. Other methods from causal inference, such as the lead–lag relationship of complex
Hilbert PCA [49,50] or transfer entropy [7,19], can capture nonlinear effects but might require
more data, too. Although the heightened position of precious metals and pharmaceutical
products can be related to real effects in the data, the restriction of Granger causality as
a linear measure may have been the reason why financial companies do not have a high
position in the estimated hierarchy of causation. As this is rather counter-intuitive, nonlinear
causality measures might be used to provide a different perspective on the data and to check
the robustness of these findings. Also, one could extend the RCGCI algorithm to include a
bootstrapping procedure in the estimation of (3) to obtain an estimation of the uncertainty of
the Granger causality CGCX→Y. While the RCGCI and the standard formulation of Granger
causality do not distinguish between positive and negative influences between variables,
similar to [21], a multi-layer network approach could be used to separate the causal couplings
based on their sign. However, extending the HHKD to multi-layer networks is required to
evaluate this, perhaps based on the approach in [51].

Because of the high network connectivity during crises, the RCGCI-HHKD pipeline is
especially useful for describing the system dynamics during such periods. In particular,
understanding the flow of causality and identifying the causal drivers during a crisis
might allow policymakers to more effectively intervene to stop crises by focusing on the
sectors which are upstream in the causality hierarchy. This could open up the possibility of
stabilizing the market with a minimally invasive intervention.

Finally, though this is beyond the scope of this work, we believe that the HHKD
could help to overcome the limitations of the causality framework described by Judea
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Pearl [3]. Pearl’s approach to causality relies on directed acyclic graphs (DAGs) between
the variables and therefore requires an interaction network without any closed loops. While
this is not always present in real systems, an adaptation of the HHKD might provide a
suitable tool for extracting such DAGs from real-world systems as the gradient component
of the original graph.
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Abbreviations
The following abbreviations are used in this manuscript:

BIC Bayesian Information Criterion
CI Confidence Interval
DAG Directed Acyclic Graph
HHKD Helmholtz–Hodge–Kodaira Decomposition
KDE Kernel Density Estimation
PCA Principal Component Analysis
RCGCI Restricted Conditional Granger Causality Index

Additionally, the following sector abbreviations were introduced by Ken French and were used
in this article:

Aero Aircraft
BldMt Construction Materials
Cnstr Construction
Drugs Pharmaceutical Products
FabPr Fabricated Products
Gold Precious Metals
Hshld Consumer Goods
Mach Machinery
Meals Restaurants, Hotels, and Motels
MedEq Medical Equipment
PerSv Personal Services
RlEst Real Estate
Rubbr Rubber and Plastic Products
Softw Computer Software
Trans Transportation
Toys Recreation
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