
Citation: Wang, S.; Zhang, X.

Research on Credit Default Prediction

Model Based on TabNet-Stacking.

Entropy 2024, 26, 861. https://

doi.org/10.3390/e26100861

Academic Editor: Joanna Olbryś

Received: 23 September 2024

Revised: 9 October 2024

Accepted: 11 October 2024

Published: 13 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Research on Credit Default Prediction Model Based on
TabNet-Stacking
Shijie Wang 1,2 and Xueyong Zhang 1,*

1 School of Finance, Central University of Finance and Economics, Beijing 102206, China;
sjwang@mail.nankai.edu.cn

2 RURAL CREDIT COOPERATIVE OF HEBEI, Shijiazhuang 050024, China
* Correspondence: zhangxueyong@cufe.edu.cn

Abstract: With the development of financial technology, the traditional experience-based and single-
network credit default prediction model can no longer meet the current needs. This manuscript
proposes a credit default prediction model based on TabNeT-Stacking. First, use the PyTorch deep
learning framework to construct an improved TabNet structure. The multi-population genetic
algorithm is used to optimize the Attention Transformer automatic feature selection module. The
particle swarm algorithm is used to optimize the hyperparameter selection and achieve automatic
parameter search. Finally, Stacking ensemble learning is used, and the improved TabNet is used to
extract features. XGBoost (eXtreme Gradient Boosting), LightGBM (Light Gradient Boosting Machine),
CatBoost (Category Boosting), KNN (K-NearestNeighbor), and SVM (Support Vector Machine) are
selected as the first-layer base learners, and XGBoost is used as the second-layer meta-learner. The
experimental results show that compared with original models, the credit default prediction model
proposed in this manuscript outperforms the comparison models in terms of accuracy, precision,
recall, F1 score, and AUC (Area Under the Curve) of credit default prediction results.

Keywords: TabNet; stacking; credit risk; risk control

1. Introduction

With the advent of the big data era, FinTech (Financial Technology) [1] is rapidly
advancing. Many traditional financial companies are gradually changing from focusing on
the front desk and neglecting the back office to neglecting the front desk and focusing on the
back office. The trend of traditional offline loans going online is becoming more and more
obvious. At the same time, the development of big data and credit reporting systems has
greatly reduced the actual cost for financial institutions to obtain relevant data. Therefore,
how to timely and efficiently use and analyze relevant data to detect high-risk behaviors
such as fraud, gang fraud, default, and bad debts that may occur among applicants and
ensure the safety of funds is an urgent problem to be solved in the healthy development
of credit.

Due to its high accuracy and ease of use, logistic regression has gradually extended its
application to personal credit research and is increasingly used in risk control by Western fi-
nancial institutions [2]. For instance, Beninel used the Logistic Regression model to establish
a transfer learning model for predicting credit risk across different customer categories [3].
Amir E. Khandani applied machine-learning techniques to construct nonlinear, nonpara-
metric forecasting models of consumer credit risk and constructed out-of-sample forecasts
that significantly improve the classification rates of credit card holder delinquencies and
defaults [4].

Mohammed Azhan used polynomial Naive Bayes, support vector machines, logistic
regression, random forests, and shallow neural networks to predict customer loan defaults,
employing the F1 score as a metric for model performance [5]. Shihao Gu used the empiri-
cal context of return prediction as a proving ground; verified trees and neural networks

Entropy 2024, 26, 861. https://doi.org/10.3390/e26100861 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26100861
https://doi.org/10.3390/e26100861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1716-838X
https://doi.org/10.3390/e26100861
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26100861?type=check_update&version=1

Entropy 2024, 26, 861 2 of 21

were most valuable for forecasting larger and more liquid stock returns and portfolios [6].
Hassan Raza used advanced machine learning models to predict stock prices in the Pak-
istani stock market using 27 technical indicators and evaluated the performance of four
models—ANN (Artificial Neural Network), SVM, LSTM (Long Short Term Memory), and
Random Forest—and highlighted the importance of technical indicators in making accu-
rate predictions [7]. Xianzheng Zhou constructed DNN (Deep Neural Networks) models
for equity-premium forecasting, and the forecasting performance of DNN models was
enhanced by adding additional 14 variables selected from finance literature [8].

TabNet [9] is a novel neural network structure designed specifically for tabular data
and published by Google in AAAI (Association for the Advancement of Artificial Intelli-
gence) in 2021. TabNet inherits the advantages of tree methods in interpretability and sparse
feature selection, as well as the advantages of DNN representation learning and end-to-end
training, challenging the monopoly of tree models in the field of tabular data processing.

Despite the continuous development of machine learning algorithms, the performance
of a single model has always been bottlenecked, prompting scholars to explore new ways
to combine models. Therefore, ensemble learning has emerged to break through the ceiling.
In the boosting direction, most models are based on decision trees, and algorithms such as
GBDT (Gradient Boosting Decision Tree), XGBoost, LightGBM, and CatBoost have emerged
one after another. Among them, XGBoost was first proven to have made great progress in
classification quality, operating efficiency, and ease of use [10–13]. In the stacking direction,
due to the unique multi-layer architecture and combination mechanism of this method, the
classification effect of the combined model can often be significantly improved [14].

In traditional ensemble algorithms, Boosting family algorithms are typically employed
as the first layer of the ensemble model, with Logistic serving as the second layer, thus
resulting in a relatively simplistic ensemble structure. To explore novel combinations for
credit default prediction models, overcome the limitations of current single models, and
enhance the ability of financial institutions to identify potential risks of borrowers prior to
lending, this manuscript conducts the following research.

This manuscript proposes a Stacking ensemble learning model based on TabNet and in-
troduces several enhancements: a multi-population genetic algorithm to improve TabNet’s
feature selection module, and a PSO (Particle Swarm Optimization) algorithm to optimize
TabNet’s parameter selection. The improved TabNet is used to extract features, and XG-
Boost, LightGBM, CatBoost, KNN, and SVM are selected as the first-layer base learners.
The first layer consists of various independent classifiers, while the second-layer meta-
learner is chosen to reduce the impact of classification errors from individual classifiers
on the final result. For the second-layer meta-learner, a model with strong generalization
capability is required. XGBoost is selected due to its high accuracy, strong generalization,
and robustness to outliers in various practical tasks. The model’s performance is tested
on the Alibaba Cloud-Tianchi loan default prediction dataset, evaluating its precision, F1
score, and AUC.

This study has made contributions to existing literature in three aspects. Firstly, to
our knowledge, we are the first person to predict credit defaults based on the TabNet
ensemble learning model in a financial academic paper. Unlike most studies that focus
on traditional econometric models, we introduce a nonlinear machine learning model
to predict the probability of credit default. Secondly, our model achieved significant
performance improvement through ensemble learning, which also validates the existing
financial literature on ensemble learning. Finally, our experimental results indicate that the
model proposed in this paper can be applied to practical credit risk management, helping
financial institutions identify high-risk loan applicants or loan projects and providing a
scientific decision-making basis for financial institutions to take measures in advance.

Section 2 of this manuscript introduces existing credit default prediction models ap-
plied. Section 3 presents the specific design of the TabNet Stacking credit default prediction
model proposed in this manuscript. Section 4 is about experimental design and analysis of
experimental results. Section 5 is the conclusion.

Entropy 2024, 26, 861 3 of 21

2. Credit Default Prediction Model

Credit default prediction models can significantly enhance credit risk management.
These models primarily employ modern technological methods to effectively predict credit
risk and are continuously optimized during their operation. In the field of personal
credit risk assessment, scholarly research typically focuses on two main aspects: indicator
selection and model construction. This manuscript concentrates on the model construction
aspect of personal credit risk assessment.

2.1. Boosting Models
2.1.1. XGBoost Model

XGBoost belongs to the Boosting family of models within ensemble learning and
has gained widespread attention due to its exceptional efficiency and high prediction
accuracy. Its excellent scalability makes it particularly effective in addressing large-scale
data challenges in industrial applications.

The XGBoost model is a variant of the GBDT model. It enhances the original GBDT
approach by performing a second-order Taylor expansion of the objective function and
incorporating regularization terms to reduce overfitting. XGBoost is an additive model
that combines the outputs of k base learners to produce the final model. After multiple
iterations, the model at iteration t can be expressed as Equation (1).

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (1)

The loss function of XGBoost is the sum of the loss function and the regularization
term used to prevent model overfitting and control model complexity. The loss function in
XGBoost is as Equation (2).

L(Φ) =
n

∑
i

l(ŷi, yi) + ∑K
k Ω(fk) (2)

In the above formula, i represents the ith sample in the total sample; n represents the
total number of samples used when training the kth tree; K represents all the trees trained;
L represents the error between the true value and the predicted value of the ith sample;
∑K

k Ω(fk) is the regularization term, which represents the complexity of the K trees. The
smaller the value of the model, the stronger the generalization ability of the model.

To address the challenges of solving complex loss functions, the loss function is
approximated using a second-order Taylor expansion, which results in the Equation (3).

Obj(t) ≈
n

∑
i=1

[l(yi, ŷ(t−1)
i) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω(ft) + u (3)

gi = ∂
ŷ(t−1)

i
l(yi, ŷ(t−1)

i) is the first-order gradient of the loss function; hi = ∂2
ŷ(t−1)

i

l(yi, ŷ(t−1)
i) is the second-order gradient (Hessian) of the loss function; ft(xi) is the pre-

diction of the new tree being added, which can be expanded to Equation (4); Ω(ft) is
the regularization term controlling the model’s complexity, which can be expanded to
Equation (5).

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, . . . , T} (4)

Ω(ft) = γT +
1
2

λ
T

∑
j=1

w2
j (5)

In the above formula, T represents the number of leaf nodes,γ and λ are weight
parameters that control the number of leaves, and wj is the value of the jth leaf node.

Entropy 2024, 26, 861 4 of 21

Traversing all samples to calculate the loss function is equivalent to transforming a
single sample into a set of leaf nodes and then calculating the loss function of each leaf
node. At this time, each leaf node contains multiple samples; simplifying the loss function
to the form of a leaf node yields Equation (6).

Obj(t) ≃
n
∑

i=1
[gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω(ft)

=
n
∑

i=1
[giwq(xi)

+
1
2

hiw2
q(xi)

] + γT +
1
2

λ
T
∑

j=1
w2

j

=
T
∑

j=1
[(∑

i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j] + γT

(6)

In the above formula, Gj = ∑
i∈Ij

gi, Hj = ∑
i∈Ij

hi, Gj is the accumulation of the first-order

partial derivatives of the samples in the jth leaf node, and Hj is the accumulation of the
second-order partial derivatives of the samples in the jth leaf node. Therefore, the objective
function of XGBoost can be further simplified to Equation (7).

Obj(t) =
T

∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j] + γT (7)

Using the formula for finding the maximum value of a quadratic equation, it can be

found when w∗
j = − Gj

Hj+λ , the objective function is minimized. The final loss function of
the XGBoost model is shown in Equation (8).

Obj = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (8)

This manuscript uses Scikit learn API (Application Programming Interface) for param-
eter settings. After parameter optimization, the final parameter settings for the model are
as follows: The parameter for establishing the number of subtrees is n_estimators = 200;
The tree depth parameter is max_depth = 6; The minimum sample weight in the child
nodes is min_child_weight = 1; The proportion of the training set is subsample = 0.8; and
the Learning rate is learning_rate = 0.07.

2.1.2. LightBGM Model

LightGBM was proposed mainly to address the issues GBDT encounters when han-
dling massive datasets, enabling GBDT to be applied more efficiently and effectively in
industrial practices. LightGBM introduces the Histogram algorithm, the GOSS (Gradient-
based One-Side Sampling), and the EFB (Exclusive Feature Bundling) algorithm [15–17],
building on the foundation of XGBoost. By incorporating these three algorithms, LightGBM
significantly reduces the complexity required to generate a leaf, thereby greatly reducing
computation time.

The histogram algorithm discretizes continuous floating-point features into k integers
to form bins; that is, the feature values are binned, and the gradients and number of bins
are accumulated. When traversing the data, the discretized values are used as indexes to
accumulate statistics in the histogram. After traversing once, the histogram accumulates
the required statistics, and then the histogram is used to find the optimal split point. The
number of bins is much smaller than the number of different sample values, so there are
fewer split points to traverse after binning, which greatly reduces the amount of calculation.

The single-sided sampling gradient algorithm is based on the perspective of reducing
samples because the samples with smaller gradients have little effect on reducing residuals,
so the focus is on samples with higher gradients. Therefore, in the single-sided sampling
gradient algorithm, the samples with smaller gradients are first randomly excluded, and

Entropy 2024, 26, 861 5 of 21

then the remaining samples with higher gradients are used to calculate the information
gain. The specific method of the single-sided sampling gradient algorithm is: first arrange
the eigenvalues to be split according to the absolute value, select the first a% samples with
the largest gradient, and then take b% of the remaining small gradient samples. When
calculating the information gain, multiply the last b% by (1 − a)/b to amplify the weight of
this part of the samples.

The EFB algorithm is designed to reduce the number of features, thereby speeding up
LightGBM. When the dataset contains many sparse features, the EFB algorithm bundles
mutually exclusive features together, reducing the feature dimensionality and effectively
decreasing the number of features used to construct the histogram. This further reduces
computational complexity. If two features are not entirely mutually exclusive, the degree
of exclusivity can be measured using a conflict ratio. When the conflict ratio is low, two
features that are not completely mutually exclusive can still be bundled together. This
reduces the feature dimensionality while maintaining prediction accuracy.

This manuscript uses Scikit learn API for parameter settings. After parameter op-
timization, the final parameter settings for the model are as follows: The parameter for
establishing the number of subtrees is n_estimators = 200; The tree depth parameter is
max_depth = 9; The minimum sample weight in the child nodes is min_child_weight = 8.8;
Number of leaves is num_leaves = 235. Learning rate learning_rate = 0.05; L1 regularization
coefficient is reg_alpha = 0.45; and the L2 regularization coefficient is reg_lambda = 5.68.

2.1.3. CatBoost Model

CatBoost is a combination of Categorical and Boosting. Compared with XGBoost
and LightGBM, CatBoost’s innovations are as follows: it introduces an algorithm that can
automatically convert categorical features into numerical features and also uses combined
categorical features and ranking boosting. After this series of optimizations, CatBoost
perfectly solves the problems of categorical features, gradient bias, and prediction offset,
reduces the occurrence of overfitting, and thus improves the accuracy and generalization
ability of the model.

The innovative algorithm introduced by CatBoost can automatically convert categor-
ical variables into numerical variables; that is, by counting the frequency of categorical
variables and adding hyperparameters, new numerical variables are generated. It also
processes categorical variables by adding prior distribution terms to Greedy TS (Greedy
Target-based Statistics). In addition, CatBoost also introduces methods such as Holdout TS
(Holdout Target-based Statistics), Leave-one-out TS (Leave-one-out Target-based Statistics),
and Ordered TS (Ordered Targe-based Statistics) to improve Greedy TS. These methods can
reduce the impact of noise and low-frequency categorical data on sample distribution [18].
The basic principle is shown in Equation (9).

x̂i
k =

p−1
∑

j=1
[xσj,k = xσp,k]Yσj + a · p

p−1
∑

j=1
[xσj,k = xσp,k] + a

(9)

In the above formula, p is the added prior term, a represents the weight coefficient,
which is generally greater than 0.

The premise of feature combination is that several categorical features can be combined
to generate a new feature. However, the number of combined features will continue
to grow with the number of categorical features in the sample, so it is unrealistic to
consider all combinations in the algorithm. CatBoost uses a greedy strategy to consider
combinations when generating new split points for the tree. When the tree is split for the
first time, no combination will be considered. For the second split, CatBoost will combine
all combinations of the tree, categorical features, and all categorical features in the sample,
and then automatically convert the new categorical features into numerical features.

Entropy 2024, 26, 861 6 of 21

To address the issue of prediction shift caused by gradient bias, CatBoost introduces a
novel algorithm called Ordered Boosting. This method aims to obtain unbiased gradient
estimates by training a model Mi for each sample xi using data that does not include xi.
This model provides an estimate of the gradient for the sample, which is then used to train
the base learners to produce the final model. However, since Ordered Boosting requires
training n different models, it significantly increases memory usage and complexity, making
it impractical for real-world applications. To overcome this, CatBoost optimizes the Ordered
Boosting algorithm during the tree-building phase by using two boosting modes: Ordered
and Plain. This optimization helps balance the need for accurate gradient estimation with
practical constraints on memory and computational efficiency.

This manuscript uses Scikit learn API for parameter settings. After parameter opti-
mization, the final parameter settings for the model are as follows: The parameter for the
number of training sessions is iterations = 300. The tree depth parameter is max_depth = 6;
The maximum size of one hot encoding is one_hot_max_size = 1; Learning rate learn-
ing_rate = 0.03; and the L2 regularization coefficient is l2_leaf_reg = 3.

2.2. TabNet Model

TabNet is the first self-supervised deep learning model for tabular data. When the
amount of unlabeled data are greater than the amount of labeled data, TabNet pre-training
can significantly improve the effect of supervised learning, which is suitable for the scenario
of lack of labeled data in credit default prediction in this article. From the structure of
TabNet, it can be found that it has strong scalability and a lot of room for subsequent
optimization and improvement, so this article decided to use TabNet as the initial model
for training.

The operation process of TabNet can be simply described as constructing the final
feature vector through information aggregation after continuous feature selection to achieve
the decision task. The TabNet network structure is shown in Figure 1.

Entropy 2024, 26, x FOR PEER REVIEW 6 of 22

The premise of feature combination is that several categorical features can be com-

bined to generate a new feature. However, the number of combined features will continue

to grow with the number of categorical features in the sample, so it is unrealistic to con-

sider all combinations in the algorithm. CatBoost uses a greedy strategy to consider com-

binations when generating new split points for the tree. When the tree is split for the first

time, no combination will be considered. For the second split, CatBoost will combine all

combinations of the tree, categorical features, and all categorical features in the sample,

and then automatically convert the new categorical features into numerical features.

To address the issue of prediction shift caused by gradient bias, CatBoost introduces

a novel algorithm called Ordered Boosting. This method aims to obtain unbiased gradient

estimates by training a model iM for each sample ix using data that does not include

ix . This model provides an estimate of the gradient for the sample, which is then used to

train the base learners to produce the final model. However, since Ordered Boosting re-

quires training n different models, it significantly increases memory usage and com-

plexity, making it impractical for real-world applications. To overcome this, CatBoost op-

timizes the Ordered Boosting algorithm during the tree-building phase by using two

boosting modes: Ordered and Plain. This optimization helps balance the need for accurate

gradient estimation with practical constraints on memory and computational efficiency.

This manuscript uses Scikit learn API for parameter settings. After parameter opti-

mization, the final parameter settings for the model are as follows: The parameter for the

number of training sessions is iterations = 300. The tree depth parameter is max_depth =

6; The maximum size of one hot encoding is one_hot_max_size = 1; Learning rate learn-

ing_rate = 0.03; and the L2 regularization coefficient is l2_leaf_reg = 3.

2.2. TabNet Model

TabNet is the first self-supervised deep learning model for tabular data. When the

amount of unlabeled data are greater than the amount of labeled data, TabNet pre-training

can significantly improve the effect of supervised learning, which is suitable for the sce-

nario of lack of labeled data in credit default prediction in this article. From the structure

of TabNet, it can be found that it has strong scalability and a lot of room for subsequent

optimization and improvement, so this article decided to use TabNet as the initial model

for training.

The operation process of TabNet can be simply described as constructing the final

feature vector through information aggregation after continuous feature selection to

achieve the decision task. The TabNet network structure is shown in Figure 1.

Figure 1. TabNet network structure. Figure 1. TabNet network structure.

TabNet as a whole can be considered as a multi-step additive model. The input data
of each step model is the feature vector F ∈ RB×D, where B is the size of the batch size and
D is the feature dimension. First, the original feature vector F is input to the BN (Batch
Normalization) layer for normalization, and then the data passes through the Feature
Transformer layer for feature calculation. The function of this layer is shown in Figure 2.

The Feature Transformer layer consists of a parameter-sharing layer and a parameter-
independent layer. The parameter-sharing layer in the first half is trained together at all
steps, and the parameter-independent module in the second half is trained separately at

Entropy 2024, 26, 861 7 of 21

each step. This ensures that both the feature commonality and the feature characteristics
can be calculated in the feature vector input at each step.

Entropy 2024, 26, x FOR PEER REVIEW 7 of 22

TabNet as a whole can be considered as a multi-step additive model. The input data

of each step model is the feature vector B DF R  , where B is the size of the batch size
and D is the feature dimension. First, the original feature vector F is input to the BN
(Batch Normalization) layer for normalization, and then the data passes through the Fea-

ture Transformer layer for feature calculation. The function of this layer is shown in Figure

2.

Feature
transformer

F
C

B
N

G
L
U

F
C

B
N

G
L
U

F
C

B
N

G
L
U

F
C

B
N

G
L
U

0.50.5

Shared across decision steps Decision step dependent

0.5

Figure 2. Feature Transformer layer structure.

The Feature Transformer layer consists of a parameter-sharing layer and a parame-

ter-independent layer. The parameter-sharing layer in the first half is trained together at

all steps, and the parameter-independent module in the second half is trained separately

at each step. This ensures that both the feature commonality and the feature characteristics

can be calculated in the feature vector input at each step.

After passing through the Feature Transformer layer, the data will enter the Split

module. The main function of this module is to divide the feature vector output by the

Feature Transformer layer into two parts. One part participates in the calculation of the

current step, and the other part is sent to the next layer to participate in the calculation of

the Mask. When the data are first input into the model, Split does not split it and directly

inputs the complete feature vector into the next layer. After passing through the Split

module, the data enters the Attentive Transformer layer. The internal structure is shown

in Figure 3.

Attention
transformer

F
C

B
N

S
p
a
rsem

ax

Prior scales

Figure 3. Attentive Transformer layer structure.

The Attentive Transformer layer is mainly composed of the FC (Fully Connected)

layer, BN layer, Sparsemax layer, and weighted scaling factor prior scale item. This layer

will output a Mask matrix after calculation, and its mathematical expression is shown in

Equation (10).

Figure 2. Feature Transformer layer structure.

After passing through the Feature Transformer layer, the data will enter the Split
module. The main function of this module is to divide the feature vector output by the
Feature Transformer layer into two parts. One part participates in the calculation of the
current step, and the other part is sent to the next layer to participate in the calculation of
the Mask. When the data are first input into the model, Split does not split it and directly
inputs the complete feature vector into the next layer. After passing through the Split
module, the data enters the Attentive Transformer layer. The internal structure is shown in
Figure 3.

Entropy 2024, 26, x FOR PEER REVIEW 7 of 22

TabNet as a whole can be considered as a multi-step additive model. The input data

of each step model is the feature vector B DF R  , where B is the size of the batch size
and D is the feature dimension. First, the original feature vector F is input to the BN
(Batch Normalization) layer for normalization, and then the data passes through the Fea-

ture Transformer layer for feature calculation. The function of this layer is shown in Figure

2.

Feature
transformer

F
C

B
N

G
L
U

F
C

B
N

G
L
U

F
C

B
N

G
L
U

F
C

B
N

G
L
U

0.50.5

Shared across decision steps Decision step dependent

0.5

Figure 2. Feature Transformer layer structure.

The Feature Transformer layer consists of a parameter-sharing layer and a parame-

ter-independent layer. The parameter-sharing layer in the first half is trained together at

all steps, and the parameter-independent module in the second half is trained separately

at each step. This ensures that both the feature commonality and the feature characteristics

can be calculated in the feature vector input at each step.

After passing through the Feature Transformer layer, the data will enter the Split

module. The main function of this module is to divide the feature vector output by the

Feature Transformer layer into two parts. One part participates in the calculation of the

current step, and the other part is sent to the next layer to participate in the calculation of

the Mask. When the data are first input into the model, Split does not split it and directly

inputs the complete feature vector into the next layer. After passing through the Split

module, the data enters the Attentive Transformer layer. The internal structure is shown

in Figure 3.

Attention
transformer

F
C

B
N

S
p
a
rsem

ax

Prior scales

Figure 3. Attentive Transformer layer structure.

The Attentive Transformer layer is mainly composed of the FC (Fully Connected)

layer, BN layer, Sparsemax layer, and weighted scaling factor prior scale item. This layer

will output a Mask matrix after calculation, and its mathematical expression is shown in

Equation (10).

Figure 3. Attentive Transformer layer structure.

The Attentive Transformer layer is mainly composed of the FC (Fully Connected)
layer, BN layer, Sparsemax layer, and weighted scaling factor prior scale item. This layer
will output a Mask matrix after calculation, and its mathematical expression is shown in
Equation (10).

M[i] = SparseMax(P[i − 1] · hi(a[i − 1])) (10)

i represents the current step; a[i − 1] is the feature vector after Split in the previous
step, which is the feature information B × Na; hi(·) represents the FC + BN layer; P[i − 1]
is the prior scale item of the previous step, which is used to indicate the degree of use
of Features in previous decisions. If a feature has been used many times in the previous
feature extraction process, it should not be selected by the model in the current feature
selection. The main function of the prior scale item P[i] is to reduce the importance of
such previously reused features in the current feature selection. Sparsemax is a sparse
probabilistic activation function that works similarly to Softmax, but the output is more
sparse, and the output results are concentrated near 0 or 1 with fewer intermediate values,
which ensures that the most prominent features can be selected during the feature selection
process. The formula for P[i] is shown in Equation (11).

Entropy 2024, 26, 861 8 of 21

P[i] = ∏i
j=1 (γ − M[j]) (11)

γ is the weight of the sparse regularization term, which is used to add constraints to
the feature sparsity in the feature selection stage. The smaller γ is, the sparser the feature
selection is. When γ = 1 is used, it means that a feature item can only be used once in
training; when γ > 1 is used, it means that a feature can be reused in multiple steps of
feature selection. As the number of uses increases, its weight value decreases, and the
corresponding importance in subsequent feature selection decreases. When the model is
initialized, the P[0] of all feature items is assigned a value of 1. In order to enhance the
sparse selection capability of feature items, TabNet introduces a sparse regularization term
in the form of entropy. The formula is shown in Equation (12).

Lsparse =
Nsteps

∑
i=1

B

∑
b=1

D

∑
j=1

−Mb,j[i]
Nsteps · B

log(Mb,j[i] + ε) (12)

N is the number of steps; B is the batchsize; D is the feature dimension, and is a
small value, which is mainly used to stabilize the overall value. The main purpose of this
regularization term is to make M[i] more it sparse, so that its distribution is closer to 0 or 1,
and its value reflects the sparsity of M[j]. The smaller the value of Lsparse, the sparser M[j]
is. Finally, Lsparse will be added to the total loss function.

After the feature extraction of all steps is completed, TabNet transforms the output
of the Feature Transformer layer of each step through the ReLU (Rectified Linear Unit)
activation function, then adds the results of all steps together, and then passes through an
FC layer to obtain the final output result, which is the category predicted by TabNet.

2.3. Stacking Ensemble Learning

Stacking is a more advanced model fusion method that leverages multiple base models
for better predictions. Its core idea is to use several base learners in the first layer to learn
from the original data. The outputs of these base learners are then stacked column-wise
to form a new dataset. This new dataset is then passed to a second-layer model, known
as the meta-learner, which fits the combined output to generate the final prediction. In
simpler terms, stacking uses the output of the first layer as the input for the second layer,
allowing the second-layer model to learn from the predictions of the base models and
improve overall performance.

The primary issue with stacking is that the base models are trained on the entire
training set, and then their predictions are used to fit the second-layer model, which often
leads to overfitting. To address this problem, CV (Cross-Validation) is frequently used
in practice to reduce overfitting. The following takes a five-fold cross-validation as an
example to illustrate the working principle of Stacking in practical applications.

Step 1: Divide the training set into 5 parts, each of which is called a fold.
Step 2: For each fold, use it as a validation set and the remaining 4 folds as training

sets, and use multiple base models to train the training set.
Step 3: For each base model i, use the trained model to predict the validation set,

obtain the prediction result of the base model on the fold to obtain part of Pi, and use the
model to predict part of Ti in the test set.

Step 4: Repeat steps 2 and 3 until all 5 folds are used as validation sets to obtain
corresponding predictions.

Step 5: Concatenate the predicted values of all fold validation sets into a complete Pi
as a new training set. At the same time, take the average of the prediction results of the five
training models on the test set to obtain Ti.

Step 6: The Pi generated by the i base models are merged to obtain the training set
Train2 of the next layer, and the Ti are merged to obtain the test set Test2 of the next layer.

Step 7: Use Train2 to train the second-layer model, and then obtain the prediction
result on Test2, which is the final result of the model.

Entropy 2024, 26, 861 9 of 21

3. TabNet-Stacking Model
3.1. Improving TabNet Feature Selection

TabNet performs feature selection through a sequential attention mechanism simi-
lar to the additive model. This feature selection method inherits the advantages of the
tree model’s interpretability and sparse feature selection, but TabNet still has room for
improvement in the feature selection module.

Unlike other optimization algorithms, genetic algorithms operate on feature encoding
rather than the features themselves, so there are many explanations for the features of the
problem that do not need to be optimized. This feature can well solve the situation where
the meaning of the features is unknown. At the same time, genetic algorithms have the
advantages of efficient search, strong fault tolerance, and high flexibility. Therefore, this
manuscript uses genetic algorithms to transform the attention module of TabNet. The
pseudo-code of the genetic algorithm optimization feature selection algorithm is shown in
Algorithm 1.

Algorithm 1. Genetic algorithm optimization feature selection algorithm pseudo-code.

Input: Feature set T = {(x1, y1), (x2, y2), . . . , (xm, ym)}; Maximum genetic generation max;
Population generation i;
Initialization: i = 0; max = 500; Population Pi;
while(i < max)
{

i ++;
Perform selection operation on population Pi;
Perform crossover operation on population Pi;
Perform mutation operation on population Pi;

}
Output: Feature subset F

The encoding method used is binary, where 1 indicates that the feature vector is
selected into the feature subset F, and 0 indicates it is not selected. The population is
initialized randomly, and the fitness function is defined as the objective function of the
TabNet model. The genetic operators are selected in sequence as roulette-wheel selection,
single-point crossover, and basic bit mutation. To maximize the effectiveness of the genetic
algorithm, several experiments were conducted, testing different numbers of generations,
crossover probabilities, and mutation probabilities. The optimal settings were determined
to be a maximum of 500 generations, a crossover probability Pc of 0.7, and a mutation
probability Pm of 0.1, which provided the greatest improvement to the algorithm.

The genetic algorithm still has the problem of premature maturity when using a single
population. This manuscript further uses multiple populations to replace the original
single population. The operations between each population remain independent, and each
generation of populations exchanges the excellent chromosomes of this generation with
other populations to promote evolution. Among the multiple populations, one population
focuses on the local optimal solution, and the other population focuses on the global
optimal solution. Then, through immigration operations, the excellent chromosomes
between populations are exchanged, so that the algorithm takes into account both local
and global searches and strikes a balance between population diversity and algorithm
convergence speed.

The specific improvement of the MPGA (Multi-Population Genetic Algorithm) over
the standard genetic algorithm lies in the use of multiple populations, with each population
configured with different parameters to evolve in various directions, thereby expanding
the search space. MPGA introduces a migration operator, allowing information exchange
between populations, which helps avoid population stagnation and accelerates conver-
gence. Additionally, MPGA incorporates artificial selection and elite populations. The
pseudo-code for the feature selection process using MPGA is presented in Algorithm 2.

Entropy 2024, 26, 861 10 of 21

Algorithm 2. Pseudo-code for Feature Selection using MPGA.

Input: Feature set T = {(x1, y1), (x2, y2), . . . , (xm, ym)}; Maximum genetic generation max;
Population generation i; Genetic generation r; the r-th population Pi(r) in the i-th generation;
Initialization: i = 0; max = 500;
For r = 1 : MP

Initialize the population Pi(r);
Calculate the Pi(r) fitness of the population;

while(i < max)
{

i ++;
For r = 1 : MP

Perform selection operation on population Pi(r);
Perform crossover operation on population Pi(r);
Perform mutation operation on population Pi(r);
Calculate population fitness;

Perform immigration operations on all populations Pi in the i-th generation;
Generating the elite population;
}
Select the best solution from the elite population to generate the best feature subset F;
Output: Feature subset F

The multi-population optimization process operates as follows: the worst chromosome in
the i− th population is replaced by the best chromosome from the (i−1)− th population using
the migration operator. To maintain closure, the worst chromosome in the first population is
also replaced by the best chromosome from the last population. The best chromosome from
each population is then added to the elite population using the artificial selection operator.

3.2. Hyperparameter Optimization Based on Particle Swarm Optimization

Since most of TabNet’s operations are encapsulated in libraries, modifying its internal
structure is challenging. Additionally, the complexity of TabNet’s parameters makes hy-
perparameter tuning difficult. Therefore, an automated method is needed to find the most
suitable parameters for TabNet. Given that PSO is more efficient than Genetic Algorithms,
we opted to use PSO for automatic hyperparameter tuning of TabNet. The process of
hyperparameter optimization using PSO is shown in Figure 4.

Entropy 2024, 26, x FOR PEER REVIEW 11 of 22

best chromosome from each population is then added to the elite population using the

artificial selection operator.

3.2. Hyperparameter Optimization Based on Particle Swarm Optimization

Since most of TabNet’s operations are encapsulated in libraries, modifying its internal

structure is challenging. Additionally, the complexity of TabNet’s parameters makes hy-

perparameter tuning difficult. Therefore, an automated method is needed to find the most

suitable parameters for TabNet. Given that PSO is more efficient than Genetic Algorithms,

we opted to use PSO for automatic hyperparameter tuning of TabNet. The process of hy-

perparameter optimization using PSO is shown in Figure 4.

Start

Initialize Particle Swarm
Optimization

Calculate particle fitness

Update parameters based
on fitness

End

Has the maximum
number of iterations

been reached？

Yes

No

Figure 4. Particle Swarm Optimization for Hyperparameter Tuning.

Among them, the initial value of the weight factor w is set to 1, the initial values of
the learning factor 1c and the learning factor 2c are both 0, the position of the initial

particle is randomly generated, and the algorithm terminates after 500 iterations.

3.3. TabNet‐Based Integrated Model

The TabNet model is a multi-step addition deep neural network model, and a large

batch size is required to improve the model effect. TabNet consumes a lot of computing

resources during the calculation process, which increases the system pressure in practical

applications. Therefore, this manuscript uses the interpretability of the TabNet model as

a feature selection module in the classification model, and the specific classification task

is completed by the integrated learning model Stacking.

TabNet offers strong interpretability in feature selection, which sets it apart from

other classification models. Traditional neural network classification models, such as

those based on multilayer perceptrons, treat the input feature vectors uniformly across

different layers of their internal network structure. In contrast, the TabNet model uses a

Mask feature matrix to compute the features at each step, allowing it to assess the im-

portance of individual features and thereby provide interpretability for the feature selec-

tion process.

Assuming that the feature vector is x , in the processing of step i , the output pro-

cessed by the Feature Transformer layer is [] dN
xd i R . From the TabNet model structure,

it can be seen that the final output of the model is obtained by adding the results of each

Figure 4. Particle Swarm Optimization for Hyperparameter Tuning.

Entropy 2024, 26, 861 11 of 21

Among them, the initial value of the weight factor w is set to 1, the initial values of the
learning factor c1 and the learning factor c2 are both 0, the position of the initial particle is
randomly generated, and the algorithm terminates after 500 iterations.

3.3. TabNet-Based Integrated Model

The TabNet model is a multi-step addition deep neural network model, and a large
batch size is required to improve the model effect. TabNet consumes a lot of computing
resources during the calculation process, which increases the system pressure in practical
applications. Therefore, this manuscript uses the interpretability of the TabNet model as a
feature selection module in the classification model, and the specific classification task is
completed by the integrated learning model Stacking.

TabNet offers strong interpretability in feature selection, which sets it apart from
other classification models. Traditional neural network classification models, such as those
based on multilayer perceptrons, treat the input feature vectors uniformly across different
layers of their internal network structure. In contrast, the TabNet model uses a Mask
feature matrix to compute the features at each step, allowing it to assess the importance of
individual features and thereby provide interpretability for the feature selection process.

Assuming that the feature vector is x, in the processing of step i, the output processed
by the Feature Transformer layer is dx[i] ∈ RNd . From the TabNet model structure, it can be
seen that the final output of the model is obtained by adding the results of each step, and
dx,y < 0 has no contribution to the entire model output. The contribution of the feature x[i]
in step i can be obtained as Equation (13).

ηx[i] = ∑Nd
j=1 ReLU(dx,j[i]) (13)

The larger the ηx[i] is, the greater the influence of the feature on the model output
results and the greater the contribution to the entire model feature selection process. There-
fore, ηx[i] can be used as the weight of feature x[i] in the i − th step to weight the Mask
matrix. The weight value in the Mask matrix reflects the importance of the feature, and the
importance of each feature in the feature vector x can be defined as Equation (14).

Magg−b,j = ∑N
i=1 ηx[i] · Mx,j[i] (14)

The normalized importance is expressed as Equation (15).

Magg−b,j =
∑N

i=1 ηx[i] · Mx,j[i]

∑D
j=1 ∑N

i=1 ηx[i] · Mx,j[i]
(15)

This process yields a feature importance ranking, achieving the goal of feature selec-
tion. In constructing the classification model, a two-layer Stacking ensemble method is
employed to build the credit default classification model. First, after feature selection by
TabNet, the student behavior dataset is split into five subsets using 5-fold cross-validation.
Each subset is further divided into a sub-training set and a sub-validation set. The sub-
training set is used to train base learners, generating lower-layer models, and the class
predictions produced by the trained base learners on the validation set serve as inputs for
the higher-level learner. The classification result of the higher-level learner is used as the
final prediction of the model.

In the Stacking ensemble learning method, the greater the difference between the
base learners, the better the overall performance of the model. Therefore, before building
a Stacking model, it is necessary to analyze the differences between the various models.
This manuscript selects the XGBoost model, LightGBM model, CatBoost model, KNN
model, and SVM model as the base learners of the first layer of Stacking. Among them,
the KNN model is mature in theory, has high accuracy, and is widely used in practical
engineering problems. The MLP (Multilayer Perceptron) model has the characteristics of

Entropy 2024, 26, 861 12 of 21

strong generalization ability and good stability and is an efficient classifier composed of
artificial neural networks.

In the Stacking ensemble learning method, the greater the diversity among the base
learners, the better the overall model performance. Therefore, before building the Stacking
model, it is essential to analyze the differences between various models. In this study,
XGBoost, LightGBM, CatBoost, KNN, and SVM models were selected as the base learners
for the first layer of the Stacking model. Among them, the KNN model is theoretically
well-established and highly accurate, making it widely applicable to real-world engineering
problems. The MLP model, characterized by strong generalization ability and stability,
serves as an efficient classifier composed of artificial neural networks.

The XGBoost, LightGBM, and CatBoost models belong to the Boosting family and
are capable of flexibly handling various types of data, including both continuous and
discrete data. They also allow the use of specific loss functions, enhancing robustness in
dealing with outliers. The inclusion of KNN and SVM models ensures diversity among the
algorithms in the Stacking model, which improves the overall classification performance.
The first layer of the Stacking model consists of individual classification models, while the
second layer’s meta-learner must minimize the classification errors of the base models to
achieve a more accurate final result. For this purpose, a model with strong generalization
capabilities is required. XGBoost, an ensemble learning model based on GBDT, has been
optimized and offers high accuracy, strong generalization, and robustness against outliers
in various tasks. Therefore, this study selects XGBoost as the meta-learner for the second
layer. The structure of the credit default prediction model based on TabNet-Stacking is
shown in Figure 5.

Entropy 2024, 26, x FOR PEER REVIEW 13 of 22

optimized and offers high accuracy, strong generalization, and robustness against outliers

in various tasks. Therefore, this study selects XGBoost as the meta-learner for the second

layer. The structure of the credit default prediction model based on TabNet-Stacking is

shown in Figure 5.

C
red

it D
e
fa
u
lt D

ataset

Improved
TabNet

XGBoost

LightGBM

CatBoost

KNN

SVM

Stacking second
layer dataset

Meta learner
XGBoost

Feature
extraction

Feature
structure

Output

TabNet Feature Engineering Stacking Credit Default Classification

Figure 5. Credit default prediction model based on TabNet-Stacking.

4. Experimental Results and Analysis

This experiment utilizes the open-source PyTorch framework, with the algorithm

network implemented in Python (3.8.8). The hardware setup includes an NVIDIA RTX

4060Ti graphics card (8 GB) and a 64-bit Ubuntu 16.04 operating system.

PyTorch, an open-source neural network framework first released by Facebook in

early 2017, directly supports models such as XGBoost, LightGBM, CatBoost, KNN, SVM,

and TabNet. By leveraging open-source projects for these models and combining them

with the preprocessed dataset from the Alibaba Cloud-Tianchi Loan Default Prediction

dataset, the experiment optimizes feature selection using a multi-population genetic algo-

rithm and fine-tunes hyperparameters using a particle swarm algorithm. The TabNet net-

work structure is further improved, and the TabNet-Stacking model, consisting of Stack-

ing ensemble learning, is applied to classify and predict customer data from the dataset,

enhancing the credit risk management and prevention levels.

4.1. Data Set Processing

The data studied in this manuscript comes from the loan default prediction dataset

in Alibaba Cloud Tianchi. The data comes from the loan records of a certain credit plat-

form, totaling 800,000 records, containing 47 columns of variable information, of which 15

columns are anonymous variables. In this experiment, the dataset is divided into a train-

ing set and a test set in a ratio of 4:1 to train the model and evaluate the model perfor-

mance.

In the data set, “id” is the unique letter of credit identifier assigned to the loan list,

which is recorded as the index column in the model construction. “isDefault” is the cus-

tomer label column, which takes a value of 0 or 1, where 1 indicates a defaulting customer

and 0 indicates a non-defaulting customer. Among the remaining 45 variables, from the

initial data storage type, there are 5 categorical variables, 8 discrete variables, 32 continu-

ous variables, and 15 anonymous variables after desensitization are recorded as n0–n14.

The specific meaning and explanation of each variable are shown in Table 1.

Table 1. Dataset field dictionary.

Feature Feature Meaning Explanation Dtype

id Unique letter of credit identifier assigned to the loan statement int64

isDefault Whether default int64

loanAmnt Loan Amount float64

term Loan term (year) int64

Figure 5. Credit default prediction model based on TabNet-Stacking.

4. Experimental Results and Analysis

This experiment utilizes the open-source PyTorch framework, with the algorithm
network implemented in Python (3.8.8). The hardware setup includes an NVIDIA RTX
4060Ti graphics card (8 GB) and a 64-bit Ubuntu 16.04 operating system.

PyTorch, an open-source neural network framework first released by Facebook in early
2017, directly supports models such as XGBoost, LightGBM, CatBoost, KNN, SVM, and
TabNet. By leveraging open-source projects for these models and combining them with the
preprocessed dataset from the Alibaba Cloud-Tianchi Loan Default Prediction dataset, the
experiment optimizes feature selection using a multi-population genetic algorithm and fine-
tunes hyperparameters using a particle swarm algorithm. The TabNet network structure
is further improved, and the TabNet-Stacking model, consisting of Stacking ensemble
learning, is applied to classify and predict customer data from the dataset, enhancing the
credit risk management and prevention levels.

4.1. Data Set Processing

The data studied in this manuscript comes from the loan default prediction dataset in
Alibaba Cloud Tianchi. The data comes from the loan records of a certain credit platform, to-
taling 800,000 records, containing 47 columns of variable information, of which 15 columns

Entropy 2024, 26, 861 13 of 21

are anonymous variables. In this experiment, the dataset is divided into a training set and
a test set in a ratio of 4:1 to train the model and evaluate the model performance.

In the data set, “id” is the unique letter of credit identifier assigned to the loan list,
which is recorded as the index column in the model construction. “isDefault” is the
customer label column, which takes a value of 0 or 1, where 1 indicates a defaulting
customer and 0 indicates a non-defaulting customer. Among the remaining 45 variables,
from the initial data storage type, there are 5 categorical variables, 8 discrete variables,
32 continuous variables, and 15 anonymous variables after desensitization are recorded as
n0–n14. The specific meaning and explanation of each variable are shown in Table 1.

Table 1. Dataset field dictionary.

Feature Feature Meaning Explanation Dtype

id Unique letter of credit identifier assigned to the loan statement int64
isDefault Whether default int64
loanAmnt Loan Amount float64

term Loan term (year) int64
interestRate Loan interest rate float64
installment Installment amount float64

grade Loan grade int64
subGrade Loan subgrade int64

employmentTitle Employment title float64
employmentLength Employment length float64

homeOwnership Home ownership status int64
annualIncome Annual income float64

verificationStatus Verification Status int64
issueDate The month the loan was disbursed object
purpose Loan Purpose Category int64

postCode The first 3 digits of the ZIP code provided on your loan application float64
regionCode Region code int64

dti Debt-to-income ratio float64

Delinquency_2years The number of default events in the borrower’s credit file that are overdue for
more than 30 days in the past two years float64

ficoRangeLow The lower limit range of fico that the borrower belongs to at the time of
loan issuance float64

ficoRangeHigh The upper limit range of the borrower’s fico at the time of loan issuance float64
openAcc The number of open credit lines in the borrower’s credit file float64
pubRec Number of derogatory public records float64

pubRecBankruptcies Number of public record expungements float64
revolBal Total credit revolving balance float64
revolUtil Revolving credit utilization or the borrower’s use of all available revolving credit float64
totalAcc The total number of credit lines currently on the borrower’s credit file float64

initialListStatus Initial listing status of the loan int64
applicationType Individual application or joint application with two co-borrowers int64
earliesCreditLine The month in which the borrower’s earliest reported credit line was opened int64

title The name of the loan provided by the borrower float64

policyCode Publicly available strategy_code = 1 New product not publicly available
strategy_code = 2 float64

n series of anonymous features Anonymous features n0-n14, for processing some lender behavior
counting features float64

First, descriptive statistics are performed on numerical variables and categorical
variables to understand the basic distribution of samples, as shown in Tables 2 and 3.

In Table 2, count is the total number of variables, mean is the average value of the
variable, std is the standard deviation, min is the minimum value, max is the maximum
value, null is the null value, and entropy is the entropy value.

Entropy 2024, 26, 861 14 of 21

Table 2. Descriptive statistics for numerical variables.

Feature Count Mean Std Min Max Null Entropy

loanAmnt 800,000 14,416.8 8716.09 500 40,000 0 6.947
term 800,000 3.483 0.856 3 5 0 0.797

interestRate 800,000 13.238 4.766 5.31 30.99 0 7.534
installment 800,000 437.948 261.460 15.69 1715.42 0 13.993

employmentTitle 799,999 72,005.4 106,585.6 0 378,351 1 14.037
homeOwnership 800,000 0.614 0.676 0 5 0 1.383

annualIncome 800,000 76,133.9 68,947.5 0 10,999,200 0 8.273
verificationStatus 800,000 1.010 0.783 0 2 0 1.576

purpose 800,000 1.746 2.367 0 13 0 1.936
postCode 799,999 258.536 200.037 0 940 1 8.897

regionCode 800,000 16.386 11.037 0 50 0 4.826
dti 799,761 18.285 11.150 −1 999 239 11.737

delinquency_2years 800,000 0.318 0.880 0 39 0 1.008
ficoRangeLow 800,000 696.204 31.866 630 845 0 4.357
ficoRangeHigh 800,000 700.204 31.867 634 850 0 4.357

openAcc 800,000 11.598 5.475 0 86 0 4.337
pubRec 800,000 0.215 0.606 0 86 0 0.807

pubRecBankruptcies 799,595 0.134 0.377 0 12 405 0.590
revolBal 800,000 16,228.71 22,458.0 0 2,904,836 0 15.173
revolUtil 799,469 51.791 24.516 0 892.3 531 9.879
totalAcc 800,000 24.999 11.999 2 162 0 5.520

initialListStatus 800,000 0.417 0.493 0 1 0 0.980
applicationType 800,000 0.019 0.137 0 1 0 0.137

title 799,999 1754.11 7941.47 0 61,680 1 3.969
policyCode 800,000 1.000 0.000 1 1 0 0.000

n0 759,730 0.512 1.333 0 51 40,270 1.292
n1 759,730 3.642 2.247 0 33 40,270 3.040
n2 759,730 5.643 3.303 0 63 40,270 3.564
n3 759,730 5.643 3.303 0 63 40,270 3.564
n4 766,761 4.736 2.950 0 49 33,239 3.382
n5 759,730 8.108 4.799 0 70 40,270 4.120
n6 759,730 8.576 7.401 0 132 40,270 4.519
n7 759,730 8.283 4.562 0 79 40,270 4.034
n8 759,729 14.622 8.125 1 128 40,271 4.877
n9 759,730 5.592 3.216 0 45 40,270 3.542

n10 766,761 11.644 5.484 0 82 33,239 4.339
n11 730,248 0.001 0.030 0 4 69,752 0.009
n12 759,730 0.003 0.062 0 4 40,270 0.032
n13 759,730 0.089 0.509 0 39 40,270 0.394
n14 759,730 2.179 1.844 0 30 40,270 2.706

Table 3. Descriptive statistics of categorical variables.

Feature Count Unique Top Freq Null Entropy

grade 800,000 7 B 233,690 0 2.328
subGrade 800,000 35 C1 50,763 0 4.635

employmentLength 753,201 11 10+ years 262,753 46,799 3.060
issueDate 800,000 139 2016/3/1 29,066 0 6.228

earliesCreditLine 800,000 720 Aug-01 5567 0 8.420

In the table above, conut represents the total number of variables, unique represents
the type of variable, top represents the highest occurrence value, and freq represents the
occurrence frequency of the top value. The last two columns in the table above are the
number of missing values and the entropy value of the variable. The entropy value in
statistics is also called information entropy. It is the most commonly used indicator of the
purity of the observed sample set. The larger the value of information entropy, the greater

Entropy 2024, 26, 861 15 of 21

the amount of information and the greater the contribution. Assuming that the proportion
of the m − th class of samples in the sample set N is pm(m = 1, 2, 3, . . . , M), the information
entropy formula of the sample set N is shown in Equation (16).

Ent(N) = −
M

∑
m=1

pm log2 pm (16)

The entropy value of the variable “policyCode” is 0. By further checking the number
of unique values of the variable, it is found that the unique value of “policyCode” is 1. It is
determined that the variable has only one value and does not carry useful information for
label classification, so it is deleted. The descriptive statistics show that 22 variables have
missing values.

The highest missing rate does not exceed 10%. Since tree models are not highly
sensitive to missing values, only simple analysis and imputation were performed. For
the three variables “employmentTitle”, “postCode”, and “title”, which each have one
missing value, the mode was used for imputation. For the variable “pubRecBankruptcies”,
a comparison between the 0–1 distribution of missing data and normal data were conducted
through visualization, revealing that the missing data’s distribution closely resembles that
of 0. Therefore, missing values were filled with 0. For the missing variables “dti” and
“revolUtil”, their counts were notably high when the label “isDefault = 1”, and based on
entropy, these variables contain significant information and are important for the prediction
results. Thus, missing values were imputed using the LGBMRegressor function, trained
on non-missing data. For the variable “employmentLength”, the distribution of missing
values differed from other categories, and with a missing rate of nearly 6%, the missing
values were filled with -1 and treated as a separate category. Missing values in anonymized
variables were relatively sparse and filled with 0.

4.2. Feature Selection

Feature selection is an extremely important task prior to formally constructing a model.
In many machine learning algorithms, the original data typically contains a vast amount
of information. However, much of this information may not be significant or useful for
addressing specific problems. Thus, the objective of feature engineering is to select and
extract features relevant to the problem and simultaneously remove redundant and useless
features, thereby enhancing the performance and generalization ability of the algorithm.

For the variables “grade” and “subGrade”, both variables represent the loan grade
status of customers. The value of “grade” gradually decreases from “A” to “G”. The
value of “subGrade” is a subdivision under the value of “grade”, and each grade is further
divided into 1–5 sub-grades. Therefore, “subGrade” is actually a further refinement of
“grade”. The information contained in the two variables is repetitive, and “subGrade”
has more information. Hence, only “subGrade” is retained for modeling. For the n-
series variables, calculate the number of missing values, minimum value, maximum value,
standard deviation, and average value of the n-series variables for each sample. Add five
new variables, “n_null”, “n_min”, “n_max”, “n_std”, and “n_mean” for modeling.

Feature selection refers to selecting the most useful features from raw data for model-
ing, thereby improving the efficiency of modeling and also having a significant impact on
the final effect of the model. By reducing some unnecessary features, there are benefits such
as improving model accuracy, reducing overfitting risk, speeding up training, improving
data visualization, and increasing model interpretability. The feature selection in this
experiment uses the wrapper method, which, although computationally expensive, has
higher accuracy compared to the filter method. Firstly, we fit the dataset based on the
LightGBM classification model for the features that have undergone data cleaning and
variable transformation and rank the importance of the features. The ranking results are
shown in Table 4.

Entropy 2024, 26, 861 16 of 21

Table 4. Feature importance ranking.

Rank Feature Importance Rank Feature Importance

1 issueDate 0.092667 26 title 0.016667
2 revolBal 0.064667 27 n_null 0.015667
3 annualIncome 0.057333 28 purpose 0.009667
4 loanAmnt 0.053333 29 delinquency_2years 0.008
5 regionCode 0.053333 30 n5 0.007
6 dti 0.044333 31 n_mean 0.005
7 homeOwnership 0.039 32 verificationStatus 0.005
8 subGrade 0.037 33 pubRec 0.005
9 installment 0.036667 34 n4 0.004667

10 earliesCreditLine 0.035333 35 applicationType 0.004667
11 employmentTitle 0.034667 36 n10 0.004667
12 term 0.034667 37 n7 0.004
13 interestRate 0.030333 38 n1 0.003667
14 m2 0.029 39 n0 0.002667
15 totalAcc 0.028 40 openAcc 0.002
16 n2 0.028 41 pubRecBankruptcies 0.001667
17 employmentLength 0.027667 42 n_std 0.001667
18 revolUtil 0.027667 43 n_max 0.001333
19 n14 0.026333 44 n_min 0.000333
20 n9 0.024 45 n13 0.000333
21 postCode 0.020333 46 m1 0.000333
22 ficoRangeHigh 0.02 47 initialListStatus 0.000333
23 ficoRangeLow 0.017667 48 n12 0
24 n8 0.017 49 n11 0
25 n6 0.016667

This manuscript uses LightGBM as the training model and employs the forward
search method. Starting from the most important feature in Table 4, the model is added
in sequence. When the number of features reaches 36, the model performs the best and
receives the highest score. Although the feature importance of n7 and n10 is not significantly
different, when the 37th variable n7 is added to the model, the performance of the model is
not improved. Therefore, only the first 36 features are selected for modeling.

4.3. Evaluation Index

The credit risk control model is one of the most important applications in the financial
industry. It is mainly used to assess the credit risk of borrowers and provide effective risk
control and decision support for financial institutions. Since the performance of the model
is directly related to the success or failure of the business, how to evaluate the performance
of the model becomes a very important issue. Before constructing the indicators, the
confusion matrix [19] is first introduced. Many evaluation indicators are constructed on
this basis. The confusion matrix is shown in Table 5.

Table 5. Confusion matrix.

Category Predicting Default Predicting No Default

Actual Default TP FN
Actual no default FP TN

In order to quantitatively evaluate the comprehensive performance of the credit default
prediction model based on TabNet-Stacking, this manuscript uses accuracy, precision, recall,
F1 score, and AUC as evaluation criteria for credit default prediction.

Accuracy: Accuracy is the proportion of samples correctly predicted by the model to
the total number of samples. In the credit risk control model, accuracy is defined as the
proportion of the number of good and bad customers correctly predicted by the model to
the total number of samples [20], as shown in Equation (17).

Entropy 2024, 26, 861 17 of 21

Precision: Precision is the proportion of samples predicted as positive to those that
are actually positive. In the credit risk control model, precision is defined as the propor-
tion of samples predicted as good to those that are actually excellent [21], as shown in
Equation (18).

Recall: Recall is the proportion of samples predicted as positive to those that are
actually positive. In the credit risk control model, recall is defined as the proportion of
samples predicted as good to those that are predicted as excellent by the model [22], as
shown in Equation (19).

F1-Score: The F1-Score is the harmonic mean of the precision and recall, taking into
account the impact of both. In the credit risk control model, the F1-Score is defined as the
harmonic mean of the model’s precision and recall, as shown in Equation (20).

Accuracy =
TP + TN

TP + NP + TN + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 = 2 × Precision × Recall
Precision + Recall

(20)

ROC Curve (Receiver Operating Characteristic Curve): The ROC curve is a two-
dimensional plot with the FPR (False Positive Rate) on the x-axis and the TPR (True Positive
Rate) on the y-axis. In credit risk control models, the ROC curve is used to evaluate the
classification performance of the model and to assist in selecting the decision threshold [23].
The expressions of FPR and TPR are shown in Equations (21) and (22).

TPR = Recall =
TP

TP + FN
(21)

FPR =
FP

FP + TN
(22)

With the false positive rate FPR as the horizontal axis and the true positive rate
TPR as the vertical axis, the ROC curve is introduced to measure the impact of different
classification thresholds on the model classification results. The area under the ROC curve
is called the AUC value. Generally, the closer the AUC value of the model is to 1, the better
the classification effect of the model will be.

4.4. Analysis of Results

This manuscript selects XGBoost, LightBGM, CatBoost, and TabNet models as com-
parison models. The data set is divided into training set and test set in a ratio of 4:1. After
feature selection by the improved TabNet network, the feature distribution of the training
set and the data set is shown in Figure 6.

The “id” column exhibited inconsistent feature distributions between the training and
test sets, so this column was removed from the dataset. After training on the Alibaba Cloud-
Tianchi Loan Default Prediction dataset, the performance of the TabNet-Stacking-based
credit default prediction model and the comparison models were tested. The accuracy,
precision, recall, F1 score, and AUC are shown in Table 6.

Entropy 2024, 26, 861 18 of 21Entropy 2024, 26, x FOR PEER REVIEW 19 of 22

Figure 6. Training set and test set feature distribution.

The “id” column exhibited inconsistent feature distributions between the training

and test sets, so this column was removed from the dataset. After training on the Alibaba

Cloud-Tianchi Loan Default Prediction dataset, the performance of the TabNet-Stacking-

based credit default prediction model and the comparison models were tested. The accu-

racy, precision, recall, F1 score, and AUC are shown in Table 6.

Table 6. Overall data set algorithm comparison.

Model Accuracy Precision Recall F1-Score AUC

XGBoost 0.920 0.505 0.691 0.583 0.816

LightBGM 0.924 0.523 0.701 0.599 0.822

CatBoost 0.951 0.677 0.738 0.702 0.854

TabNet 0.958 0.718 0.793 0.754 0.883

TabNet-Stacking 0.979 0.782 0.856 0.817 0.941

Figure 6. Training set and test set feature distribution.

Table 6. Overall data set algorithm comparison.

Model Accuracy Precision Recall F1-Score AUC

XGBoost 0.920 0.505 0.691 0.583 0.816
LightBGM 0.924 0.523 0.701 0.599 0.822
CatBoost 0.951 0.677 0.738 0.702 0.854
TabNet 0.958 0.718 0.793 0.754 0.883

TabNet-Stacking 0.979 0.782 0.856 0.817 0.941

As can be seen from the table, compared with XGBoost, LightBGM, CatBoost, and Tab-
Net models, the TabNet-Stacking model in this manuscript has the best performance
in accuracy, precision, recall, F1 score, and AUC. The accuracy rate is improved by
2.19%~6.41%, the precision rate is improved by 8.91%~54.85%, the recall rate is improved

Entropy 2024, 26, 861 19 of 21

by 7.94%~23.88%, the F1 score is improved by 8.36%~40.14%, and the AUC is improved by
6.57%~15.32%.

The accuracy rate is 0.021 higher than the best value of TabNet in the comparison
model. In actual production, the accuracy of the model is generally accurate to 0.01. At
this accuracy, the two models perform basically the same, indicating that the model as a
whole can make a correct judgment on whether the user will default. The precision, recall,
and F1 score have extremely remarkable improvements compared with the comparison
models. Compared with XGBoost, they are increased by 0.277, 0.165, and 0.234, respectively.
The recall rate is expressed as the proportion of customers that can be identified by the
model in the case of real default. This is an important evaluation indicator in the field
of anti-fraud. The highest F1 score also proves that the model in this manuscript has the
best performance compared with the comparison model. The larger the AUC value, the
better the performance of the model classification prediction and the more accurate the
classification. The AUC value of the model in this manuscript reached 0.941, which is
significantly higher than other models. In particular, the final model output of the solution
uses the XBGoost model. Compared with the single XBGoost model without Stacking,
the AUC value is 0.816, which is significantly improved, further illustrating the role of
the TabNet-Stacking model in this manuscript in improving the performance of credit
default classification.

The experimental results prove the practical value of the credit default prediction
model based on TabNet-Stacking in this manuscript. Financial institutions can better
evaluate the credit status of borrowers through this model, thereby reducing the risk of
loan defaults. This helps to reduce the losses of financial institutions and protect the
interests of investors. These findings are of great significance to bank credit analysts and
risk control managers and provide guidance for using machine learning to improve credit
granting decisions.

5. Conclusions

In order to improve the accuracy of feature extraction and classification of credit
default prediction, this manuscript proposes a credit default prediction model based on
TabNet-Stacking. Using the PyTorch (2.4.0) deep learning framework, the TabNet network
model structure is improved, and a multi-population genetic algorithm is added to the
network design to improve the feature selection module of TabNet, and the particle swarm
algorithm is used to optimize the parameter selection of TabNet. Finally, in order to
further improve the performance of model classification and prediction, Stacking ensemble
learning is adopted, and the improved TabNet is applied to extract features. XGBoost,
LightGBM, CatBoost, KNN, and SVM are selected as the first-layer base learners, and
XGBoost is used as the second-layer meta-learner. The accuracy, F1 and AUC of the model
are tested in the Alibaba Cloud-Tianchi loan default prediction dataset.

The experimental results demonstrate that, in comparison with XGBoost, LightGBM,
CatBoost, and TabNet models, the credit default prediction model based on TabNet-Stacking
proposed in this manuscript exhibits superior performance in predicting whether loan
customers have default risks. This analysis based on TabNet-Stacking offers valuable
insights into the interaction between machine learning models and key market features.
However, the limitation of this study lies in the slight imbalance of the Alibaba Cloud-
Tianchi loan default prediction data set. There is still room for further improvement in
feature extraction. Moreover, out-of-sample prediction that might be helpful for enhancing
prediction accuracy has not been explored. Additionally, the construction of integrated
networks also merits more in-depth research. In the future, the directions of feature
extraction and integrated network construction will be further integrated.

Author Contributions: For this research, S.W. and X.Z. designed the concept of this research; X.Z.
implemented experimental design; S.W. conducted data analysis; S.W. wrote the draft paper; S.W.
and X.Z. reviewed and edited the whole paper. All authors have read and agreed to the published
version of the manuscript.

Entropy 2024, 26, 861 20 of 21

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
Alibaba Cloud—Tianchi at https://tianchi.aliyun.com/competition/entrance/531830/information
(accessed on 22 September 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

XGBoost eXtreme Gradient Boosting
LightGBM Light Gradient Boosting Machine
CatBoost Category Boosting
KNN K-NearestNeighbor
SVM Support Vector Machine
AUC Area Under the Curve
FinTech Financial Technology
ANN Artificial Neural Network
LSTM Long Short Term Memory
DNN Deep Neural Networks
AAAI Association for the Advancement of Artificial Intelligence
GBDT Gradient Boosting Decision Tree
PSO Particle Swarm Optimization
API Application Programming Interface
GOSS Gradient-based One-Side Sampling
EFB Exclusive Feature Bundling
Greedy TS Greedy Target-based Statistics
Holdout TS Holdout Target-based Statistics
Leave-one-out TS Leave-one-out Target-based Statistics
Ordered TS Ordered Targe-based Statistics
BN Batch Normalization
FC Fully Connected
ReLU Rectified Linear Unit
CV Cross-Validation
MPGA Multi-Population Genetic Algorithm
MLP Multilayer Perceptron
ROC Curve Receiver Operating Characteristic Curve
FPR False Positive Rate

References
1. Hu, W.; Li, X. Financial technology development and green total factor productivity. Sustainability 2023, 15, 10309. [CrossRef]
2. Zhang, W.; Wang, J. Credit risk contagion in complex companies network–Empirical research based on listed agricultural

companies. Econ. Anal. Policy 2024, 82, 938–953. [CrossRef]
3. Beninel, F.; Bouaguel, W.; Belmufti, G. Transfer learning using logistic regression in credit scoring. arXiv 2012, arXiv:1212.6167.
4. Khandani, A.E.; Kim, A.J.; Lo, A.W. Consumer credit-risk models via machine-learning algorithms. J. Bank. Financ. 2010, 34,

2767–2787. [CrossRef]
5. Azhan, M.; Meraj, S. Credit card fraud detection using machine learning and deep learning techniques. In Proceedings of the

2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; IEEE:
Piscataway, NJ, USA, 2021; pp. 514–518.

6. Gu, S.; Kelly, B.; Xiu, D. Empirical asset pricing via machine learning. Rev. Financ. Stud. 2020, 33, 2223–2273. [CrossRef]
7. Raza, H.; Akhtar, Z. Predicting stock prices in the Pakistan market using machine learning and technical indicators. Mod. Financ.

2024, 2, 46–63. [CrossRef]
8. Zhou, X.; Zhou, H.; Long, H. Forecasting the equity premium: Do deep neural network models work? Mod. Financ. 2023, 1, 1–11.

[CrossRef]
9. Arik, S.Ö.; Pfister, T. Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI Conference on Artificial

Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 6679–6687.
10. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

https://tianchi.aliyun.com/competition/entrance/531830/information
https://doi.org/10.3390/su151310309
https://doi.org/10.1016/j.eap.2024.04.025
https://doi.org/10.1016/j.jbankfin.2010.06.001
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.61351/mf.v2i2.167
https://doi.org/10.61351/mf.v1i1.2

Entropy 2024, 26, 861 21 of 21

11. Berhane, T.; Melese, T.; Seid, A.M. Performance Evaluation of Hybrid Machine Learning Algorithms for Online Lending Credit
Risk Prediction. Appl. Artif. Intell. 2024, 38, 2358661. [CrossRef]

12. Zedda, S. Credit scoring: Does XGboost outperform logistic regression? A test on Italian SMEs. Res. Int. Bus. Finance 2024,
70, 102397. [CrossRef]

13. Hou, L.; Bi, G.; Guo, Q. An improved sparrow search algorithm optimized LightGBM approach for credit risk prediction of SMEs
in supply chain finance. J. Comput. Appl. Math. 2025, 454, 116197. [CrossRef]

14. Yin, W.; Kirkulak-Uludag, B.; Zhu, D.; Zhu, Z. Stacking ensemble method for personal credit risk assessment in Peer-to-Peer
lending. Appl. Soft Comput. 2023, 142, 110302. [CrossRef]

15. Álvarez Chaves, M.; Gupta, H.V.; Ehret, U.; Guthke, A. On the Accurate Estimation of Information-Theoretic Quantities from
Multi-Dimensional Sample Data. Entropy 2024, 26, 387. [CrossRef] [PubMed]

16. Wang, F.; Zhang, X.; Liu, L.; Chen, C.; He, X.; Zhou, Y. High-Precision Direction of Arrival Estimation Based on LightGBM.
Circuits Syst. Signal Process. 2024, 43, 5834–5849. [CrossRef]

17. Liu, X.; Zhou, B.; Qi, W.; Wang, J. Service Pricing and Charging Strategy for Video Platforms Considering Consumer Preferences;
International Transactions in Operational Research; Wiley: Hoboken, NJ, USA, 2024.

18. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [CrossRef] [PubMed]
19. Olaniran, O.R.; Alzahrani, A.R.R.; Alzahrani, M.R. Eigenvalue Distributions in Random Confusion Matrices: Applications to

Machine Learning Evaluation. Mathematics 2024, 12, 1425. [CrossRef]
20. Wang, C.; Chen, B.; Liu, X. Credit diversification and banking systemic risk. J. Econ. Interact. Coord. 2024, 19, 59–83. [CrossRef]
21. Javadi, S.; Osah, T. Credit risk correlation and the cost of bank loans. Financ. Manag. 2021. [CrossRef]
22. Song, Y.; Wang, Y.; Ye, X.; Zaretzki, R.; Liu, C. Loan default prediction using a credit rating-specific and multi-objective ensemble

learning scheme. Inf. Sci. 2023, 629, 599–617. [CrossRef]
23. Lu, Z.; Li, H.; Wu, J. Exploring the impact of financial literacy on predicting credit default among farmers: An analysis using a

hybrid machine learning model. Borsa Istanb. Rev. 2024, 24, 352–362. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/08839514.2024.2358661
https://doi.org/10.1016/j.ribaf.2024.102397
https://doi.org/10.1016/j.cam.2024.116197
https://doi.org/10.1016/j.asoc.2023.110302
https://doi.org/10.3390/e26050387
https://www.ncbi.nlm.nih.gov/pubmed/38785636
https://doi.org/10.1007/s00034-024-02706-1
https://doi.org/10.1186/s40537-020-00369-8
https://www.ncbi.nlm.nih.gov/pubmed/33169094
https://doi.org/10.3390/math12101425
https://doi.org/10.1007/s11403-023-00401-z
https://doi.org/10.1111/fima.12467
https://doi.org/10.1016/j.ins.2023.02.014
https://doi.org/10.1016/j.bir.2024.01.006

	Introduction
	Credit Default Prediction Model
	Boosting Models
	XGBoost Model
	LightBGM Model
	CatBoost Model

	TabNet Model
	Stacking Ensemble Learning

	TabNet-Stacking Model
	Improving TabNet Feature Selection
	Hyperparameter Optimization Based on Particle Swarm Optimization
	TabNet-Based Integrated Model

	Experimental Results and Analysis
	Data Set Processing
	Feature Selection
	Evaluation Index
	Analysis of Results

	Conclusions
	References

