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Abstract: The rapid developments of 5G and B5G networks have posed higher demands on retrans-
mission in certain scenarios. This article reviews classical finite-length coding performance prediction
formulas and proposes rate prediction formulas for coded modulation retransmission scenarios.
Specifically, we demonstrate that a recently proposed model for correcting these prediction formulas
also exhibits high accuracy in coded modulation retransmissions. To enhance the generality of this
model, we introduce a range variable Pfinal to unify the predictions with different SNRs. Finally,
based on simulation results, the article puts forth recommendations specific to retransmission with a
high spectral efficiency.
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1. Introduction

New-generation mobile communication systems, 5G NR networks, are worldwide-
deployed communication systems. The 5G wireless system, which is not the straightfor-
ward evolution of traditional 4G cellular networks, is developed as a multipurpose mobile
network with many new service functionalities [1]. 5G networks can provide not only
traditional voice and data communication but also numerous new use cases, applications
for various industries, and connectivity for devices and applications across society [2,3]. Ex-
amples include vehicle-to-vehicle and vehicle-to-infrastructure communication, industrial
automation, health services, smart cities, and smart homes [4,5]. Compared to 4G LTE, 5G
NR and the future development of B5G systems have introduced a series of technical indica-
tors. To meet these performance requirements, 5G systems will leverage various emerging
technologies, such as heterogeneous networks (HetNets) [6,7], massive multiple-input
multiple-output (mMIMO) [8], millimeter-wave (mmWave) communication [9,10], device-
to-device (D2D) communication [11,12], machine-to-machine (M2M) communication [13],
reconfigurable intelligent surfaces (RISs) [14], and network slicing [15], among others.

D2D and M2M communications have many different characteristics compared to
the traditional communication services designed for human interaction. For instance, the
communication among many sensors and controllers in closed-loop control systems of
automated industries requires a maximum latency of 5 ms and a reliable packet error rate
ranging from 10−2 to 10−5 [16]. In terms of traffic safety, the packet error rate cannot exceed
10−5. These typical applications involve short data packets (code length ranges from several
hundred to one thousand) and impose very high requirements on latency and reliability.
For the applications targeting these machine communications, various solutions have been
proposed, including fewer symbols in OFDM signal packets, reducing transmission time.
The theoretical limit for the transmission of these short data packets depends on the specific
transmission environments and the technologies employed.

Shannon’s limit provides the theoretical maximum performance when the encod-
ing blocklength tends towards infinity. However, in practical situations, Shannon’s limit
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does not apply to the performance of moderate-length codes [17]. The finite-blocklength
performance bounds in binary input additive white Gaussian noise (BIAWGN) channels
have adequately addressed this issue. Recently, numerous significant advancements re-
lated to finite-blocklength analysis have emerged. Ref. [18] leverages the property of joint
convexity to address a broad spectrum of use cases, thereby facilitating the efficient resolu-
tion of joint optimization problems in multi-user environments in the finite-blocklength
regime. In [19], Behrooz Makki derives closed-form expressions for message-decoding
probabilities, throughput, expected delay, and error probability in hybrid automatic repeat
request (HARQ) configurations. Moreover, the expectation and variance of the maximum
achievable rate in a mMIMO system with a finite blocklength are rigorously analyzed [20].
However, the finite-blocklength performance analysis is not suitable for higher-order
modulation schemes, for which effective solutions have been proposed in the existing
literature [21–23]. Moreover, to ensure transmission reliability while also meeting low-
latency constraints, a limited number of retransmissions is typically required in practical
wireless networks. Combining rate-compatible coding and incremental redundancy re-
transmission schemes, the performance analysis of finite-length coded retransmission with
high-order modulation is an urgent issue that needs to be addressed.

In this paper, we analyze the performance of finite-length coded modulation in a
retransmission scenario when rate-compatible code is modulated and transmitted using
different modulation schemes in the first and second transmissions. The remaining struc-
ture of this paper is represented as follows. Firstly, we review the theoretical formulas
for predicting the performance of finite-length coded modulation and provide a brief
explanation of the calculation of key parameters in this formula under retransmission
scenarios. Next, we revisit the model for tuning on the theoretical prediction formula and
elaborate on the usage of the model. Here, we refine this method to make it more general.
Finally, through simulation results, we demonstrate the good adaptability of this calibration
model to retransmission scenarios. Based on the simulation results, we also offer some
recommendations for the retransmission approach of coded modulation.

2. Preliminaries
2.1. Some Bounds for Finite-Blocklength Coding

Consider a code with a codebook of size M and blocklength n, where the rate R can
be expressed as

R =
log2M

n
. (1)

Building upon this, [24] has proposed formulas for the upper and lower bounds on the
performance of finite-length coding. For example, the upper bound like the converse
bound, the lower bound like the random coding union (RCU) bound and the dependence
testing (DT) bound. However, these bounds all involve a greater amount of summation
and combinatorial operations, leading to a higher overall complexity and potentially
imprecise results.

For a binary symmetric channel (BSC) with a crossover probability of δ, when it
achieves the block error rate (BLER) ϵ, its RCU bound and DT bound can be calculated by

ϵ ≤
n

∑
t=0

(
n
t

)
δt(1 − δ)n−t min{1, (M − 1)

t

∑
k=0

(
n
k

)
2−n}, (2)

and

ϵ ≤
n

∑
t=0

(
n
t

)
min{δt(1 − δ)n−t, (M − 1)2−n−1}, (3)

respectively. In practical coding, the blocklength n usually amounts to several hundred,
or even greater than 1000. When the combinations of (n

k) are calculated, the computation
process becomes slower, and the precision of the results is certainly affected.
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The converse bound of a BSC satisfies

M ≤ 1
βn

1−ϵ

, (4)

βn
α = (1 − λ)βL + λβL+1, (5)

where the βl in (5) is defined as

βl =
l

∑
k=0

(
n
k

)
2−n, l = L, L + 1, (6)

and the integer L and variable λ (0 ≤ λ ≤ 1) should be determined by the following equation:

α = (1 − λ)αL + λαL+1, (7)

with

αl =
l−1

∑
k=0

(
n
k

)
(1 − δ)n−kδk, l = L, L + 1. (8)

The calculation of the converse bound (4) not only involves the combinatorial opera-
tions but also requires solving roots for two parameters in a system of binary equations,
making the computation quite complicated. Therefore, a simpler and more efficient calcula-
tion method is further explored by normal approximation (NA).

2.2. Normal Approximation Combined with Coded Modulation

Given a finite blocklength n, BLER ϵ, the upper bound of the rate can be predicted by

R = C −
√

V
n

Q−1(ϵ) +O
(

log2n
n

)
, (9)

which is called normal approximation [24], where Q(x) =
∫ +∞

x
1√
2π

e−
1
2 t2

dt, C and V are
the channel capacity and the channel dispersion, respectively. They are both characteristic
parameters of the channel, where the physical quantities do not depend on the encoding
scheme. The third-order term O

(
log2n

n

)
is proven to be log2n

2n in [24].
In different channels, C and V have different calculation methods. For a BSC with a

crossover probability of δ and δ /∈ {0, 1
2 , 1}, we have

C = 1 − h(δ) (10)

V = δ(1 − δ)(log2
1 − δ

δ
)2, (11)

where h(x) = −xlog2x − (1 − x)log2(1 − x).
Meanwhile, for a binary erasure channel (BEC) with an erasure probability of δ, we have

C = 1 − δ (12)

V = δ(1 − δ). (13)

Here, for more general applications, taking a BIAWGN channel with an SNR of P into
consideration, we have

C =
1
2

log2(1 + P) (14)

V =
P
2

P + 2

(P + 1)2 log2
2 e. (15)
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Although (14) and (15) can be easily calculated, specific modulation methods do not provide
the correlation between C, V and constellations.

If the input m points of a constellation, such as m-QAM, follow the discrete uniform
distribution, the two parameters C and V can be computed [25] by

Cm(P) = log2m − 1
m

m

∑
i=1

E
[

log2

(
m

∑
j=1

e∥Z∥2−∥x(i)+Z−x(j)∥2

)]
(16)

Vm(P) =
1
m

m

∑
i=1

Var

[
log2

(
m

∑
j=1

e∥Z∥2−∥x(i)+Z−x(j)∥2

)]
(17)

where Z is a complex Gaussian variable with a zero mean and unit variance, and x(i)
corresponds to a normalized constellation point of m-QAM with a given SNR of P. E[·] and
Var[·] represent the calculations of the mean and variance, respectively. When the value of
m is quite large, the calculations of (16) and (17) suffer a noticeable increase in complexity,
but do provide the correlation between C, V and the constellation.

3. Practical Application with Retransmission

In this section, we consider the coded modulation retransmission scenario in incre-
mental redundancy (IR) HARQ and the calculations of key parameters with the theoretical
formula and a calibration model proposed by Eva C. Song and Guosen Yue [26], which are
easy to use and have extremely good accuracy.

When the first segment of a rate-compatible coding scheme with a high-rate code of
length n fails to be received, the transmitter then sends the redundancy version of coded
bits with identical length n to the receiving end, resulting in a half-rate code of length 2n
for decoding. During retransmission, the modulation order is usually lowered according
to the specific modulation and coding scheme (MCS), such as the MCS table in 5G NR,
thereby better handling errors and enhancing the robustness of transmission.

In [26], the calculations of C and V for the parallel complex Gaussian channels with
an m-QAM input are provided by (15) and (16), respectively. Similarly, we can consider
the coded modulation in the retransmission scenario as the receiver simultaneously receiv-
ing two equal-length coded blocks from a rate-compatible coding scheme with different
modulations m1-QAM and m2-QAM over the same channel.

Therefore, in this scenario, C and V in (9) are computed by

C =
1
2
(Cm1(P) + Cm2(P)) (18)

V =
1
2
(Vm1(P) + Vm2(P)), (19)

where Cmi (P) and Vmi (P), i = 1, 2 can get by (16) and (17) on the constellations of m1-QAM
and m2-QAM, respectively. The proof of C and V is provided in Appendix A.

In terms of practical coding, ref. [26] proposes the following models:

R(P, n, ϵ) = C(P)− ∆C(P)− α(P)

√
V(P)

n
Q−1(ϵ) +

log2(n)
2n

, (20)

where C(P) and V(P) can get by (18) and (19), respectively. ∆C(P) refers to the gap between
the theoretical capacity and the rate that practical coding can achieve when the blocklength
is finite. α(P) ≥ 1 is the correction parameter for the channel dispersion V.

We follow the flowchart shown in Figure 1 to calculate the parameters in (20). Firstly,
select a targeting BLER ϵ and a sufficiently long blocklength ninf as an approximation for
infinite blocklength, where a practical rate-compatible coding scheme is employed for the
necessary initial simulation, such as LTE-turbo codes and 5G-LDPC codes. Then, for each
specific rate Rninf

i , i = 1, 2, 3, . . . , t1, obtain the Pninf
i , i = 1, 2, 3, . . . , t1 required to achieve
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the BLER ϵ based on simulation. Next, select several short blocklengths n1, n2, . . . , ns
for tuning. For each nk, k = 1, . . . , s and specific rate Rnk

j , j = 1, 2, 3, . . . , t2, obtain the

Pnk
j , j = 1, 2, 3, . . . , t2 required to achieve the BLER ϵ based on simulation.

Fix a BLER ϵ

Choose nk=n1,n2,…,ns, for 
each nk and        , simulate 

and obtain the 
         , j=1,2,3,…,t2

         Calculate          
              and    

Calculate α (Pf)  according 
to (21) 

Predict

Simulate and determine
Calculate Cth ,Vth ,ΔC and  

α for every            a

Use linear interpolation to   
plotdasdassa          

and             for each nk

( )fthC P
( )fthV P

( )k
f

nR P

Choose ninf, for each Ri    , 
simulate and obtain the Pi   , 

i=1,2,3,…,t1

kn
jR

kn
jP

Find suitable           that 
covers all P    and   P

finalP
kn

jP
inf ( )n

fPR

inf( ) ( ) ( )n
f th f fC P C P R P  

finalP
fP  finalP

infn
iP

infn
iP

infn
iR

Figure 1. Flowchart of calculation algorithm.

We simulate to obtain the Pninf
i and Pnk

j variables using the following method: Given
the modulation scheme, code blocklength n, n = ninf or nk, and rate R, we vary the values
of SNR to obtain a set of data for different SNRs and BLERs (Pn

m, ϵm), m = 1, 2, 3, . . . . Then,
around the given BLER ϵ, we identify two different BLERs which are the nearest neighbors
ϵm1 > ϵ > ϵm2 and perform linear interpolation based on their corresponding SNRs Pn

m1
and Pn

m2
to obtain the SNR Pn corresponding to the desired BLER ϵ. The linear interpolation

formula is as follows.
ϵ =

ϵm2 − ϵm1

Pn
m2

− Pn
m1

(Pn − Pn
m1
) + ϵm1 . (21)

Let the ϵ be the desired BLER; then, we can get the SNR Pn by (21).
Next, based on the Pninf

i and Pnk
j obtained from above, determine a smallest range

(or slightly larger) of Pfinal to cover all the Pninf
i and Pnk

j . For example, if we simulate to

obtain Pninf
i = 1, 1.5, . . . , 2.5 (dB) and Pnk

j = 1.2, 1.7, 2.2, . . . , 2.9 (dB), then we can choose

Pfinal = [1, 2.9] (dB). After that, use linear interpolation to connect all the Rninf
i (Pninf

i ) and
Rnk

j (Pnk
j ) to get Rninf(Pf ) and Rnk (Pf ) in the range Pf ∈ Pfinal. Then, calculate the theo-

retical channel capacity Cth(Pf ) and the theoretical channel dispersion Vth(Pf ) according
to (18) and (19), respectively. Next, calculate ∆C(Pf ) = Cth(Pf )− Rninf(Pf ) and for every
Pf ∈ Pfinal, find α that minimizes (22) to get α(Pf ).

α(Pf ) = arg min
α

s

∑
k=1

(Cth(Pf )− ∆C(Pf )− α

√
Vth(Pf )

nk
Q−1(ϵ) +

log2nk

2nk
− Rnk (Pf ))

2 (22)

Finally, for any given code length n and Pf ∈ Pfinal, compute C and V according to
(18) and (19), and obtain ∆C and α from the steps above. Predict R by using (20), which is
shown in Algorithm 1.
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Algorithm 1: Calculation algorithm of the model to predict R

Input : ϵ, ninf, Rninf
i , n1, n2, . . . , ns, Rnk

j
Output : R

1 Fix a BLER ϵ

2 Simulate to get Pninf
i based on ninf, ϵ, Rninf

i , i = i = 1, 2, 3, . . . , t1

3 Simulate to get Pnk
j based on nk = n1, n2, . . . , ns, ϵ, Rnk

j , j = 1, 2, 3, . . . , t2

4 Choose a range Pfinal that covers all the Pninf
i and Pnk

j

5 Use linear interpolation to connect all the Rninf
i (Pninf

i ) and Rnk
j (Pnk

j ) to get Rninf(Pf )

and Rnk (Pf ) in the range Pf ∈ Pfinal

6 Calculate Cth(Pf ), Vth(Pf ) for Pf ∈ Pfinal

7 ∆C(Pf ) = Cth(Pf )− Rninf(Pf ) for Pf ∈ Pfinal

8 For every Pf ∈ Pfinal, calculate α that minimizes (22) to get α(Pf )

9 return

R = C(Pf )− ∆C(Pf )− α(Pf )

√
V(Pf )

n
Q−1(ϵ) +

log2(n)
2n

for every Pf ∈ Pfinal

The above method incorporates some modifications to the method proposed in [26].
When using (22), the SNR required for calculating each α is the same, but the simulated SNR
often varies for different selected nk and Rnk

j . Therefore, after obtaining the simulation data
points, we select a range Pfinal to unify the different SNRs obtained from the simulation
that required in the formula.

4. Numerical Example

In this section, we demonstrate that the proposed model is also applicable to the
scenario of retransmission and we analyze the results with different coded modulation
combinations. In the following examples, we always use the rate-compatible coding scheme
based on 5G-LDPC codes and BP decoding in the transmitter and receiver. Assume that
16-QAM and QPSK are used in two transmissions, respectively, where the coded bits in the
first half and the second half of each encoding segment are modulated by 16-QAM and
QPSK, respectively.

In our simulations, the rate R is computed by

R = Rc ×
1
2
(log2(m1) + log2(m2)), (23)

where Rc is the original code rate, log2(m1) and log2(m2) refer to the modulation orders for
the two segments. In this example, an LDPC code with a code rate of Rc =

1
3 , 16-QAM1st

log2(m1) = 4, and QPSK2nd log2(m2) = 2 are employed in the two transmissions; thus, the
rate here is R = 1.

Since the number of message bits remains the same after retransmission, the code
length becomes twice as long, and the highest code rate of 5G-LDPC codes is 11

12 in the
first transmission. Then, after retransmission with Rc = 11

24 , the highest rate here is
R = 11

24 × 3 = 11
8 .

We select ninf = 7200 as an approximation for infinite code length, which approaches
the maximum length 8448 of information bits in the 5G-LDPC coding scheme, with
n1 = 1

20 ninf = 360, n2 = 3
20 ninf = 1080 for tuning. We choose the code rates like

Rc = 1
3 , 7

20 , 11
30 , 5

12 , 9
20 and 11

24 to make the code with length 360 have an integer number
of information bits. Then, we predict the retransmission performance of the coded modula-
tion with n = 3600.
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With this example, let us go through the steps outlined in Algorithm 1. Choose a
fixed BLER ϵ = 0.1 and then simulate to obtain Figures 2 and 3a,b. In this example,
Pfinal = [1.4, 4.65] (dB) can cover all the simulation points Pninf

i and Pnk
j . Then, Tables 1 and 2

calculate ∆C and α, respectively. Finally, using (20) and the previously obtained parameters,
we can predict R. By repeating the steps mentioned above for ϵ = 10−2 and 10−3, we can
get the results shown in Figure 4. As shown in Figure 4, the prediction performance of this
model is also very good in the retransmission scenario with a moderate blocklength and
different modulations.

1.5 2 2.5 3 3.5 4 4.5 5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 2. Calculate ∆C for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd
one with different BLERs, where the red circles, blue stars and black squares correspond to the points
for ϵ = 10−1 (listed in Table 1), 10−2 and 10−3, respectively.

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Data of blocklength n=360 used for calculate α

Figure 3. Cont.



Entropy 2024, 26, 863 8 of 17

1.5 2 2.5 3 3.5 4 4.5 5

0.8

1

1.2

1.4

1.6

1.8

2

(b) Data of blocklength n=1080 used for calculate α

Figure 3. Calculate α for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd one
with different BLERs, where the red circles, blue stars and black squares correspond to the points for
ϵ = 10−1 (listed in Table 2), 10−2 and 10−3, respectively.

Table 1. Calculate ∆C for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd
one, ninf = 7200, ϵ = 10−1. Here, some points in Pfinal are shown.

Pf ∈ Pfinal (dB) Cth R7200 ∆C

1.45 1.2 1 0.2

1.775 1.26 1.05 0.21

2.145 1.32 1.1 0.22

2.593 1.4 1.167 0.233

2.765 1.43 1.2 0.23

3.052 1.49 1.25 0.24

3.355 1.54 1.3 0.24

3.59 1.58 1.35 0.23

3.7 1.61 1.375 0.235

Table 2. Calculate α for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd one,
n1 = 360, n2 = 1080, ϵ = 10−1. Here, some points in Pfinal are shown.

Pf ∈ Pfinal (dB) R360 R1080 Cth Vth ∆C α

2.6 1 1.09 1.42 1.383 0.23 1

2.75 1.026 1.117 1.446 1.375 0.23 1

2.9 1.048 1.141 1.475 1.366 0.23 1

3.05 1.074 1.165 1.501 1.356 0.24 1.1849

3.2 1.102 1.194 1.529 1.344 0.24 1.6132

3.35 1.13 1.223 1.556 1.332 0.24 2.1820

3.5 1.157 1.251 1.583 1.319 0.235 2.5282
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1.5 2 2.5 3 3.5 4
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Figure 4. Prediction results of HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the
2nd one with different BLERs.

To more clearly distinguish between the simulation data points used before prediction
and those used to validate the accuracy of the prediction afterward, we plot the simulation
data points required before prediction in Figures 2 and 3a,b as hollow points and the
simulation data points used for validation after prediction in Figures 4–7 as solid points,
respectively. The predicted curves in Figures 4–7 are derived from the initial simulations,
Algorithm 1, as well as the analytical formulas. The simulation points on the predicted
curves are obtained by selecting certain SNRs and spectral efficiencies within the interval
after predicting the performance and then conducting simulations for verification. The
comparisons between the simulated points and the predicted curves show very small
discrepancies. When the SNR is the same, the simulation value may be a little lower than
the prediction curve.

The calculation environments for simulations and predictions are the same. We use
MATLAB 2023b to calculate, use MATLAB’s built-in functions ldpcEncode and ldpcDecode
for encoding and decoding LDPC codes, use MATLAB’s built-in functions qammod and
qamdemod for modulation and demodulation, and we use MATLAB’s built-in functions
awgn to add noise.

The following examples show the prediction results of moderate-blocklength coded
retransmission with other modulation schemes, like 1024-QAM1st and 256-QAM2nd, in the
first and the second transmissions. They are shown in Figures 5–7, respectively.

As shown in these figures, different combinations of modulation schemes can cover
different ranges of rates. In Figure 5, we can see that the combination of 64-QAM and QPSK
covers the rate range from 1.33 to 1.83 in the SNR from 4.13 dB to 6.96 dB; that of 64-QAM
and 16-QAM covers the rate range from 1.67 to 2.29 in the SNR from 5.82 dB to 8.52 dB;
and 64-QAM combined with 64-QAM covers the rate range from 2 to 2.75 in the SNR from
7.3 dB to 10.6 dB.
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4 5 6 7 8 9 10 11

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 (4.13,  1.33)

 (6.96,  1.83)

(5.82,  1.67) 

(8.52,  2.29) 

 (7.3,  2)

(10.6,  2.75) 

Figure 5. Prediction results of HARQ using 64-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.

6 7 8 9 10 11 12 13 14

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(6.22,  1.67)

 (10.1,  2.25)

(7.64,  2) 

(11,  2.7) 

(9.09,  2.33)

(12.2,  3.21) 

(11.1,  2.67)

(13.7,  3.67) 

Figure 6. Prediction results of HARQ using 256-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.
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9 10 11 12 13 14 15 16 17

2.5

3

3.5

4

4.5

 (9.29,  2.33)

 (13.6,  3.21)

(11,  2.67) 

(14.9,  3.67) 

(12.2,  3) 

(15.9,  4.12) 

 (13.9,  3.33)

(17.5,  4.58) 

(15.55,  4) 

(15.89,  4) 

Figure 7. Prediction results of HARQ using 1024-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.

The results in Figure 6 show that if 256-QAM is used for the initial transmission and if
the aim for a retransmission is to achieve the rate range between 2 and 2.25, we can use
QPSK or 16-QAM for the retransmission. In this case, the required SNR range is between
7.64 dB and 10.1 dB. Similarly, if 16-QAM or 64-QAM is used for the retransmission, the
corresponding SNR range is between 9.09 dB and 11 dB, resulting in a rate range of 2.33 to
2.7. If 256-QAM is still used during retransmission, it will cover a rate range from 2.67 to
3.67 in the SNR from 11.1 dB to 13.7 dB.

However, we can also see in these three figures that using the same modulation scheme
during retransmission as before results in poorer performance. For example, in Figure 7, to
achieve the same rate like R = 4, the combination of 1024-QAM and 1024-QAM performs
about 0.34 dB poorer than that of 1024-QAM and 256-QAM.

The results above can guide us in selecting different modulation schemes based on
varying data rate requirements during retransmission. For example, as illustrated in
Figure 7, when using 1024-QAM for the initial transmission, if the rate is between 2.33 and
2.67, it would be better to use 16-QAM for retransmission. This is because the minimum
code rate of LDPC code is 1/3, and the minimum rate of 1024-QAM combined with
64-QAM is R = 1

3 × 1
2 × (10 + 6) = 2.67. Similarly, if the rate is between 3 and 4.12, it

would be better to use 256-QAM for retransmission because the maximum code rate after
retransmission is Rc =

11
12 × 1

2 = 11
24 , and the maximum rate of 1024-QAM combined with

256-QAM is R = 11
24 × 1

2 × (10 + 8) = 4.12. If the rate is greater than 4.12, we only use
1024-QAM to retransmit. Similar conclusions can be drawn for 64-QAM and 256-QAM in
Figures 5 and 6.

5. Efficiency Analysis

Figure 8 takes the MCS of 5G NR with the BG1 matrix as an example, where we select a
set of coding parameters with blocklengths ranging from n = 360 (Z = 18) to the maximum
length of n = 8448 (Z = 384). The ranges of code rates, respectively, cover [ 2

3 , 11
12 ] and

[ 1
3 , 11

24 ] in the first transmission and retransmission with a total nRc = 11 different code
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rates. Increasing the value of nRc can further fine-tune the prediction accuracy. For the
system-level simulations that are crucial for the design of 5G networks, it is generally
required to obtain the link-level BLER performance metrics for all data points in Figure 8
through simulations. Then, for the specific link settings of code rates and blocklengths,
the BLER performances can be directly obtained via linear interpolation with the nearby
data points. For future mobile communication systems, with wider ranges of code rates
and blocklengths and lower BLER targets, the performance evaluations for link-level
simulations with multiple retransmissions will significantly increase the computational
complexity. Our proposed performance prediction scheme can effectively reduce the
computational load while ensuring evaluation accuracy.

0 1000 2000 3000 4000 5000 6000 7000 8000

0.4

0.5

0.6

0.7

0.8

0.9

n=360 

  *11

n=1080 

 3  *11

 n=7200 

 20  *11

Figure 8. The link settings required for system-level simulations with different code rates and blocklengths,
where m1-QAM and m2-QAM are used in the first transmission and second transmission, respectively.

In the above example of MCSs shown in Figure 8, once the m1-QAM, m2-QAM and
BLER are determined before or after retransmission, we only need to simulate all the
rate data for three sets of blocklengths (the blue points in three red rectangle boxes in
Figure 8) to predict the rates for any other blocklength (other blue points in Figure 8).
Hence, when the BLERs and SNRs for the coded modulation combinations with all the
different blocklengths and code rates are required for system-level simulations, using
our algorithm can significantly improve the efficiency of performance evaluations. As
shown in Figure 8, assuming that a single testing of BLER ϵ evaluation for a code with
n = 360 requires a time of τ, then obtaining one set of data requires a time of τ × 11 for
all code rates considered before or after retransmission. As the blocklength increases, the
simulation time will also increase linearly, which means that the simulation testings of
performance evaluation for the codes with n = 1080 and n = 7200 require a computation
time of 3τ and 20τ, respectively. Therefore, the total simulation time required to obtain
all the data needed for the performance prediction of MCSs with m1-QAM and m2-QAM
is (τ + 3τ + 20τ)× 11 = 264τ. Since the time required for the calculations of ∆C and α
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is negligible compared to that of simulation tests for performance evaluations, the total
computational complexity needed to complete the entire prediction can be approximately
evaluated by 264τ. Then, if we need the rate data of codes from n = 360 to 8448 according
to all the lifting values of 5G-LDPC codes shown in Figure 8, the total computational
complexity required for a brute-force Monte Carlo simulation should be about 3300τ,
which is clearly greater than 264τ. Since each modulation combination for retransmission
requires a separate simulation, this algorithm can significantly reduce the computational
complexity when a large amount of SNR-R relationship data corresponding to various
blocklengths are needed, given a specific BLER ϵ.

6. Conclusions

In this paper, we have reviewed the theoretical prediction formulas for the performance
of finite-length coding and their correction models. Through simulation, we validated the
good adaptability of the correction model to the retransmission scenarios. To make this
model more general, we introduced a range Pfinal to unify the different SNRs. Based on
the simulation results, we can choose the modulation method for the second transmission
according to different bit rate requirements. It is also evident that if the same modulation
method is employed in the second transmission as before, its performance is not as effective
as some methods involving a reduction in the modulation order during retransmission.

Author Contributions: Software, Y.W.; validation, M.J.; data curation, Y.W., F.D. and Q.X.;
writing—original draft preparation, Y.W. and M.J.; writing—review and editing, Y.W. and M.J.;
supervision, M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
under grant 62331002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Random variables and its realization are denoted by capital letters X and its lower case
x, respectively. The boldface letter denotes a vector. A sequence x1, . . . , xn is denoted by xn.
A sequence xn partitioned into 2 blocks with equal blocklength n1 = n2 = n

2 is denoted by
xn = [x1, x2], where n is the blocklength of the code, and the ith element of vector x1, x2
is denoted by x1,i, x2,i. The total variational distance between two distributions D and Q
is denoted by ∥D − Q∥TV . The Radon-Nikodym derivative of D w.r.t. Q is denoted by
dD
dQ . Expectations and variances taken w.r.t. a distribution D are indicated by ED[·] and
VarD[·], respectively.

Let (QX(x(1)), . . . , QX(x(m))) denote an input distribution, where x(i)’s are the
m-QAM constellation points with average power Pw. Denote by D̂X the composition(

D̂X(x(1)), . . . , D̂X(x(m))
)
=
(

Q̂X(x(1)), . . . , Q̂X(x(m))
)

, if nQX(x) is an integer for all
x, or otherwise, the type closest to the QX in total variational distance, in which the greater
probabilities are assigned first to the indices i ∈ {1, . . . , m} whose corresponding constella-
tion symbols x(i) have individual power equal to Pw (if available), then to indices whose
corresponding symbols have individual power less than Pw, and finally to those with
corresponding individual power greater than Pw.

In the retransmission scenario, the 2 segments are effectively transmitted over the
same BIAWGN channel, hence:

Yk = Xk + Wk, (A1)
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where Wk ∼ CN
(
0nk , Ink σ2

k
)
, k = 1, 2, σ1 = σ2 = σ, and Ink is an identity matrix. Therefore,

the SNR is
P =

Pw
σ

. (A2)

The proof of the channel capacity C and the channel dispersion V in the retransmission
scenario is an application of Theorem 2 from [25], which is stated as follows.

Theorem A1. For a channel DYn |Xn(yn|nn) any input distribution DXn , and any output distribu-
tuion QYn , there exists a code with M codewords in Fn and average probability of error satisfying

ϵ ≤ DXn DYn |Xn [ĩ(Xn; Yn) ≤ log2γn] + Ln MDXn QYn [ĩ(Xn; Yn) > log2γn] + DXn [Xn /∈ Fn] (A3)

where

ĩ(Xn; Yn) = log2
DYn |Xn(Yn|Xn)

QYn(Yn)
(A4)

and the coefficient Ln is defined as

Ln
∆
= sup

yn∈Yn

dDYn(yn)

dQYn(yn)
(A5)

and γn is an arbitary positive threshold whose optimal choice to give the highest rates is γn = Ln M.

This proof follows similar steps as the proof for the single AWGN channel in [25] with
the modification of taking into account the retransmission scenario. For the 2 segments of
length nk = n

2 , k = 1, 2, denote by D̂(k)
X the composition of segment k and Tnk

(
D̂(k)

X

)
the

corresponding type class. For the different modulation schemes m1-QAM and m2-QAM of
the 2 segments. We fix

QX(x(i)) =
1

mk
, i = 1, . . . , mk, k = 1, 2. (A6)

Under this construction, it can be shown that∥∥∥D̂(k)
X − QX

∥∥∥
TV

≤ O
(

1
nk

)
, (A7)

and
E

D̂(k)
X

[
∥X∥2

]
≤ Pw. (A8)

We choose the input distribution DXn as the following:

DXn(xn) =
2

∏
k=1

{
xk ∈ Tnk

(
D̂(k)

X

)}
(

nkD̂(k)
X (x(1)), . . . , nkD̂(k)

X (x(mk))
) . (A9)

Let
Fn =

{
xn : ∥xk∥2 ≤ nkPw, k = 1, 2

}
. (A10)

It can be verified that the input distribution from (A7) satisfies the maximal power con-
straint ∥xk∥2 ≤ nkPw. Hence,

DXn [Xn /∈ Fn] = 0. (A11)

The output distribution induced by the input distribution DXn can be written as

DYn(yn) = ∑
xn∈X n

DXn(xn)DYn |Xn(yn|xn) =
2

∏
k=1

∑
xk∈Tnk

(
P̂(k)

X

) ΓkDYk |Xk
(yk|xk), (A12)
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where
Γk =

1(
nk

nkD̂(k)
X (x(1)), . . . , nkD̂(k)

X (x(mk))

) (A13)

and

DYk |Xk
(yk|xk) =

nk

∏
t=1

D(k)
Y|X(yt|xt) (A14)

and D(k)
Y|X indicates the channel experienced by segment k, k = 1, 2.

Next, we choose the following auxiliary distributions:

Q(k)
Y (y) =

mk

∑
i=1

QX(x(i))D(k)
Y|X(y|x(i)), k = 1, 2 (A15)

QYn(yn) =
2

∏
k=1

nk

∏
t=1

Q(k)
Y (yk,t) (A16)

where QX is given in (A6).
It can be shown by applying Proposition 3 of [25] to (A12) and (A16), we have

dPYn(yn)

dQYn(yn)
≤ Ln

∆
=

2

∏
k=1

ck(mk)n
mk−1

2
k (A17)

for sufficiently large nk’s, where ck(mk)’s are positive constants that depend only on the
constellation size m.

We now apply Theorem A1 to the distributions defined above. Let γn = Ln M. For the
first term in (A3), it can be verified that

1
n

ĩ(xn; Yn) = − 1
n

2

∑
k=1

nk

∑
t=1

log2

 mk

∑
j=1

QX(x(j))e
∥Wk,t∥2

−∥xk,t+Wk,t−x(j)∥2

σ2

. (A18)

Since {Wk,t}’s are independent, we can invoke the Berry-Esseen Theorem on 1
n ĩ(xn; Yn).

Using (A7), the mean can be verified to be

EDYn |Xn=xn

[
1
n

ĩ(xn; Yn)

]
=

1
2
(Cm1(P) + Cm2(P)) +O

(
1
n

)
= C +O

(
1
n

)
. (A19)

Similarly, the variance can be verified to be

VarDYn |Xn=xn

[
1
n

ĩ(xn; Yn)

]
=

1
n

(
1
2
(Vm1(P) + Vm2(P))

)
+O

(
1
n

)
=

V
n
+O

(
1
n

)
. (A20)

Applying the Berry-Esseen Theorem on 1
n ĩ(xn; Yn) yields

DYn |Xn

[
1
n

ĩ(xn; Yn) ≤
log2(Ln M)

n

]
≤ Q

C − log2(Ln M)
n√

V
n

+
B1√

n
, (A21)

where B1 is some positive constant. Consequently, by averaging over the input sequences,
the first term from (A3) can be bounded by

DXn DYn |Xn

[
1
n

ĩ(Xn; Yn) ≤
log2(Ln M)

n

]
≤ Q

C − log2(Ln M)
n√

V
n

+
B1√

n
. (A22)
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For the second term in (A3), observe that under the conditional distribution DYn |Xn=xn ,
1
n ĩ(xn; Yn) is a summation of independent random variables with positive variance and
finite third absolute moment. Therefore, we can apply the refined large deviation result of
Lemma 47 in [24]

QYn

[
ĩ(xn; Yn) > log2γn

]
= E

[
e−ĩ(xn ;Yn)

{
ĩ(xn; Yn) > log2(Ln M)

}]
≤ B2√

n
(Ln M)−1, (A23)

where the expectation is taken with respect to DYn |Xn=xn and B2 is a positive constant.
Therefore, the second term from (A3) can be bounded as

Ln MDXn QYn

[
ĩ(Xn; Yn) > log2(Ln M)

]
≤ B2√

n
. (A24)

Finally, combining (A22), (A24) and (A11), yields

ϵ ≤ Q

 C−log2(Ln M)
n√

V
n

+
B√
n

, (A25)

where B = B1 + B2. Rearranging (A25) and with a bit of analysis yields the result of C and
V in retransmission scenario for (9).
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